
A Particle-Partition of Unity Method–Part IV:
Parallelization

Michael Griebel and Marc Alexander Schweitzer

Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany.

Abstract In this sequel to [7, 8, 9] we focus on the parallelization of our multilevel
partition of unity method for distributed memory computers. The presented par-
allelization is based on a data decomposition approach which utilizes a key-based
tree implementation and a weighted space filling curve ordering scheme for the load
balancing problem. We present numerical results with up to 128 processors. These
results show the optimal scaling behavior of our algorithm.

1 Introduction

Numerical simulations with millions of degrees of freedom require the use
of optimal order algorithms. Here, the number of operations necessary to
obtain an approximate solution within a given accuracy should be of the or-
der O(dof). But still the overall computing time can be unacceptably large.
Another problem with large simulations is their storage demand. These is-
sues make the use of parallel computers with distributed memory a must for
large numerical simulations. Here, the data have to be partitioned into al-
most equally sized parts and assigned to different segments of the distributed
memory to exploit the available memory. This partitioning, however, should
allow for a single processor to complete most operations on its assigned part
of the data independently of the other processors. Furthermore, the number
of operations per processor should be almost identical to utilize all available
processors for the larger part of the computation.

In this paper we present the parallelization of our multilevel particle-
partition of unity method for the approximate solution of an elliptic partial
differential equation. The main ingredients are a key-based tree implemen-
tation and a space filling curve load balancing scheme. The overall method
can be split into three major steps: The initial tree construction and load
balancing step, the assembly step where we set up the stiffness matrices Ak
and interlevel transfers on all levels k = 0, . . . , J , and finally the solution
step where we use a multiplicative multilevel iteration to solve the linear
(block-)system AJ ũJ = f̂J . The complexities of the tree construction and
load balancing step is given by O(N℘ J + (N℘)

d−1
d + J(log℘)2 +℘ log℘) where

N denotes the number of leaves of the tree, J denotes the number of levels of
the tree (J ' logN for a balanced tree) and ℘ is the number of processors.
The assembly of the stiffness matrices is trivially parallel with a complexity

2 M. Griebel, M. A. Schweitzer

of O(N℘), and the complexity of the solution step is the well-known complex-

ity O(N℘ + (N℘)
d−1
d + J + log℘) of a multiplicative multilevel iteration [26].

The results of our numerical experiments with up to 128 processors and 42
million degrees of freedom clearly show the scalability of our method.

The remainder of the paper is organized as follows. In §2 we shortly re-
view the Galerkin discretization and multilevel solution of an elliptic partial
differential equation with the particle-partition of unity method. The paral-
lelization of our method is presented in §3. Here, a fundamental ingredient
is a key-based tree implementation which we introduce in §3.2 and §3.3. We
focus on the load balancing problem in §3.4. There, we present a cheap nu-
merical scheme based on space filling curves to (re-)partition data in parallel.
The algorithmic changes we have to apply to our particle-partition of unity
for parallel computations are presented in §3.5, §3.6 and §3.7. The results
of our numerical experiments are presented in §4. Finally, we conclude with
some remarks in §5.

2 Particle-Partition of Unity Method

In the following, we give a short recap of our particle-partition of unity
method for the Galerkin discretization of an elliptic partial differential equa-
tion of second order and its multilevel solution, see [7, 8, 9, 19] for details.

2.1 Construction of Partition of Unity Spaces

In a partition of unity method (PUM), we define a global approximation uPU

simply as a weighted sum of local approximations ui,

uPU(x) :=
N∑
i=1

ϕi(x)ui(x). (2.1)

These local approximations ui are completely independent of each other. The
local supports ωi := supp(ui), the local basis {ψni } and the order of approxi-
mation pi for every single ui :=

∑
n u

n
i ψ

n
i can be chosen independently of all

other uj . Here, the functions ϕi form a partition of unity (PU), i.e.
∑
i ϕi ≡ 1.

They are used to splice the local approximations ui together in such a way
that the global approximation uPU benefits from the local approximation or-
ders pi, yet it still fulfills global regularity conditions. For further details see
[7, 19].

The starting point for any meshfree method is a collection of N indepen-
dent points P := {xi ∈ Rd |xi ∈ Ω, i = 1, . . . , N}. In the partition of unity
approach we first have to construct a PU {ϕi} on the domain of interest
Ω. Then we can choose local approximation spaces V pii = span〈ψni 〉 on the
patches ωi to define the PUM space

V PU :=
∑
i

ϕiV
pi
i =

∑
i

ϕi span〈{ψni }〉 = span〈{ϕiψni }〉

A Particle-Partition of Unity Method–Part IV: Parallelization 3

and an approximate solution (2.1). Here, the union of the supports supp(ϕi) =
ωi have to cover the domain, i.e. Ω ⊂

⋃N
i=1 ωi. Given a cover CΩ := {ωi | i =

1, . . . , N} we can define a PU by using Shepard functions as ϕi.
The efficient construction of an appropriate cover CΩ for general point sets

P is not an easy task [7, 8, 19] and it is the most crucial step in a PUM. The
cover has a significant impact on the computational costs associated with
the assembly of the stiffness matrix A, since the cover already defines the
(block-)sparsity pattern of the stiffness matrix, i.e. the number of integrals
to be evaluated. Furthermore, the cover influences the algebraic structure of
the PU functions ϕi, which has to be resolved for the proper integration of
a stiffness matrix entry [7, 8, 19]. Throughout this paper we use a parallel
version (see §3.5) of a tree-based algorithm for the construction of a sequence
of rectangular covers [8, 9].

With the help of weight functions Wk defined on the patches ωk of the
cover CΩ we can easily generate a PU by Shepard’s method, i.e. we define

ϕi(x) =
Wi(x)∑

ωk∈CiWk(x)
, (2.2)

where Ci := {ωj ∈ CΩ |ωi ∩ωj 6= ∅} is the set of all geometric neighbors of a
cover patch ωi. We restrict ourselves to the use of cover patches ωi which are
d-rectangular, i.e. the patches ωi are products of intervals [xli − hli, xli + hli].
Therefore, the most natural choice for a weight function Wi is a product of
one-dimensional functions, i.e. Wi (x) =

∏d
l=1W

l
i (xl) =

∏d
l=1W (x

l−xli+h
l
i

2hli
)

with supp(W) = [0, 1] such that supp(Wi) = ωi. It is sufficient for this
construction to choose a one-dimensional weight function W which is non-
negative. The PU functions ϕi inherit the regularity of the generating weight
function W. We always use a normed B-spline [19] as the generating weight
function W, throughout this paper we use a linear B-spline.

In general, a PU {ϕi} can only recover the constant function on the do-
main Ω. For the discretization of a partial differential equation (PDE) this ap-
proximation quality is not sufficient. Therefore, we multiply the PU functions
ϕi locally with polynomials ψni . Since our cover patches ωi are d-rectangular, a
local tensor product space is the most natural choice. Throughout this paper,
we use products of univariate Legendre polynomials as local approximation
spaces V pii , i.e. we choose

V pii = span〈{ψni |ψni =
d∏
l=1

Ln̂li , ‖n̂‖1 =
d∑
l=1

n̂l ≤ pi}〉,

where n̂ = (n̂l)dl=1 is the multi-index of the polynomial degrees n̂l of the
univariate Legendre polynomials Ln̂li : [xli − hli, xli + hli] → R, and n is the
index associated with the product function ψni =

∏d
l=1 L

n̂l
i .

4 M. Griebel, M. A. Schweitzer

2.2 Galerkin Discretization

We want to solve elliptic boundary value problems of the type

Lu = f in Ω ⊂ Rd ,
Bu = g on ∂Ω ,

where L is a symmetric partial differential operator of second order and B
expresses suitable boundary conditions. For reasons of simplicity we consider
in the following the model problem

−∆u+ u = f in Ω ⊂ Rd ,
∇u · nΩ = g on ∂Ω ,

(2.3)

of Helmholtz type with natural boundary conditions. The Galerkin discretiza-
tion of (2.3) leads to a definite linear system.1 In the following let a (·, ·) be
the continuous and elliptic bilinear form induced by L on H1(Ω). We dis-
cretize the PDE using Galerkin’s method. Then, we have to compute the
stiffness matrix

A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψmj , ϕiψ
n
i) ∈ R ,

and the right hand side vector

f̂ = (f(i,n)) , with f(i,n) = 〈f, ϕiψni 〉L2 =
∫
Ω

fϕiψ
n
i ∈ R .

Throughout this paper we assume that the stiffness matrix is arranged in
polynomial blocks Ai,j = (A(i,n),(j,m)) [9].

The integrands of the weak form of (2.3) may have quite a number of
jumps of significant size since we use piecewise polynomial weights Wi whose
supports ωi overlap in the Shepard construction (2.2). Therefore, the inte-
grals of the weak form have to be computed carefully using an appropriate
numerical quadrature scheme, see [7, 8].

2.3 Multilevel Solution

We use a multilevel solver developed in [9] for the fast and efficient solution
of the resulting large sparse linear (block-)system Aũ = f̂ , where ũ denotes
a coefficient (block-)vector and f̂ a moment (block-)vector.
1 The implementation of Neumann boundary conditions with our PUM is straight-

forward and similar to their treatment within the finite element method (FEM).
The realization of essential boundary conditions with meshfree methods is more
involved than with a FEM due to the non-interpolatory character of the meshfree
shape functions. There are several different approaches to the implementation of
essential boundary conditions with meshfree approximations, see [1, 7, 12, 19].
Note that the resulting linear system may be indefinite, e.g. when we use La-
grangian multipliers to enforce the essential boundary conditions. A more natural
approach toward the treatment of Dirichlet boundary conditions due to Nitsche
[16] leads to a definite linear system.

A Particle-Partition of Unity Method–Part IV: Parallelization 5

In a multilevel method we need a sequence of discretization spaces Vk
with k = 0, . . . , J where J denotes the finest level. To this end we construct
a sequence of PUM spaces V PU

k as follows. We use a tree-based algorithm
developed in [8, 9] to generate a sequence of point sets Pk and covers CkΩ
from a given initial point set P̃ . Following the construction given in §2.1 we
can then define an associated sequence of PUM spaces V PU

k . Note that these
spaces are nonnested, i.e. V PU

k−1 6⊂ V PU
k , and that the shape functions ϕi,kψni,k

are non-interpolatory. Thus, we need to construct appropriate transfer op-
erators Ikk−1 : V PU

k−1 → V PU
k and Ik−1

k : V PU
k → V PU

k−1. With such transfer
operators Ikk−1, Ik−1

k and the stiffness matrices Ak coming from the Galerkin
discretization on each level k we can then set up a standard multiplicative
multilevel iteration to solve the linear system AJ ũJ = f̂J .

Our multilevel solver utilizes special localized L2-projections for the in-
terlevel transfers and a block-smoother to treat all local degrees of freedom
ψni within a patch ωi simultaneously. For further details see [9].

3 Parallel Particle-Partition of Unity Method

In this section we present the parallelization of our PUM. Here, we use a
data decomposition approach to split up the data among the participating
processors and their respective local memory.

Our cover construction algorithm [8] is essentially a simple tree algorithm.
Hence, we need to be concerned with a parallel tree implementation (§3.2
and §3.3). Another cause of concern in parallel computations is the load
balancing issue which we discuss in §3.4. We then focus on the parallel cover
construction in §3.5 where we construct a sequence of d-rectangular covers
CkΩ . The assembly of the stiffness matrices Ak on all levels k in parallel is
presented in §3.6. Finally, we discuss the multilevel solution of AJ ũJ = f̂J in
parallel in §3.7.

Note that neither the assembly phase nor the solution phase make explicit
use of the tree data structure. Here, we employ a parallel sparse matrix data
structure to store each of the sparse (block-)matrices Ak, Ikk−1 and Ik−1

k on all
levels k. The neighborhoods Ci,k := {ωj,k ∈ CkΩ |ωj,k ∩ ωi,k 6= ∅} determine
the sparsity pattern of the stiffness matrices Ak, i.e. the nonzero (block-)-
entries of the ith (block-)row. Furthermore, they are needed for the evaluation
of (2.2). Once the neighborhoods are known the evaluation of a PU function
(2.2) and the matrix assembly are independent of the tree construction. The
tree data structure is used only for the multilevel cover construction and for
the efficient computation of the neighborhoods Ci,k.

3.1 Data Decomposition

There are two main tasks associated with the efficient parallelization of any
numerical computation on distributed memory computers. The first is to

6 M. Griebel, M. A. Schweitzer

evenly split up the data among the participating processors, i.e. the asso-
ciated computational work should be well-balanced. The second is to allow
for an efficient access to data stored by another processor; i.e. on distributed
memory parallel computers also the amount of remote data needed by a
processor should be small.

In a data decomposition approach we partition the data, e.g. the compu-
tational domain or mesh, among the participating processors [17]. Then, we
simply restrict the operations of the global numerical method to the assigned
part of the data/domain. A processor has read and write access to its local
data but only read access to remote data it may need to complete its local
computation. On distributed memory machines these required data have be
to exchanged explicitly in distinct communication steps.

The quality of the partition of the domain/data essentially determines
the efficiency of the resulting parallel computation. The local parts of the
data assigned to each processor should induce a similar amount of computa-
tional work so that each processor needs roughly the same time to complete
its local computation. Here, a processor may need to access the data of the
neighboring sub-domains to solve its local problem. Hence, the geometry of
the sub-domains should be simple to limit the number of communication
steps and the communication volume. The number of neighboring processors
(which determines the number of communication steps) should be small and
the geometry of the local boundary (which strongly influences the communi-
cation volume) should be simple, i.e. its size should be small.

The data structure which describes the computational domain in our
PUM is a d-binary tree (quadtree, octree) used for the cover construction
[8] and the fast neighbor search for the evaluation of the Shepard PU func-
tions (2.2). In a conventional implementation of a d-binary tree the topology
is represented by storing links to the successor cells in the tree cells. Note
that this data structure does not allow for random access to a particular cell
of the tree and special care has to be taken on distributed memory machines
if a successor cell is assigned to another processor. These issues make the use
of a conventional tree implementation rather cumbersome on a distributed
memory parallel computer.

3.2 Key Based Tree Implementation

A different implementation of a d-binary tree which is more appropriate for
distributed memory machines was developed in [23, 24]. Here, the tree is
realized with the help of a hashed associative container. A unique label is
assigned to each possible tree cell and instead of linking a cell directly to its
successor cells the labeling scheme implicitly defines the topology of the tree
and allows for the easy access to successors and ancestors of a particular tree
cell. Furthermore, we can randomly access any cell of the tree via its unique
label. This allows us to catch accesses to non-local data and we can easily

A Particle-Partition of Unity Method–Part IV: Parallelization 7

compute the communication pattern and send and receive all necessary data
to complete the local computation.

The labeling scheme maps tree cells CL =
⊗d

i=1[ciL, c
i
L + hiL] ⊂ Rd to a

single integer value kL ∈ N0, the key. For instance, we can use the d-binary
path as the key value kL associated with a tree cell CL. The d-binary path kL
is defined by the search path that has to be completed to find the respective
cell in the tree. Starting at the root of the tree we set kL = 1 and descend
the tree in the direction of the cell CL. Here we concatenate the current key
value (in binary representation) and the d Boolean values 0 and 1 associated
with the decisions to which successor cell the descent continues to reach the
respective tree cell CL. In Table 1 we give the resulting path key values kL
for a two dimensional example. Note that the key value kL = 1 for the root
cell is essentially a stop bit which is necessary to insure the uniqueness of the
key values.

Table1. Path key values for the successor cells of a tree cell CL =⊗d
i=1[ciL, c

i
L + hiL] with associated key kL in two dimensions.

successor cell binary key value integer key value

[c1L, c
1
L + 1

2
h1
L] × [c2L, c

2
L + 1

2
h2
L] kL00 4kL

[c1L, c
1
L + 1

2
h1
L] × [c2L + 1

2
h2
L, c

2
L + h2

L] kL01 4kL + 1

[c1L + 1
2
h1
L, c

1
L + h1

L] × [c2L, c
2
L + 1

2
h2
L] kL10 4kL + 2

[c1L + 1
2
h1
L, c

1
L + h1

L] × [c2L + 1
2
h2
L, c

2
L + h2

L] kL11 4kL + 3

3.3 Parallel Key Based Tree Implementation

The use of a global unique integer key for each cell of the tree allows for a
simple description of a partitioning of the computational domain. The set of
all possible2 keys {0, 1, . . . , kmax} is simply split into ℘ subsets which are then
assigned to the ℘ processors. We subdivide the range of keys into ℘ intervals

0 = r0 ≤ r1 ≤ · · · ≤ r℘ = kmax

and assign the interval [rq, rq+1) to the qth processor, i.e. the set of tree
cells assigned to the qth processor is {CL | kL ∈ [rq, rq+1)}. With this very
simple decomposition each processor can identify which processor stores a
particular tree cell CL. A processor only has to compute the key value kL for
the tree cell CL and the respective interval [rq, rq+1) with kL ∈ [rq, rq+1) to
determine the processor q which stores this tree cell CL. The question now
arises if such a partition of the domain with the path keys kL is a reasonable
2 The maximal key value kmax is a constant depending on the architecture of the

parallel computer.

8 M. Griebel, M. A. Schweitzer

k=4

k=1

k=5 k=6 k=7

k=23k=22k=21k=20

Figure1. The tree is ordered horizontally by the path key values k.

choice? Obviously the partitioning of the tree should be done in such a fashion
that complete sub-trees are assigned to a processor to allow for efficient tree
traversals. But the path key labeling scheme given above orders the tree cells
rather horizontally (see Figure 1) instead of vertically. Therefore, we need to
transform the path keys kL to so-called domain keys kDL .

A simple transformation which leads to a vertical ordering of the tree cells
is the following: First, we remove the leading bit (the initial root key value)
from the key’s binary representation. Then we shift the remaining bits all the
way to the left so that the leading bit of the path information is now stored
in the most significant bit.3 Assume that the key values are stored as an 8 bit
integer and that we are in two dimensions. Then this simple transformation
of a path key value kL = 18 to a respective domain key value kDL = 32 is
given by

kL = 0001 0010︸︷︷︸
path

7→ 0010︸︷︷︸
path

0000 = kDL . (3.1)

With these domain keys kDL the tree is now ordered vertically and we can
assign complete sub-trees to a processor using the simple interval domain
description [rq, rq+1). But the transformed keys are no longer unique and
cannot be used as the key value for the associative container to store the
tree itself. Obviously, a successor cell CS of a tree cell CL can be assigned the
same domain key as the tree cell, i.e. kDS = kDL . Hence, we use the unique
path keys kL for the container and the associated domain keys kDL for the
domain description, i.e. for the associated interval boundaries [rq, rq+1).

Note that the description of the data partition via the intervals [rq, rq+1)
defines a minimal refinement stage of the tree which has to be present on all
processors to insure the consistency of the tree. In the following we refer to
this top part of the tree as the common global tree. The leaves CL of the com-
mon global tree are characterized by the fact that they are the coarsest tree
cells for which all possible successor cells are stored on the same processor,
see Figure 2. The domain key values kDS of all possible successor cells CS lie

3 This transformation needs O(1) operations if we assume that the current refine-
ment level of the tree is known, otherwise it is of the order O(J), where J denotes
the number of levels of the tree.

A Particle-Partition of Unity Method–Part IV: Parallelization 9

Figure2. Common global tree (dashed, gray shaded) for a partition onto 3
processors. Local sub-tree roots (dark gray shaded) and the local sub-tree
cells (white) for the first (left), second (center) and third processor (right).

in the same interval [rq, rq+1) as the domain key kDL . We therefore refer to
the leaves of the common global tree as local sub-tree roots.

3.4 Load Balancing with Space Filling Curves

The order of the tree cells induced by the domain keys kDL given above is
often referred to as bit-interleaving, the Morton-order or the Z-order (N-
order). The curve induced by mapping the domain keys to the associated cell
centers corresponds to the Lebesgue curve (Figure 3 (upper left)) which is
a space filling curve [18]. There are many space filling curves with different
properties which might be more suitable for our needs; e.g. the sub-domains
generated by the Lebesgue curve may be not connected [27] even for a d-
rectangle, see Figure 3 (upper right). This increases the size of the local
boundary and thereby the communication volume and possibly the number
of communication steps.

The properties of space filling curves with respect to partitioning data
for parallel computations have been studied in [27, 28]. Here, it turns out
that the Hilbert curve (Figure 3 (lower left)) is more suitable for partitioning
irregular data than the Lebesgue curve. It provides a better data locality,
e.g. the constructed sub-domains for a d-rectangle are connected (Figure 3
(lower right)) and the size of the local boundaries is of optimal order. Hence,
we use the Hilbert curve instead of the Lebesgue curve to order the tree in
our implementation, i.e. we use a different transformation than (3.1) to map
the path keys kL to domain keys kDL . This transformation of the path key
values to Hilbert curve keys is more involved than the transformation (3.1) to
Lebesgue curve keys, but it can also be realized with fast bit manipulations.4

4 In general the transformation of a given key kL to its associated Hilbert domain
key kDL needs O(J) operations, even if the current tree level J is known. But
since we are interested in the domain keys kDL keys for all cells (or at least for all
leaves) of the tree we can merge the transformation with the tree traversal which
reduces the complexity of the transformation of a single key to O(1).

10 M. Griebel, M. A. Schweitzer

Figure3. The Lebesgue curve (upper left) and the constructed sub-domains
(upper right) for a partition onto three processors. The sub-domains are not
connected since the curve does not have the locality property. The Hilbert
curve (lower left) and the constructed sub-domains (lower right) for a parti-
tion onto three processors. The sub-domains are connected due to the locality
property of the curve.

The use of the Hilbert curve was also suggested by Warren and Salmon
in [23, 25]. In [4, 27] the parallel performance of tree-based algorithms on
Hilbert curve induced partitions was studied.

By changing the interval boundaries {rq | q = 0, . . . , ℘} we can balance
the load among the processors. To this end we assign estimated work loads
wL as weights to the leaves CL of the tree. Then we compute the current
load estimate wq̂ =

∑
wL on every processor q̂ and gather all remote load

estimates wq with q 6= q̂. Then, the global load estimate w =
∑℘−1
q=0 w

q, and
the balanced load distribution wqb = qw

℘ are computed. In the next step every
processor iterates over its current set of leaves CL of the tree in ascending
order of the domain keys kDL and sets new (intermediate) interval boundaries
{r̃q | q = 0, . . . , ℘} accordingly. Finally, a reduction operation over all sets
{r̃q | q = 0, . . . , ℘} gives the new interval boundaries {rq | q = 0, . . . , ℘} which
balance the estimated load w. Note that this load balancing scheme itself is
completed in parallel.
Algorithm 1 (Load Balancing).

A Particle-Partition of Unity Method–Part IV: Parallelization 11

1. For all local leaves CL of the tree: Assign estimated work load wL.
2. Compute local estimate wq̂ =

∑
L wL.

3. Gather remote estimates wq with q = 0, . . . , ℘− 1 and q 6= q̂.
4. Compute global load estimate w =

∑℘−1
q=0 w

q.

5. Set local estimate wq̂g =
∑q<q̂
q=0 w

q.
6. Set balanced load distribution wqb = qw

℘ for q = 0, . . . , ℘.
7. For all local leaves CL (in ascending order of domain keys kDL): Set local

intermediate interval boundary r̃q̃ = kDL where q̃ ∈ {0, . . . , ℘} is the
smallest integer with wq̂g ≤ w

q̃
b and update estimate wq̂g = wq̂g + wL.

8. Set interval boundaries rq = maxq r̃q by reducing the intermediate bound-
aries r̃q over all processors, force r0 = 0 and r℘ = kmax.

The complexity of this load balancing scheme is given by O(card(PJ)
℘ +

℘ log℘), where PJ denotes the generating point set for our PUM space V PU
J

on the finest level J , i.e. card(PJ) corresponds to the number of leaves of
the tree.5 We use the number of neighboring patches card(CL,J) on the finest
level J as the load work estimate wL. By this choice we balance the number of
(block-)integrals on the finest level among the processors. Under the assump-
tion that the computation of every (block-)integral is equally expensive we
balance the assembly of the operator on level J . Since we use a dynamic inte-
gration scheme [8] this assumption does not hold exactly but our experiments
indicate that the difference in the cost of the integration is small. A slightly
better load balance might be achieved if we use the number of integration
cells [8] per (block-)row instead of the number of (block-)entries, but still the
number of quadrature points may not be balanced. Furthermore, the main
influence on the number of quadrature cells is the number of neighboring
patches [8].

Currently, our load estimator wL involves only the neighbors CL,J on the
finest level J . But for highly irregular point sets we might need to include
an estimate of the computational work on coarser levels as well. To this end
we could either include the number of neighbors card(CL,k) on coarser levels
k < J or take the local refinement level of the tree into account. Furthermore,
the estimator does not involve the local polynomial degrees pi which influence
the cost during the integration. In applications with a large variation of the
local polynomial degrees pi or varying local basis functions ψni the estimator
should also take these features into account.

Note that the computational cost associated with the estimation of the
current load can often be reduced. In a time-dependent setting or in adaptive
refinement we usually have a pretty good load estimate from a previous time
step or a coarser level without extra computations. This estimate can either
be used directly to partition the data or it can be updated with only a

5 The complexity may be reduced to O(card(PJ)
℘

+log℘) only under very restrictive
assumptions on the load imbalance.

12 M. Griebel, M. A. Schweitzer

few operations. Furthermore, we typically have to re-distribute only a small
amount of data in these situations.

Let us now consider the solution phase of our PUM where we use our
multilevel iteration to solve the linear (block-)system AJ ũJ = f̂J . The solver
essentially consist of matrix-vector-products and scalar-products. So we need
to be concerned with the performance of these two basic operations.

Our load balancing strategy partitions the number of (block-)integrals
evenly among the processors so that we have an optimal load balance in
the assembly of the stiffness matrix. Hence, the number of (block-)entries in
the stiffness matrix AJ per processor are also (almost) identical due to this
balancing strategy, i.e. the number of operations in a matrix-vector-product
is balanced among the processors. Unlike in grid-based discretizations we
have to cope with a varying “stencil size”, i.e. the number of (block-)entries
per (block-)row in the stiffness matrix is not constant. Therefore, the perfect
load balance for the matrix-vector-product does no longer coincide with the
load balance for the scalar-product. Since a matrix-vector-product is certainly
more expensive than a scalar-product the parallel performance of the overall
iteration is dominated by the performance of the matrix-vector-product where
we have a perfect load balance. Hence, our balancing scheme leads to an
optimal load balance in the discretization phase as well as in the solution
phase.

3.5 Parallel Cover Construction

Now that the computational domain is partitioned in an appropriate fashion
among the processors we turn to the algorithmic changes for our parallel
implementation, e.g. the computation of the communication pattern. The
first task in our PUM is the multilevel cover construction [8, 9] which is
essentially a post-order tree operation. Due to our tree decomposition which
assigns complete sub-trees to processors most work can be done completely
in parallel. When we reach elements of the common global tree we need to
gather the respective tree cells from remote processors. Then, all processors
can complete the cover construction on the common global tree. The parallel
version of the multilevel cover construction algorithm [8, 9] reads as:
Algorithm 2 (Parallel Multilevel Cover Construction).

1. Given the domain Ω ⊂ Rd and a bounding box RΩ =
⊗d

i=1[liΩ , u
i
Ω] ⊃ Ω.

2. Given the interval boundaries {rq | q = 0, . . . , ℘} and the local part P̃q̂
of the initial point set P̃ = {xj |xj ∈ Ω}, i.e. kDj ∈ [rq, rq+1) for all
xj ∈ P̃q̂.6

3. Initialize the common global d-binary tree (quadtree, octree) according
to the ℘ intervals [rq, rq+1).

6 An initial partition can easily be constructed by choosing uniform interval bound-
aries {rq} and partitioning the initial point set P̃ according to the domain keys
on the finest possible tree level.

A Particle-Partition of Unity Method–Part IV: Parallelization 13

4. Build parallel d-binary sub-trees over local sub-tree roots, such that
per leaf L at most one xi ∈ P̃q̂ lies within the associated cell CL :=⊗d

i=1[liL, u
i
L].

5. Set J to the finest refinement level of the tree.
6. For all local sub-tree roots CL =

⊗d
i=1[liL, u

i
L]:

(a) If current tree cell CL is an INNER tree node:
i. Descend tree for all successors of CL.
ii. Set patch ωL =

⊗d
i=1[xiL−hiL, xiL+hiL] ⊃ CL where xL = 1

2d

∑
xS

is the center of its successors points xS and hiL = 2 maxhiS is twice
the maximum radius of its successors hiS .

iii. Set active levels lmin
L = lmax

L = min lmin
S − 1 and update for all

successors lmin
S = min lmin

S .
(b) Else:

i. Set patch ωL =
⊗d

i=1[xiL − hiL, xiL + hiL] ⊃ CL where xiL = liL +
1
2 (uiL − liL) and hiL = αl

2 (uiL − liL).
ii. Set active levels lmin

L = lmax
L = J .

7. Broadcast patches ωL associated with local sub-tree roots CL to all pro-
cessors.

8. For common global root CL =
⊗d

i=1[liL, u
i
L]:

(a) If current tree cell CL is not the root of any complete processor sub-
tree and an INNER tree node:

i. Descend tree for all successors of CL.
ii. Set patch ωL =

⊗d
i=1[xiL−hiL, xiL+hiL] ⊃ CL where xL = 1

2d

∑
xS

is the center of its successors points xS and hiL = 2 maxhiS is twice
the maximum radius of its successors hiS .

iii. Set active levels lmin
L = lmax

L = min lmin
S − 1 and update for all

successors lmin
S = min lmin

S .

9. For k = 0, . . . , J :

(a) Set P kΩq̂ = {xL | lmin
L ≤ k ≤ lmax

L and kDL ∈ [rq̂, rq̂+1)}.
(b) Set CkΩq̂ = {ωL | lmin

L ≤ k ≤ lmax
L and kDL ∈ [rq̂, rq̂+1)}.

Here, the parameter αl in step 6(b)i is only dependent on the order l
of the spline W used in the construction of the PU, see [8]. Throughout
this paper we use a linear spline W to generate the partition of unity with
αl = 1.3. Note that this cover construction algorithm introduces additional
points, i.e. card(PJ) =

∑℘−1
q=0 card(PJq) ≥ card(P̃) =: Ñ , to insure the shape

regularity of the cover patches, see [8] for details. Also note that we have
assumed RΩ = Ω for ease of notation in Algorithm 2, in general we only
need to consider tree cells CL which overlap the domain Ω, i.e. CL ∩ Ω 6= ∅.
The complexity of this parallel multilevel cover construction including the
setup of the tree is given by O(card(PJ)

℘ J + ℘ log℘).

14 M. Griebel, M. A. Schweitzer

3.6 Parallel Matrix Assembly

Now that we have constructed the covers CkΩ in a distributed fashion, we come
to the Galerkin discretization of (2.3) in parallel. Here, we simply restrict the
assembly of the stiffness matrix (and the transfer operators) on each of the
℘ processors to the (block-)rows associated with its assigned patches ωi,k. A
processor q̂ computes all (block-)entries

(Ak)i,j = (Ak(i,n),(j,m)) , with Ak(i,n),(j,m) = a (ϕj,kψmj,k, ϕi,kψ
n
i,k) ∈ R ,

(3.2)
where ϕi,k is the PU function associated with one of its assigned patches
ωi,k, i.e. the domain key kDi,k = kDi associated with the patch ωi,k is element
of [rq̂, rq̂+1). The (block-)sparsity pattern of the respective (block-)row is
determined by the neighborhood Ci,k = {ωj,k ∈ CkΩ |ωi,k ∩ ωj,k 6= ∅}. Hence,
a processor needs to access all geometric neighbors ωi,k∩ωj,k 6= ∅ of its patches
ωi,k to compute its assigned part of the stiffness matrix Ak on level k. In fact
these neighbors are already needed to evaluate the local PU functions (2.2).

Although most neighbors ωj,k of a patch ωi,k are stored on the local
processor, the patch ωi,k may well overlap patches which are stored on a
remote processor. Hence, a processor may need copies of certain patches from
a remote processor for the assembly of its assigned (block-)rows of the global
stiffness matrices Ak. The computation of a single (block-)entry (3.2) involves
ϕi,k and ϕj,k. Hence, it seems that we not only need remote patches ωj,k but
also all their neighbors ωl,k ∈ Cj,k for the evaluation of the integrands (3.2)
involved in the (block-)row corresponding to the local patch ωi,k. This would
significantly increase the communication volume and storage overhead due
to parallelization. But since all function evaluations of ϕj,k are restricted to
the support of ϕi,k—recall that the integration domain for the block entry is
Ω∩ωi,k∩ωj,k—every neighboring patch ωl,k ∈ Cj,k that contributes a nonzero
weight Wl,k to the PU function ϕj,k (on the integration domain) must also
be a neighbor of ωi,k. Hence, it is sufficient to store copies of remote patches
ωj,k which are direct neighbors of a local patch ωi,k. There is no need to store
neighbors of neighbors for the assembly of the stiffness matrix.

But how does a processor determine which neighbors ωj,k exist on a re-
mote processor? A processor cannot determine which patches to request from
a remote processor. But a processor can certainly determine which of its local
patches ωi,k overlap the remote sub-trees. Hence, a processor can compute
which local patches a remote processor may need to complete its neighbor
search. We only need to perform a parallel communication step where a pro-
cessor sends its local patches which overlap the remote sub-trees prior to the
computation of the neighborhoods Ci,k.

Our cover construction algorithm constructs patches with increasing over-
lap on coarser levels k < J to control the gradients ∇ϕi,k for k < J . Hence,
many local patches ωi,k̂ will overlap a remote sub-tree root patch ωj,k̃. But
for the computation of the neighborhoods Cj,k̂ on level k̂ > k̃ the remote pro-
cessor may not need the local patch ωi,k̂. The remote patches ωj,k̂ on level

A Particle-Partition of Unity Method–Part IV: Parallelization 15

k̂ might not overlap ωi,k̂, even though the coarser patch ωj,k̃ does overlap
ωi,k̂. Hence, the patch ωi,k̂ is not needed by the remote processor to complete
its computation and ωi,k̂ should not be sent. This problem can be easily
cured if we first compute a “minimal cover”. Here, the patches associated
with the tree cells are computed without increasing the overlap from level
to level. This computation of patches with “minimal” overlap can be done
with a variant of Algorithm 2. We only need to change steps 6(a)ii and 8(a)ii
of Algorithm 2 where we set the patches on coarser levels. Then, we store
separate copies of the minimal patches associated with the leaves of the com-
mon global tree before we compute the correct cover with Algorithm 2. A
processor can now test its local patches with the correct supports against the
“minimal” patches associated with remote sub-tree roots to compute the cor-
rect overlap with respect to the finest level J . The complexity of this overlap
computation is given by O(J(log℘)2) and the communication volume is of
the order O((card(PJ)

℘)
d−1
d).7

For the computation of the neighborhoods Ci,k on coarser levels k < J we
have to keep in mind that the complete tree is coarsened from level to level.
Hence, we may need to coarsen the common global tree and we also have to
update the minimal overlaps.8

For the interlevel transfer operators we have to compute interlevel neigh-
bors Ci,k,k−1 := {ωj,k−1 ∈ Ck−1

Ω |ωi,k∩ωj,k−1 6= ∅} and Ci,k,k+1 := {ωj,k+1 ∈
Ck+1
Ω |ωi,k∩ωj,k+1 6= ∅} for all local patches ωi,k. Hence, we need to compute

overlaps within a given level as well as between successive levels. The over-
laps between between different levels can be computed in a similar fashion
as described above. After the exchange of the overlaps the neighbor search
can be completed on each processor just like in a sequential implementation.
The complexity of the neighborhood computation is given by O(card(PJ)

℘ J).
In our implementation we pre-compute the neighborhoods Ci,k on all lev-

els k = 0, . . . , J prior to the assembly of the stiffness matrices Ak. These
neighborhoods, i.e. the respective keys, are stored in an additional sparse
data structure since they not only determine the sparsity pattern of the stiff-
ness matrix but they are also needed for the function evaluation of the PU
functions ϕi,k. Hence, we compute the neighborhoods Ci,k only once and
utilize the O(1) random access capabilities of our key-based tree implemen-
tation so that the single function evaluation of ϕi,k is of the order O(1). The
interlevel neighbors Ci,k,l with k 6= l are computed on demand during the
7 The complexity of the overlap computation may be reduced to O(J log℘) if we

employ a second tree data structure to store a complete copy of the common
global tree.

8 Under certain constraints on the overlap parameter α in the cover construction
and the regularity of the tree we can compute the neighborhoods Ci,k on coarser
levels k < J directly from the neighborhoods Ci,J on the finest level J and there
is no need for an overlap computation of coarser levels. But this does not improve
the overall complexity since we still need to search for neighbors on the finest
level J .

16 M. Griebel, M. A. Schweitzer

assembly of the respective transfer operators I lk and Ikl since they are needed
for the sparsity structure of the transfer operators only. Hence, the assem-
bly of the stiffness matrices is of the order O(card(PJ)

℘) whereas the assembly

of the transfer operators is of the order O(card(PJ)
℘ J) due to the necessary

neighbor search.

3.7 Parallel Multilevel Solution

The first challenge we encounter in the parallelization of our multilevel solver
is the question of smoothing in parallel. In [9] we have used a (block-)Gauß–
Seidel iteration as a smoother since its smoothing rate is superior to that
of the simpler (block-)Jacobi smoother. The parallelization of a (block-)-
Gauß–Seidel iteration though is not an easy task especially for unstructured
discretizations such as ours. A common approach to circumvent the com-
plete parallelization of the (block-)Gauß–Seidel smoother is a sub-domain-
blocking approach. Here, the (block-)Gauß–Seidel iteration is only applied
locally within a processor’s assigned sub-domain and these local iterates are
then merged using an outer sub-domain-block-Jacobi iteration. Note that this
approach changes the overall iteration for different numbers of sub-domains,
i.e. varying processor numbers. The rate of this composite sub-domain-block-
Jacobi smoother with an internal (block-)Gauß–Seidel iteration is somewhat
reduced compared with the original (block-)Gauß–Seidel rate but it is still
superior to that of the (block-)Jacobi iteration (for large sub-domains). The
number of operations of this composite smoother is similar to the number
of operations of a (block-)Jacobi iteration. Their communication demands
are identical. Hence, the composite sub-domain-block-Jacobi smoother with
internal (block-)Gauß–Seidel iteration (in general) outperforms the (block-)-
Jacobi smoother and it is therefore used in our multilevel solver.

The second basic operation of our multilevel iteration is the application
of the prolongation and restriction operators. In our implementation we com-
pletely assemble the prolongation as well as the restriction operators in an
analogous fashion as described above for the stiffness matrices Ak. This in-
creases somewhat the storage overhead but on the other hand we do not need
an explicit transposition or a transpose matrix-vector-product in parallel. We
only need a parallel matrix-vector-product to transfer information between
levels.

Since we assign complete sub-trees to a processor most (block-)coefficients
per processor are stored locally. Therefore the communication volume in the
smoother as well as in the interlevel transfer is small. In [9] we have de-
veloped and tested several interlevel transfer operators Ikk−1. First, a global
L2-projection between the involved PUM spaces V PU

k−1 and V PU
k which turned

out to be too expensive to be used in practice. Then, a localized L2-projection,
the so-called Global-to-Local projection, which showed essentially the same
approximation qualities as the global L2-projection at lower computational

A Particle-Partition of Unity Method–Part IV: Parallelization 17

costs and is applicable to any sequence of PUM spaces. Finally, a completely
localized L2-projection which utilizes our tree based cover construction and is
extremely cheap to assemble but also shows similar approximation properties
as the global L2-projection. Furthermore, this so-called Local-to-Local pro-
jection has a minimal (block-)sparsity pattern. The Local-to-Local projection
therefore has an especially simple communication demand. Here, a (block-)-
row of the restriction operator only consists only of a single (block-)entry
which corresponds to the coarser cover patch associated with the ancestor
tree-cell of the current fine level patch. Most of these ancestors are located
on the same processor as the current patch due to our partition of the tree.
Hence, the application of the Local-to-Local transfer operators involve very
little communication. This though does not change the overall complexity of
our parallel multilevel solver which is O(card(PJ)

℘ + (card(PJ)
℘)

d−1
d + J + log℘)

as usual.

4 Numerical Results

The model problem we apply our multilevel PUM to is the PDE

−∆u+ u = 0 in Ω = (0, 1)2 (4.1)

of Helmholtz type with vanishing Neumann boundary conditions ∇u · nΩ =
0 on ∂Ω. In all our experiments we use a linear normed B-spline as the
generating weight function W for the PU construction and αl = 1.3. The
initial partition of the domain is a uniform decomposition, i.e. the common
global tree is a uniform refined tree with at least ℘ leaves. We assign the same
number of leaves of the common global tree to each processor. This can be
achieved by setting the initial interval boundaries rq = qhkey where hkey is only
dependent on the dimension d, the number of processors ℘ and the maximal
key kmax (i.e. the bit length of kmax). The given point set P̃ = {xj |xj ∈
Ω, j = 1, . . . , Ñ} is then partitioned using the finest possible domain keys kDj
and the uniform interval boundaries {rq}. All computations were carried out
on the Parnass2 cluster9 [20] built by our department.

We are concerned with the scaling behavior of the overall parallel al-
gorithm. To this end we (approximately) fix the computational load per
processor; i.e as we increase the number of processors ℘ we also increase
the global work load. Note that we cannot exactly prescribe the compu-
tational load since our cover construction introduces additional points, i.e.
card(PJ) ≥ card(P̃) = Ñ . Therefore we expect to see some fluctuations in
our measurements which stem from the irregularity of the initial point sets
P̃ .

We consider several values for the local load = Ñ
℘ per processor in our

experiments. Here, we measure wall clock times for different parts of the
9 Parnass2 consist of 72 dual processor PCs connected by a Myrinet.

18 M. Griebel, M. A. Schweitzer

overall algorithm. Our parallel PUM can be split into three major parts. First
the computation of the load estimate w and the balancing step (see §3.4).
Then, the discretization step where we assemble the discrete operators and
the transfer operators on all levels (see §3.6). Finally, the solution step where
we solve the linear (block-)system with a multiplicative multilevel iteration
(see §3.7).

Example 1 (Halton points). In our first experiment we use a Halton10

sequence with Ñ points as the initial point set P̃ for our cover construction.
The local approximation spaces V pi,ki,k we use in this experiment are linear
Legendre polynomials, i.e. we choose pi,k = 1 for all i and k. Hence, the
number of degrees of freedom dof in our two dimensional example is given
by dof = 3 card(PJ) where J is denotes the finest discretization level.

Since the distribution of a Halton point set is uniform our d-binary tree
will be balanced and our initial uniform data partition is close to the opti-
mal data partition. Here, we need to redistribute only few data. Hence, it
is reasonable to study the scaling behavior of the load balancing step itself.
In general, when we have a significant load imbalance, the balancing step,
i.e. the computation of the load estimate w, cannot scale since the respective
operations are completed on an inappropriate data partition.

Load Balancing. The load balancing step consists of several parts with
different scaling behavior. At first we have to compute the cover based on the
initial data distribution. This post-order operation involves a gather commu-
nication step where only very few data have to be sent/received. Therefore, we
expect a perfect scaling behavior. The execution times should stay (almost)
constant since the amount of work per processor is (almost) constant. This
behavior can be observed in Figure 4 (upper left) where we have plotted the
measured wall clock times against the number of processors for varying local
loads. Although our current load estimator involves only the neighbors on the
finest level, we compute the overlap on all levels. This is essentially a reduced
neighbor search operation on all levels. Roughly speaking, we determine the
surface of our partition on all levels. The computation of the overlap is of the
order O(J(log℘)2), see Figure 4 (upper center). In the communication step
the computed overlaps are exchanged between the processors. The communi-
cation volume is of order O((card(PJ)

℘)
d−1
d), see Figure 4 (upper right). From

both graphs we can observe that the anticipated scaling behavior is reached
for a larger number of processors only. For smaller processor numbers the
space filling curve partitioning scheme leads to sub-domains with a relatively
large number of geometric neighbors, so that we find an all-to-all communi-
cation pattern for small processor numbers. The neighbor search on all levels

10 Halton–sequences are quasi Monte Carlo sequences with a uniform distribution,
which are used in sampling and numerical integration. Consider n ∈ N0 given as∑
j njp

j = n for some prime p. We can define the transformation Hp from N0 to

[0, 1] with n 7→ Hp(n) =
∑
j njp

−j−1. Then, the (p, q) Halton–sequence with Ñ

points is defined as HaltonN0 (q, p) := {(Hp(n), Hq(n)) |n = 0, . . . , N}.

A Particle-Partition of Unity Method–Part IV: Parallelization 19

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

execution times

number of processors

s
e
c
o
n
d
s

load=131072
load=65536
load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

execution times

number of processors

s
e
c
o
n
d
s

load=131072
load=65536
load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

20 40 60 80 100 120
0

0.1

0.2

execution times

number of processors

s
e
c
o
n
d
s

load=131072
load=65536
load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

execution times

number of processors

s
e
c
o
n
d
s

load=131072
load=65536
load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

execution times

number of processors

s
e
c
o
n
d
s

load=131072
load=65536
load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

execution times

number of processors

se
co

n
d
s

load=131072
load=65536
load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

Figure4. Our load balancing step with a weighted space filling curve consists
of several parts with different scaling behavior. The cover construction (upper
left), the computation of the communication pattern and the overlaps on all
levels (upper center), the actual communication of the overlaps (upper right),
the computation over all neighbors on all levels (lower left), the update of
the data partition {rq} (lower center), and the redistribution of the data
including a rebuild of the tree (lower right).

is of the order O(card(PJ)
℘ J). From the graphs given in Figure 4 (lower left)

we can observe only a slight logarithmic scaling behavior.
Note that all these steps are necessary just to compute the load estimate.

The actual load balancing step involves only the leaves of the tree and the re-
duction operation over the interval boundaries. We can observe a very slight
logarithmic scaling behavior from the graph depicted in Figure 4 (lower cen-
ter). After the update of the interval boundaries we have to redistribute the
data and insert the data into a tree. Here, we chose to rebuild the complete
tree and hence we expect a logarithmic scaling behavior. We can observed a
slight logarithmic scaling from the graphs given in Figure 4 (lower right).

Note that about 90% of the total execution time of the complete load
balancing phase is spent in the computation of a good load estimate and
its associated communication. The balancing step itself involves only a neg-
ligible amount of compute time. In a time-dependent setting or in adaptive
refinement we might have a pretty good load estimate from the previous time
step or previous refinement level and may therefore not need to compute the
current load. Yet the computational work associated with our load estimator

20 M. Griebel, M. A. Schweitzer

0 20 40 60 80 100 120

1000

2000

3000

4000

5000

6000

7000

8000

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

20

40

60

80

100

120

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

Figure5. Setup times for the assembly of the operator (left), the Global-
to-Local transfers (center), and the Local-to-Local transfers (right) on all
levels.

is completely negligible compared with the assembly of the stiffness matrices
and transfer operators on all levels.

Galerkin Discretization. The next step of our PUM is the discretiza-
tion phase. Since our load balancing step is aimed to balance the load in the
assembly of the operator on the finest level we can now observe the quality of
our load estimator and the resulting data partition. Note that the assembly
of all operators can be completed without any communication at all.

The timing results are given in Table 2 for the stiffness matrix and the
transfer operators, i.e. displayed are the sum of the assembly times on all
levels k = 0, . . . , J . The scaling behavior of these assembly steps are depicted
in Figure 5. From the numbers displayed in Table 2, we can observe a perfect
speed-up for the operator setup as well as for both interlevel transfer opera-
tors. Note that the setup times for the interlevel transfer operators includes
the assembly times for the prolongation as well as for the restriction.

The scaling behavior of the assembly phase is as expected (almost) per-
fect. Here, we see some fluctuations in the execution times due to the effect
the irregularity of the initial point set has on the number of neighbors. We
can observe that the curves for the operator assembly (Figure 5 (left)) and
the transfer operators based on the Global-to-Local projection (Figure 5 (cen-
ter)) are very similar, whereas the curve for the Local-to-Local projections
is somewhat different (Figure 5 (right)). This is due to the fact that the
Global-to-Local projection involves all geometric neighboring patches just
like the operator. The Local-to-Local projection, however, involves hierarchi-
cal neighbors [9] only. Hence, the fluctuations in the execution times for the
Local-to-Local projections are due to variations in the number of levels of the
global tree only. But the fluctuations in the measured wall clock times for the
assembly of the operators and the Global-to-Local projections stem from the
variation of the local refinement levels which essentially determine the num-
ber of neighbors. Furthermore, the assembly of the Global-to-Local transfers
involves the integration of more complicated integrals than the assembly of

A Particle-Partition of Unity Method–Part IV: Parallelization 21

the Local-to-Local transfers, see [9]. Hence, the logarithmic complexity of the
neighbor search completed in the assembly of both types of transfer operators
is not really visible in the curves for the Global-to-Local transfers and just
slightly visible in the assembly of the Local-to-Local transfers. Note that the
improvement in the execution times for 128 processors with load = 32768
again comes from the use of the Halton point set. Here, the resulting cover
is closer to the uniform situation and the overall storage utilization is better
than for smaller processor numbers.

Multilevel Solution. The parallel scaling behavior of our multilevel
solver should essentially be the same as that of classical multigrid meth-
ods for mesh-based discretizations which has been studied in many articles
[2, 3, 5, 6, 10, 11, 13, 14, 15, 21, 22]. A classical parallel multigrid solver
scales with O(dof

℘ + (dof
℘)

d−1
d + log(dof) + log(℘)). Hence, we expect to see a

logarithmic scaling behavior of our multilevel solver as well.
We measure the wall clock times for the solution of the linear system and

divide it by the number of completed iterations r to get the average cycle
time. The initial value ũ0 for the multilevel iteration is random valued with
‖ũ0‖ = 1. The stopping criterion for the iteration is ‖ũr‖ < 10−10 or r > 50.
The error reduction rate of the iteration is therefore given by ρ := ‖ũr‖

1
r .

The scaling behavior of the average cycle times are depicted in Figure
6 for V (µ, µ)-cycles with µ = 1, 2, 3. These graphs show only a very slight
logarithmic scaling behavior of our multilevel solver. Note that the multilevel
iteration with the Local-to-Local transfer operators is about 10% faster than
the corresponding cycle based on the Global-to-Local transfers. This is due
to the different (block-)sparsity patterns of the transfer operators. The ap-
plication of the Local-to-Local transfer operators involves less computational
work and less communication. The difference in the cycles times will probably
be more severe on parallel machines with a less balanced ratio of bandwidth
to flops.

The different transfer operators have almost no effect on the error reduc-
tion rates ρ, see [9] for further details. But the two different smoothers, the
simple (block-)Jacobi smoother and the composite sub-domain-block-Jacobi
smoother with internal (block-)Gauß–Seidel iteration, certainly influence the
overall rates ρ. Yet, both smoothers require a similar number of operations
and the same communication so that the cycle times are essentially the same
for both smoothers.

The error reduction rates ρ using the (block-)Jacobi smoother are not
effected by a change of the number of processors since the overall algorithm
stays the same independent of the number of processors. But the rates for the
composite smoother are dependent on the number of processors. For a V (1, 1)-
cycle we measure reduction rates ρ between 0.3 and 0.4 for the composite
smoother, and rates of about 0.6 for the (block-)Jacobi smoother. The rates
for a V (2, 2)-cycle are between 0.1 and 0.2 for the composite smoother, and
about 0.3 for the (block-)Jacobi smoother. With three smoothing steps we

22 M. Griebel, M. A. Schweitzer

Table2. Setup times for the assembly of the operators (upper), the Global-
to-Local projections (center), and the Local-to-Local projections (lower) on
all levels.

problem size number of processors

Ñ card(PJ) 1 2 4 8 16 32 64 128
Operator Setup

1024 1678 178
2048 3550 289 149
4096 6454 742 376 196
8192 14635 1476 744 381 196
16384 27412 3423 1699 866 437 223
32768 63388 6471 3196 1628 819 415 221
65536 101167 10783 5323 2706 1369 690 357 185
131072 231967 17525 8647 4399 2248 1138 581 297 157
262144 419194 13248 6655 3336 1686 855 442
524288 949798 12939 6474 3265 1658 853
1048576 1837612 15626 7830 3927 1984
2097152 4301116 12872 6431 3258
4194304 6496153 10748 5447
8388608 14252920 8471

Global-to-Local Transfer Setup
1024 1678 100
2048 3550 160 83
4096 6454 474 243 132
8192 14635 920 468 245 126
16384 27412 2244 1106 572 293 152
32768 63388 4063 1972 1025 515 262 139
65536 101167 6195 3009 1558 796 404 209 112
131072 231967 10141 4925 2542 1321 671 344 176 96
262144 419194 9141 4565 2294 1168 601 313
524288 949798 8852 4384 2220 1128 587
1048576 1837612 6751 5084 2555 1294
2097152 4301116 5656 4216 2139
4194304 6496153 5950 3095
8388608 14252920 4719

Local-to-Local Transfer Setup
1024 1678 3
2048 3550 6 3
4096 6454 12 6 3
8192 14635 26 13 7 3
16384 27412 55 27 14 7 4
32768 63388 119 57 30 15 7 4
65536 101167 196 94 49 25 12 6 5
131072 231967 411 196 102 51 26 13 7 6
262144 419194 214 108 54 27 14 7
524288 949798 231 116 58 29 15
1048576 1837612 244 123 62 31
2097152 4301116 263 133 66
4194304 6496153 210 106
8388608 14252920 208

A Particle-Partition of Unity Method–Part IV: Parallelization 23

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

execution times

number of processors

se
co

n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10

11

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

2

4

6

8

10

12

14

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

1

2

3

4

5

6

execution times

number of processors

se
co

n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

2

4

6

8

10

12

execution times

number of processors

s
e
c
o
n
d
s

load=32768
load=16384
load=8192
load=4096
load=2048
load=1024

Figure6. Execution times for a single V (µ, µ)-cycle with the Global-to-Local
projections (upper) and the Local-to-Local projections (lower). With µ = 1
(right), µ = 2 (center), and µ = 3 (right).

measure rates ρ of about 0.1 for the composite smoother, and about 0.2 for
the (block-)Jacobi smoother.

Example 2 (Graded Halton points). In our second experiment we use the
same local approximation spaces V pi,ki,k , the linear Legendre polynomials, but
we use a more irregular initial point set P̃ . Here, we use a grading function
G to transform a Halton point set. The resulting transformed points are then
used as the initial point set P̃ for the cover construction. We use the grading
function

G : ξ = (ξi)di=1 ∈ [0, 1]d 7→ a(ξ)ξ ∈ [0, 1]d with a(ξ) =
{
‖ξ‖2 if ‖ξ‖2 ≤ 1

1 else .

Here, our initial uniform decomposition is completely inappropriate and many
data have to be re-balanced. The number of initial points strongly varies
among the processors, e.g. for Ñ = 1048576 and ℘ = 64 we find from
card(PJ q̂) = 14206 to card(PJ q̂) = 214654 points of the finest point set
PJ on level J = 21 on different processors q̂ prior to our load balancing.
Therefore, we cannot expect the load balancing step itself to scale. The pur-
pose of the balancing step is to resolve the load imbalance at low cost so
that the overall algorithm utilizes all available resources for the larger part
of the computation. Note that the overall execution time for the complete

24 M. Griebel, M. A. Schweitzer

0 20 40 60 80 100 120

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

execution times

number of processors

s
e
c
o
n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

500

1000

1500

2000

2500

3000

3500

execution times

number of processors

s
e
c
o
n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

10

20

30

40

50

60

70

execution times

number of processors

s
e
c
o
n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

Figure7. Setup times for the assembly of the operator (left), the Global-
to-Local transfers (center), and the Local-to-Local transfers (right) on all
levels.

balancing step amounts to less than 1% of the time spent in the assembly of
the discrete operators.

The measured wall clock times for the discretization phase of our PUM
for the graded Halton point set are given in Table 3. From these numbers
we can again observe a perfect speed-up for the operator setup as well as
for both interlevel transfer operators. The scaling behavior of these assembly
steps are depicted in Figures 7. Again, we see the anticipated perfect scaling
behavior of the setup phase. Hence, our load balancing step certainly fulfills
its purpose.

Also the scaling behavior of our multilevel solver (see Figure 8) is opti-
mal. Here, the convergence rates for a V (1, 1)-cycle with the Local-to-Local
transfers and the composite smoother are between 0.3 and 0.5. The rates of
the multilevel iteration with the simple (block-)Jacobi smoother are about
ρ = 0.6 for the V (1, 1)-cycle with the Global-to-Local transfers. Note that we
may need more than one smoothing step when we use a simple (block-)Jacobi
smoother together with the Local-to-Local transfers for highly irregular point
sets, see [9] for details.

5 Concluding Remarks

We presented a parallel meshfree method for the discretization of an elliptic
partial differential equation and the efficient parallel multilevel solution of
the arising linear (block-)system. The main ingredients of our parallelization
are a key-based tree implementation and the use of a space filling curve load
balancing scheme.

The discretization phase where the discrete operators are assembled is the
most expensive step in our particle-partition of unity method. This specific
part of the method requires no communication at all and its scaling behavior
is only dependent on the quality of the data partition. Hence, our load bal-
ancing scheme is aimed to balance this most expensive part of the method.

A Particle-Partition of Unity Method–Part IV: Parallelization 25

Table3. Setup times for the assembly of the operators (upper), the Global-
to-Local projections (center), and the Local-to-Local projections (lower) on
all levels.

problem size number of processors

Ñ card(PJ) 1 2 4 8 16 32 64 128
Operator Setup

1024 1942 254
2048 3643 430 236
4096 7522 947 500 271
8192 14986 1901 997 522 282
16384 31495 4304 2194 1144 619 327
32768 62542 4466 2292 1239 640 334
65536 121966 4495 2437 1263 678 358
131072 242506 4661 2411 1242 659 339
262144 484435 5103 2673 1361 710
524288 972988 5155 2652 1376
1048576 1976116 5460 2805
2097152 3976408 5272

Global-to-Local Transfer Setup
1024 1942 168
2048 3643 270 154
4096 7522 590 321 186
8192 14986 1171 624 343 192
16384 31495 2748 1424 766 419 227
32768 62542 2859 1507 848 427 234
65536 121966 3062 1663 868 473 259
131072 242506 3123 1651 879 484 250
262144 484435 3422 1832 949 514
524288 972988 3650 1906 1015
1048576 1976116 3675 1933
2097152 3976408 3540

Local-to-Local Transfer Setup
1024 1942 4
2048 3643 7 4
4096 7522 15 7 4
8192 14986 30 15 8 4
16384 31495 65 31 17 8 4
32768 62542 63 33 17 9 4
65536 121966 64 33 17 9 5
131072 242506 65 33 17 9 5
262144 484435 68 35 18 9
524288 972988 69 35 18
1048576 1976116 72 37
2097152 3976408 72

26 M. Griebel, M. A. Schweitzer

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

4

4.5

execution times

number of processors

s
e
c
o
n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

1

2

3

4

5

6

execution times

number of processors

se
co

n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

execution times

number of processors

se
co

n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

execution times

number of processors

s
e
c
o
n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

execution times

number of processors

s
e
c
o
n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

0 20 40 60 80 100 120

1

2

3

4

5

6

7

execution times

number of processors

se
co

n
d
s

load=16384
load=8192
load=4096
load=2048
load=1024

Figure8. Execution times for a single V (µ, µ)-cycle with the Global-to-Local
projections (upper) and the Local-to-Local projections (lower). With µ = 1
(right), µ = 2 (center), and µ = 3 (right).

The results of our numerical experiments showed that (within the expected
fluctuations) we achieve a perfect scaling behavior. All other parts of the
method, the computation of the load estimate, the setup of the transfer op-
erators (at least the setup of the Local-to-Local transfers) and the multilevel
solution are completely negligible with respect to execution times. Yet, our
data partition also allows for the optimal scaling behavior of each of these
steps. The presented space filling curve balancing scheme provides high qual-
ity data partitions independent of the number and distribution of points at
a very low computational cost.

References

[1] I. Babuška, U. Banerjee, and J. E. Osborn, Meshless and Gen-
eralized Finite Element Methods: A Survey of Some Major Results, in
Meshfree Methods for Partial Differential Equations, Lecture Notes in
Computational Science and Engineering, Springer, 2002.

[2] P. Bastian, Load Balancing for Adaptive Multigrid Methods, SIAM J.
Sci. Comp., 19 (1998), pp. 1303–1321.

[3] A. Brandt, Multigrid Solvers on Parallel Computers, in Elliptic Prob-
lem Solvers, M. H. Schultz, ed., Academic Press, 1981, pp. 39–83.

A Particle-Partition of Unity Method–Part IV: Parallelization 27

[4] A. Caglar, M. Griebel, M. A. Schweitzer, and G. W. Zum-

busch, Dynamic Load-Balancing of Hierarchical Tree Algorithms on a
Cluster of Multiprocessor PCs and on the Cray T3E, in Proceedings 14th
Supercomputer Conference, Mannheim, H. W. Meuer, ed., Mannheim,
Germany, 1999, Mateo.

[5] M. Griebel, Parallel Domain-Oriented Multilevel Methods, SIAM J.
Sci. Comp., 16 (1995), pp. 1105–1125.

[6] M. Griebel and T. Neunhoeffer, Parallel Point- and Domain-
Oriented Multilevel Methods for Elliptic PDE on Workstation Networks,
J. Comp. Appl. Math., 66 (1996), pp. 267–278.

[7] M. Griebel and M. A. Schweitzer, A Particle-Partition of Unity
Method for the Solution of Elliptic, Parabolic and Hyperbolic PDE, SIAM
J. Sci. Comp., 22 (2000), pp. 853–890.

[8] , A Particle-Partition of Unity Method—Part II: Efficient Cover
Construction and Reliable Integration, SIAM J. Sci. Comp., 23 (2002),
pp. 1655–1682.

[9] , A Particle-Partition of Unity Method—Part III: A Multilevel
Solver, SIAM J. Sci. Comp., (2002). to appear.

[10] M. Griebel and G. W. Zumbusch, Hash-Storage Techniques for
Adaptive Multilevel Solvers and their Domain Decomposition Paralleliza-
tion, in Domain Decomposition Methods 10, The 10th International Con-
ference, Boulder, J. Mandel, C. Farhat, and X.-C. Cai, eds., vol. 218 of
Contemp. Math., AMS, 1998, pp. 271–278.

[11] C. E. Grosch, Poisson Solvers on Large Array Computers, in Proc.
1978 LANL Workshop on Vector and Parallel Processors, B. L. Buzbee
and J. F. Morrison, eds., 1978.

[12] F. C. Günther and W. K. Liu, Implementation of Boundary Con-
ditions for Meshless Methods, Comput. Meth. Appl. Mech. Engrg., 163
(1998), pp. 205–230.

[13] J. E. Jones and S. F. McCormick, Parallel Multigrid Meth-
ods, in Parallel Numerical Algorithms, D. E. Keyes, A. Sameh, and
V. Venkatakrishnan, eds., Kluwer Academic Publishers, 1997, pp. 203–
224.

[14] O. A. McBryan, P. O. Frederickson, J. Linden, A. Schüller,

K. Solchenbach, K. Stüben, C. A. Thole, and U. Trotten-

berg, Multigrid Methods on Parallel Computers – A Survey of Recent
Developments, IMPACT Comput. Sci. Engrg., 3 (1991), pp. 1–75.

[15] W. F. Mitchell, A Parallel Multigrid Method using the Full Domain
Partition, Electron. Trans. Numer. Anal., 6 (1997), pp. 224–233. Special
Issue for Proc. of the 8th Copper Mountain Conf. on Multigrid Methods.

[16] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbedingun-
gen unterworfen sind, Abh. Math. Univ. Hamburg, 36 (1970–1971),
pp. 9–15.

[17] A. Pothen, Graph Partitioning Algorithms with Applications to Sci-
entific Computing, in Parallel Numerical Algorithms, D. E. Keyes,

28 M. Griebel, M. A. Schweitzer

A. Sameh, and V. Venkatakrishnan, eds., Kluwer Academic Publishers,
1997, pp. 323–368.

[18] H. Sagan, Space-Filling Curves, Springer, New York, 1994.
[19] M. A. Schweitzer, Ein Partikel–Galerkin–Verfahren mit Ansatzfunk-

tionen der Partition of Unity Method, Diplomarbeit, Institut für Ange-
wandte Mathematik, Universität Bonn, 1997.

[20] M. A. Schweitzer, G. W. Zumbusch, and M. Griebel, Parnass2:
A Cluster of Dual-Processor PCs, in Proceedings of the 2nd Workshop
Cluster-Computing, Karlsruhe, W. Rehm and T. Ungerer, eds., no. CSR-
99-02 in Chemnitzer Informatik Berichte, Chemnitz, Germany, 1999, TU
Chemnitz, pp. 45–54.

[21] K. Solchenbach, C. A. Thole, and U. Trottenberg, Parallel
Multigrid Methods: Implementation on SUPRENUM–like architectures
and applications, in Supercomputing, vol. 297 of Lecture Notes in Com-
puter Science, Springer, 1987, pp. 28–42.

[22] L. Stals, Parallel Implementation of Multigrid Methods, PhD thesis,
Department of Mathematics, Australian National University, 1995.

[23] M. S. Warren and J. K. Salmon, A Parallel Hashed Oct-Tree
N-Body Algorithm, in Supercomputing ’93, Los Alamitos, 1993, IEEE
Comp. Soc., pp. 12–21.

[24] , A Portable Parallel Particle Program, Computer Physics Com-
munications, 87 (1995).

[25] , Parallel, Out-of-core Methods for N-body Simulation, in Proceed-
ings of the 8th SIAM Conference on Parallel Processing for Scientific
Computing, M. Heath, V. Torczon, G. Astfalk, P. . E. Bjørstad, A. H.
Karp, C. H. Koebel, V. Kumar, R. F. Lucas, L. T. Watson, and D. E.
Womble, eds., Philadelphia, 1997, SIAM.

[26] G. W. Zumbusch, Simultanous h-p Adaptation in Multilevel Finite Ele-
ments, dissertation, Fachbereich Mathematik und Informatik, FU Berlin,
1995.

[27] , Adaptive Parallel Multilevel Methods for Partial Differential
Equations, Habilitation, Insitut für Angewandte Mathematik, Univer-
sität Bonn, 2001.

[28] , On the Quality of Space-Filling Curve Induced Partitions, Z.
Angew. Math. Mech., 81 Suppl. 1 (2001), pp. 25–28.

	A Particle-Partition of Unity Method--Part IV:Parallelization

