
A Particle-Partition of Unity Method
Part VI: A p-robust Multilevel Solver

Michael Griebel1?, Peter Oswald2??, and Marc Alexander Schweitzer1???

1 Institut für Numerische Simulation, Rheinische Friedrich–Wilhelms Universität
Bonn, Wegelerstraße 6, D–53115 Bonn, Germany.

2 International University Bremen, School of Engineering and Science, Campus
Ring 1, D–28759 Bremen, Germany.

Abstract In this paper we focus on the efficient multilevel solution of linear systems
arising from a higher order discretization of a second order partial differential equa-
tion using a partition of unity method. We present a multilevel solver which employs
a tree-based spatial multilevel sequence in conjunction with a domain decomposition
type smoothing scheme. The smoother is based on an overlapping subspace splitting,
where the subspaces contain all interacting local polynomials. The resulting local
subspace problems are solved exactly. This leads to a computational complexity of
the order O(Np3d) per iteration. The results of our numerical experiments indicate
that the convergence rate of this multilevel solver is independent of the number of
points N and the approximation order p. Hence, the overall complexity of the solver
is of the order O(log(1/ε)Np3d) to reduce the initial error by a prescribed factor ε.

1 Introduction

The particle–partition of unity method (PUM) [7, 8, 9, 10, 11, 18] is a meshfree
Galerkin method for the numerical treatment of partial differential equations
(PDE). In essence, it is a generalized finite element method (GFEM) which
employs piecewise rational shape functions rather than piecewise polynomial
functions. The shape functions ϕiψ

n
i of a PUM are products of a partition

of unity (PU) {ϕi} and local approximation functions ψni which are usually
chosen as polynomials. In contrast to other GFEM approaches [19, 20], these
shape functions are linearly independent and make up a basis of the discrete
function space. This allows us to construct fast multilevel solvers in a similar
fashion as in the finite element method (FEM) [12, 21].

In most meshfree discretizations the two most time-consuming tasks are
the assembly of the stiffness matrix and the load vector, i.e. numerical inte-
gration, and the solution of the resulting linear system. With respect to the

? griebel@ins.uni-bonn.de
?? p.oswald@iu-bremen.de
??? schweitzer@ins.uni-bonn.de

2 M. Griebel, P. Oswald, M. A. Schweitzer

asymptotic complexity of these steps the assembly of the stiffness matrix is
usually directly proportional to the number of nonzeros nnz of the matrix.
The solution of the linear system, however, may only be achieved with similar
complexity if an optimal iterative solver is employed. For example, the com-
plexity of a direct solver such as LU- or Cholesky-decomposition is in general
much larger. In the case of dense matrices a direct solver requires O(dof3)
operations and O(dof2) storage. With more advanced sparse direct solvers
these complexities can be reduced to some extent only. In the special case
of regular meshes in two dimensions for instance a nested dissection solver
requires O(dof3/2) operations and O(dof ln(dof)) storage [5] whereas the op-
timal computational complexity is of the order O(dof) = O(nnz). Hence, this
optimal storage and operation complexity will be lost when a direct solver is
employed.

For a PUM discretization in d dimensions, the number of degrees of free-
dom is of the order dof = O(Npd) where N denotes the number of points or
particles and p is the approximation order. Here, the number of nonzeros nnz
is of the order O(Np2d). Thus, the optimal complexity for the assembly of
the stiffness matrix is O(Np2d). To allow for an efficient and scalable mesh-
free simulation the employed linear solver should have a similar complexity.
Since there is no such optimal solver based on general algebraic methods,
non-optimal (sparse) direct solvers are often employed in meshfree methods
or generalized finite element methods [20]. Our goal is the development of
an iterative solver with optimal complexity for the PUM; i.e., the number of
iterations required to solve the linear system should be independent of the
number of points N and the approximation order p, and the computational
cost associated with a single iteration should be close to O(Np2d).

In this paper we present a multilevel solver for partition of unity dis-
cretizations which employs a tree-based spatial multilevel construction and a
domain decomposition type smoothing scheme. The respective subspace split-
ting is based on overlapping subspaces which contain all shape functions ϕjψ

m
j

interacting on a given patch ωi := supp(ϕi). The computational complexity
of a single iteration of this solver is O(Np3d). Furthermore, the results of our
numerical experiments indicate that the convergence rate is independent of N
and p; i.e., the number of iterations required to solve the linear system within
a given relative accuracy ε is independent of N and p. Therefore, the overall
complexity of the solver is of the order O(log(1/ε)Np3d) for any polynomial
degree p which is optimal up to a factor of O(pd).

The remainder of this paper is organized as follows: In section 2 we shortly
review the construction of PUM spaces and the Galerkin discretization of
a linear elliptic PDE using our PUM. In section 3 we shortly review our
tree-based multilevel cover construction and introduce a p-robust smoothing
scheme based on domain decomposition ideas. Then, we present the results of
our numerical experiments in section 4 which indicate that the convergence
rate of our multilevel solver is independent of N and p. We consider scalar
Poisson-type problems in two and three space dimensions and the system of

A p-robust Multilevel Solver for Partition of Unity Methods 3

the Navier–Lamé equations in two dimensions with up to 393216 degrees of
freedom. Finally, we conclude with some remarks in section 5.

2 Partition of Unity Method

In the following, we shortly review the construction of partition of unity spaces
and the meshfree Galerkin discretization of an elliptic PDE, see [7, 8, 18] for
details.

2.1 Construction of Partition of Unity Spaces

In a PUM, we define a global approximation uPU as a weighted sum of local
approximations ui,

uPU(x) :=

N∑

i=1

ϕi(x)ui(x). (2.1)

These local approximations ui are completely independent of each other, i.e.,
the local supports ωi := supp(ui), the local basis {ψni } and the order of
approximation pi for every single ui :=

∑
n u

n
i ψ

n
i ∈ V pii can be chosen in-

dependently of all other uj . Here, the functions ϕi form a partition of unity
(PU). They are used to splice the local approximations ui together in such
a way that the global approximation uPU benefits from the local approxima-
tion orders pi yet it still fulfills global regularity conditions. Hence, the global
approximation space on Ω is defined as

V PU :=
∑

i

ϕiV
pi
i =

∑

i

ϕi span〈{ψni }〉 = span〈{ϕiψni }〉. (2.2)

The starting point for any meshfree method is a collection of N independent
points P := {xi ∈ Rd |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need to
construct a partition of unity {ϕi} on the domain of interest Ω to define an ap-
proximate solution (2.1) where the union of the supports supp(ϕi) = ωi covers

the domain Ω ⊂ ⋃Ni=1 ωi and ui ∈ V pii (ωi) is some locally defined approxima-
tion of order pi to u on ωi. Thus, the first (and most crucial) step in a PUM
is the efficient construction of an appropriate cover CΩ := {ωi}. Throughout
this paper we use a tree-based construction algorithm for d-rectangular covers
CΩ presented in [8, 18]. Here, the cover patches ωi are products of intervals
(xli − hli, xli + hli) for l = 1, . . . , d. With the help of weight functions Wk de-
fined on these cover patches ωk we can easily generate a partition of unity by
Shepard’s method, i.e., we define

ϕi(x) =
Wi(x)∑

ωk∈CiΩ Wk(x)
, (2.3)

4 M. Griebel, P. Oswald, M. A. Schweitzer

where Ci := {ωj ∈ CΩ |ωi ∩ ωj 6= ∅} is the set of all geometric neighbors
of a cover patch ωi. Due to the use of d-rectangular patches ωi, the most
natural choice for a weight function Wi is a product of one-dimensional func-

tions, i.e., Wi (x) =
∏d
l=1W

l
i (xl) =

∏d
l=1W (

x−xli+hli
2hli

) with supp(W) = [0, 1]

such that supp(Wi) = ωi. It is sufficient for this construction to choose a
one-dimensional weight function W with the desired regularity which is non-
negative. The partition of unity functions ϕi inherit the regularity of the
generating weight function W.

In general, a partition of unity {ϕi} can only recover the constant function
on the domain Ω. Hence, we need to improve the approximation quality to
use the method for the discretization of a PDE. To this end, we multiply the
partition of unity functions ϕi locally with polynomials ψni . Since we use d-
rectangular patches ωi only, a local tensor product space is the most natural
choice. Here, we use products of univariate Legendre polynomials as local
approximation spaces V pii , i.e., we choose

V pii = span〈{ψni |ψni =

d∏

l=1

Ln̂li , ‖n̂‖1 =

d∑

l=1

n̂l ≤ pi}〉,

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate
Legendre polynomials Ln̂li : [xli−hli, xli+hli]→ R, and n is the index associated

with the product function ψni =
∏d
l=1 Ln̂li .

In summary, we can view the construction given above as follows

{xi}
W
{pi}

→

{ωi}
{Wi}

{V pii = span〈ψni 〉}

→

(
{ϕi}
{V pii }

)
→ V PU =

∑
ϕiV

pi
i ,

where the set of points P = {xi}, the generating weight function W and the
local approximation orders pi are assumed to be given. For the approximation
of vector fields we employ vector-valued shape functions; i.e., we change the
definition of our local approximation spaces V pi

i = span〈ψn,li 〉 = span〈ψni el〉
where el denotes an appropriate unit vector but leave the scalar partition of
unity functions ϕi unchanged. Throughout this paper we use a fixed polyno-
mial degree p on all patches ωi, i.e, pi = p for all i = 1, . . . , N .

2.2 Variational Formulation and Galerkin Discretization

The imposition of essential boundary conditions within meshfree methods is
more involved than in the FEM for a number of reasons and many differ-
ent approaches have been proposed [18]. We use Nitsche’s method [14] to
enforce Dirichlet boundary conditions which leads to a non-standard weak
formulation. The main advantages of this approach are that it does not re-
quire a second function (or multiplier) space and that it leads to a positive
definite linear system, see [11, 18] for a more detailed discussion of Nitsche’s

A p-robust Multilevel Solver for Partition of Unity Methods 5

method in the PUM context. Here, we only state the resulting weak formula-
tion a(u, v) = l(v) of the Poisson problem

−∆u = f in Ω ⊂ Rd,
u = gD on ΓD ⊂ ∂Ω,
un = gN on ΓN = ∂Ω \ ΓD,

(2.4)

and for the system of the Navier–Lamé equations

−µ∆u− (λ+ µ)∇(∇ · u) = f in Ω ⊂ Rd, d = 2, 3 (2.5)

with suitable boundary conditions uD = gD on ΓD ⊂ ∂Ω and σ(u) · n = gN
on ΓN = ∂Ω \ΓD. The parameters λ and µ are the so-called Lamé parameters
of the material and are related to the Poisson ratio ν and the Young modulus
E via λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) .

The bilinear form a(u, v) associated with (2.4) using Nitsche’s method is
given by

a(u, v) =

∫

Ω

∇u∇v +

∫

ΓD

u(βv − vn)− unv

and the respective right-hand side is given by

l(v) =

∫

Ω

fv +

∫

ΓD

gD(βv − vn) +

∫

ΓN

gNv.

The subscript n denotes the normal derivative and β is the Nitsche regular-
ization parameter. For (2.5) we obtain the bilinear form

a(u, v)=

∫

Ω

σ(u) :ε(v)+

∫

ΓD

2µβεu·v+λβdiv(u·n)(v·n)−
(
(σ(u)·n)·v+u·(σ(v)·n)

)

where βε and βdiv denote the two Nitsche regularization parameters involved,
σ(u) := λ∇·uI+ 2µ ε(u) is the symmetric stress tensor and ε(u) := 1

2 (∂iuj +
∂jui) denotes the strain tensor associated with the displacement field u = (ui),
i = 1, . . . , d. The respective linear form l(v) on the right-hand side is given by

l(v) =

∫

Ω

f ·v+

∫

ΓN

gN ·v+

∫

ΓD

2µβεgD ·v+λβdiv(gD ·n)(v ·n)−gD ·(σ(v) ·n).

Note that Nitsche’s method introduces regularization parameters which
depend on the employed discretization space. Hence, as we refine the dis-
cretization space, the regularization parameters and therefore the bilinear
form a(·, ·) and the linear form on the right-hand side l(·) change. Note also
that the regularization parameters can be computed automatically during a
simulation without much computational cost for a specific discretization space,
see [11, 18] for details.

Finally, for the Galerkin discretization of (2.4) or (2.5) we have to compute
the stiffness matrix

6 M. Griebel, P. Oswald, M. A. Schweitzer

A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψ
m
j , ϕiψ

n
i) ,

and the right-hand side vector

f̂ = (f(i,n)) , with f(i,n) = l(ϕiψ
n
i) .

The stable approximation of the respective integrals is somewhat more in-
volved in the PUM than in the FEM. Due to the meshfree construction given
above the shape functions ϕiψ

n
i are piecewise rational functions only, so that

the respective integrands have a number of jumps within the integration do-
main which need to be resolved.

To estimate the computational cost associated with the Galerkin dis-
cretization, let us first assume that the shape functions are (piecewise) poly-
nomials like in the GFEM. Then each integral associated with a particular
entry A(i,n),(j,m) of the stiffness matrix can be computed as the sum of in-
tegrals over the elements within supp(ϕi) ∩ supp(ϕj). Now, all integrands3

are polynomial functions as well and the integrals can be evaluated exactly. If
the shape functions are polynomials of degree p the integrals are polynomials
of degree (p + 1)2 and can be evaluated with O(dp2) operations. Therefore,
we can assemble the stiffness matrix with O(N(dp2 + p2d)) operations, if we
evaluate all polynomials simultaneously.

In the PUM, however, the analytical integration of the integrals is in gen-
eral not possible. Hence, we need to employ a numerical integration scheme.
The cost CNI associated with the numerical integration of a single entry of the
stiffness matrix is given by

CNI = O(nIC nIN CEI)

where nIC denotes the number of integration cells, nIN the number of inte-
gration nodes per cell, and CEI the cost associated with the evaluation of the
integrand.4 In our implementation we use a subdivision sparse grid integra-
tion scheme [8, 18] where nIC is essentially determined by the jumps of the
derivatives of ϕi; i.e., nIC = O(3d(l + 1)d) is given by the order l of the em-
ployed spline weight function W. In the following we restrict ourselves to the
case of l = 1. Within each of these integration cells the integrands are smooth
functions and the integrals can be approximated efficiently by a higher order
quadrature formula. To this end, we use a sparse grid quadrature scheme [6]
based on univariate Gauss–Patterson [16] rules. The number of quadrature
points of such a sparse grid formula is given nIN = O(2qqd−1) where q de-
notes the refinement level of the employed univariate quadrature rule; i.e.,

3 In fact, only the integrals associated with the stiffness matrix and the mass matrix
are polynomials. The exact integration of the load vector is usually not possible.

4 Note that this bound on the computational complexity does not directly involve
the required quality of the numerical integration scheme. The parameters, how-
ever, must be chosen such that the numerical integration is accurate enough.

A p-robust Multilevel Solver for Partition of Unity Methods 7

the number of quadrature points of the univariate rule is of the order O(2q).
The polynomial exactness of the Gauss–Patterson rule on level q is 3 ·2q−1−1.

Let us assume that the integrands on the integration cells can be approxi-
mated accurately by a polynomial of degree (p+1)2.5 Hence, we can estimate
the cost CA,NI associated with the assembly of the stiffness matrix in our
implementation by

CA,NI = O(Np(ln p)d−1(dp+ pd + p2d)).

Hence, our implementation is optimal up a factor of O(p(ln p)d−1), under the
assumptions stated above. The results of our numerical experiments indicate
that our numerical integration scheme gives an accurate and stable approxi-
mation of the stiffness matrix.6

3 Multilevel Solution of Resulting Linear System

In the following we focus on the solution of the large sparse linear system
Aũ = f̂ where ũ denotes a coefficient vector and f̂ denotes a moment vector.
This solution step is a very time consuming part of any numerical simulation.
The use of an inappropriate solver can drive up the compute time as well as
the storage demand dramatically.

Classical direct solvers for dense matrices like Gaussian elimination or
LU-decomposition have a storage requirement of O(dof2) and the number of
operations even scales with O(dof3), where dof denotes the number of degrees
of freedom. More advanced sparse direct solvers can reduce these complexi-
ties to some extent only. In the special case of regular meshes in two dimen-
sions for instance a nested dissection solver requires O(dof3/2) operations and
O(dof ln(dof)) storage [5]. For our PUM space we have dof = O(Npd) where
N = card(CΩ) denotes the number of patches ωi and p the order of approx-
imation. The number of nonzeros entries of a PUM stiffness matrix is of the
order O(Np2d). Hence, this optimal storage and operation complexity will be
lost when a direct solver is employed.

Alternatively, an iterative scheme like the Jacobi- or Gauss–Seidel method
can be used. Here, we do not have a significant increase in the storage re-
quirements, but the number of operations necessary to obtain the solution of

5 This assumption can be justified by the structure of ϕi and our choice of α andW.
6 In fact, we use an adaptive version of the quadrature scheme with a dynamic stop-

ping criterion to ensure the quality of the numerical integration also for problems
with non-constant coefficients, see [8, 18]. Note that it is essential to analyze the
interplay of the numerical integration error and the approximation error to be
able to develop an assembly scheme for the stiffness matrix with optimal com-
plexity and optimal approximation properties. Such an analysis would allow to
determine the required tolerance of the numerical quadrature automatically and
can help to minimize the computational costs associated with the assembly of the
stiffness matrix.

8 M. Griebel, P. Oswald, M. A. Schweitzer

Figure 1. Hierarchical cover construction in two dimensions. The cell decomposition
induced by the initial point set (upper left) and its corresponding tree representa-
tion (upper right, white: INNER tree nodes, gray shaded: LEAF tree nodes). Here,
the leaves of the tree correspond to the given initial points xi. The final cell decom-
position with all generated points xL (lower left) and its tree representation (lower
right) after the completion of the cover construction. Now, the leaves of the tree
correspond to the points xL ∈ PJ .

the linear system up to a prescribed accuracy does not scale with the optimal
complexity. A sophisticated class of iterative methods which not only show
an optimal scaling in the storage demand but also in the operation count
are so-called multilevel iterative solvers or multigrid methods [12, 21]. These
solvers, however, are not general algebraic methods but involve a substantial
amount of information about the discretization and possibly the PDE. We
have developed a first multilevel solver for PUM discretizations in [9, 18]. The
convergence rate of this solver is independent of the number of patches N ,
but not of the approximation order p. Now we present an extension of this
multilevel solver which gives a convergence rate that is also independent of p.
To this end, let us shortly review the multilevel construction from [9, 18].

The first step toward the design of an efficient multilevel solver is the
construction of an appropriate sequence of function spaces. To this end, we
have developed a hierarchical multilevel cover construction algorithm [8, 9, 18]
which gives a sequence of point sets Pk = {xi,k} and covers CkΩ = {ωi,k}. The
algorithm is based on so-called d-binary trees (quadtrees, octrees) and ensures
the covering property on all levels k = 0, . . . , J , i.e.,

⋃
ωi,k∈CkΩ ωi,k ⊃ Ω, see

Figures 1 and 2. We define the cover patches ωi,k = α Ci,k via a scaling of the
cells Ci,k of the tree decomposition by a scalar factor α ∈ (1, 2), see Figure
3. The overlap parameter α must be larger than 1 to obtain (at least) a C0

A p-robust Multilevel Solver for Partition of Unity Methods 9

Figure 2. Multilevel cover sequence in two dimensions. The cell decompositions
and its respective tree representation (upper right, white: INNER tree nodes, gray
shaded: LEAF tree nodes) for the fine level point set PJ = P4 (upper row), and
two coarser level point sets P3 (center row) and P2 (lower row). The leaves of the
respective tree correspond to the points xL ∈ Pk.

PU (independent of the employed weight function W) and should be smaller
than 2 to ensure the linear independence of the resulting shape functions.

Note that the underlying tree data structure also allows for an efficient
neighbor search for general point sets PJ and it reduces the computational
effort associated with numerical integration, see [8, 9, 18] for details. Further-
more, it can be used for the approximation of the domain Ω, see Figure 4.
Via the general PUM construction given in section 2 we then obtain the se-
quence of PUM function spaces V PU

k associated with the sequence of covers
CkΩ. Note that these spaces are nonnested, i.e., V PU

k−1 6⊂ V PU
k , and that the

shape functions ϕi,kψ
n
i,k are non-interpolatory. Thus, the natural injection

and a direct interpolation between two successive PUM spaces V PU
k−1 and V PU

k

are not available. Therefore, we need to construct appropriate prolongation
operators Ikk−1 : V PU

k−1 → V PU
k and restriction operators Ik−1

k : V PU
k → V PU

k−1

to transfer information between the PUM spaces.
To this end, we can use an L2-projection as prolongation between two

spaces V PU
k−1 and V PU

k . However, a global L2-projection is prohibitively ex-

10 M. Griebel, P. Oswald, M. A. Schweitzer

Figure 3. Point sets Pk (upper row) and covers CkΩ (lower row) for k = 10, . . . , 8
for a graded initial point set.

pensive. Yet, within the PUM context we can construct a very cheap prolon-
gation operator using a localized L2-projection approach. Based on the error
estimates for the PUM [1, 2] and the geometric hierarchy of our tree construc-
tion, we have developed this cheap but qualitatively good projection. Here,
we only give a short review over the construction principles, see [9, 18] for
details.

The localization of the L2-projection within our PUM consists of two steps.
At first consider the basic PUM error estimate

‖v − vPU‖2L2 (Ω) ≤ C
∑

i

‖v − vi‖2L2 (ωi∩Ω), (3.6)

where vPU :=
∑
i ϕi

∑
n u

n
i ψ

n
i and vi :=

∑
n u

n
i ψ

n
i . From (3.6) we know that

it is sufficient to control the local errors ‖v− vi‖L2 (ωi∩Ω) on each cover patch
ωi. Now choose v = uPU

k−1 =
∑
j ϕj,k−1uj,k−1 =

∑
j ϕj,k−1

∑
m u

m
j,k−1ψ

m
j,k−1

and vPU = Ikk−1u
PU
k−1 =

∑
i ϕi,kui,k =

∑
i ϕi,k

∑
n u

n
i,kψ

n
i,k so that (3.6) reads

‖uPU
k−1 − Ikk−1u

PU
k−1‖2L2 (Ω) ≤ C

∑

i

‖uPU
k−1 − ui,k‖2L2 (ωi,k∩Ω). (3.7)

Hence, we observe that we can approximate the global coarse function uPU
k−1

locally on the fine cover patches ωi,k using the local basis functions ψni,k, rather

than approximating uPU
k−1 by the global shape functions ϕi,kψ

n
i,k on the finer

level k. Now in a second step we establish an upper bound for each of the

A p-robust Multilevel Solver for Partition of Unity Methods 11

Figure 4. Tree-based approximation of a spherical domain (left), a smooth non-
convex domain (center), and a quarter of a spherical domain with a spherical hole
(right) on level k = 5 (upper row) and level k = 7 (lower row).

terms on the right-hand side of (3.7) utilizing the geometric hierarchy of our
tree. Due to our tree-based cover construction we can find exactly one coarse
patch ωĩ,k−1 for every fine patch ωi,k such that ωi,k ⊂ ωĩ,k−1 holds. Hence, we
can introduce the respective coarse local function uĩ,k−1 associated with the

unique coarse patch ωĩ,k−1 into each term ‖uPU
k−1 − ui,k‖L2 (ωi,k∩Ω) of (3.7).

Finally, we obtain the estimate

‖uPU
k−1 − ui,k‖L2 (ωi,k∩Ω) ≤ ‖uPU

k−1 − uĩ,k−1‖L2 (ωi,k∩Ω)+

‖uĩ,k−1 − ui,k‖L2 (ωi,k∩Ω)
(3.8)

by the triangle inequality. This estimate allows us to approximate each coarse
local function uĩ,k−1, independent of all other local components uj,k−1 of

uPU
k−1, on the respective fine cover patch ωi,k with ωi,k ⊂ ωĩ,k−1 since the

first term of (3.8) is small by definition of uPU
k−1. Hence, we can set up our

prolongation operators via the so-called local-to-local L2-projection. To this
end, we project each local approximation ui,k−1 on level k − 1 independently
to the finer level k using the hierarchical condition ωi,k ⊆ ωĩ,k−1 instead of
the geometric neighbor relation ωi,k ∩ ωj,k−1 6= ∅ only. The respective matrix
representation of this prolongation is given by

12 M. Griebel, P. Oswald, M. A. Schweitzer

Ikk−1 := Π̃k
k−1 := (M̃k

k)−1(M̃k
k−1) with

(M̃k
k)(i,n),(i,m) := 〈ψmi,k, ψni,k〉L2 (ωi,k∩Ω) and

(M̃k
k−1)(i,n),(̃i,m) := 〈ψm

ĩ,k−1
, ψni,k〉L2 (ωi,k∩Ω).

The storage requirement of this local-to-local projection is minimal. We need
to store only a single block-entry (M̃k

k)−1
i,i (M̃k

k−1)i,̃i for each patch ωi,k on level
k. Moreover, the respective integrals involve only the local basis functions
ψm
ĩ,k−1

and ψni,k and can be computed very efficiently. Overall, the local-to-

local projection operator can be computed with O(Np3d) operations in general
(and with O(Npd) if we use orthogonal polynomials locally). Furthermore, it
is exact for polynomials of degree p and therefore suitable also for higher order
approximations.

In summary, we now have a sequence of stiffness matrices Ak coming from
the direct Galerkin approximation of the respective bilinear form ak(·, ·) on
each level k and a sequence of high-quality transfer operators Ikk−1, Ik−1

k

based on localized L2-projections. As the final ingredient for our multilevel
solver, see Algorithm 3.1, we now need to construct a sequence of appropriate
smoothing operators Sk.

Algorithm 3.1 (Multilevel Algorithm M ν1,ν2
γ (k, xk, bk)).

1. If k > 0:
a) For l = 1, . . . , ν1: Set xk = Spre

k (xk, bk).

b) Set dk−1 := Ik−1
k (bk −Akxk).

c) Set ek−1 := 0.
d) For i = 1, . . . , γ: ek−1 = Mν1,ν2

γ (k − 1, ek−1, dk−1).

e) Set xk = Ck (xk, ek−1) := xk + Ikk−1 ek−1.

f) For l = 1, . . . , ν2: Set xk = Spost
k (xk, bk).

2. Else:
a) Set xk = A−1

k bk.

Many iterative solvers such as the classical Jacobi- and Gauss–Seidel it-
erations, the overlapping domain decomposition methods and even multigrid
methods can be interpreted in the framework of subspace correction methods
(SCM) [3, 4, 13, 15, 21, 22]. Hence, let us shortly review the abstract setting
of an SCM.

The general idea is as follows: First, we write the discretization space
V =

∑N
j=1 Vj as the sum7 of subspaces Vj with maps Pj : Vj → V.8 Then,

we choose symmetric positive definite bilinear forms bj(·, ·) on each Vj repre-
sented by operators Bj such that solutions to the systems of linear equations
Bjuj = fj on Vj are easily computable, and B−1

j can be considered as an ap-
proximate inverse to the restriction of A to Vj . Finally, we combine these local

7 Note that we do not assume that the splitting is a direct sum.
8 Actually, it is sufficient to require V =

∑
j PjVj , i.e., the condition Vj ⊂ V is not

necessary.

A p-robust Multilevel Solver for Partition of Unity Methods 13

approximate inversesB−1
j appropriately to define a global approximate inverse

to A on the discretization space V. There are essentially two approaches to the
definition of an approximate inverse of A by the B−1

j , the additive approach
and the multiplicative approach.

In the so-called parallel subspace correction (PSC) or additive Schwarz
method we set up an iterative solution process via the operator

MPSC := I−ω
N∑

j=1

PjTj = I−ω
(N∑

j=1

PjB
−1
j Rj

)
A, (3.9)

where ω is a relaxation parameter and the involved operators are defined by

a(u, v) = 〈Au, v〉V , bj(uj , vj) = 〈Bjuj , vj〉Vj ,
〈Rju, vj〉V = 〈u, Pjvj〉V , bj(Tju, vj) = a(u, Pjvj).

The iteration operator of the successive subspace correction (SSC) or multi-
plicative Schwarz method is given by

MSSC :=
N∏

j=1

(
I−PjTj

)
=
N∏

j=1

(
I−PjB−1

j RjA
)
. (3.10)

Note that the PSC operator (3.9) can also be interpreted as a preconditioned
Richardson iteration where the preconditioner is given by

CPSC :=

N∑

j=1

PjB
−1
j Rj . (3.11)

Let us now restrict ourselves to the case of Bj := A|Vj which means that
we consider exact subspace solvers only. Then, we have essentially two de-
grees of freedom in the design of our smoothing scheme: The splitting of the
discretization space and the type of the iteration, namely the additive scheme
(3.9) or the multiplicative scheme (3.10). To define an appropriate splitting
of our PUM space V PU (we omit the level index k in the following), let us
consider the specific structure of the PUM shape functions. The product struc-
ture of the shape functions ϕiψ

n
i implies two natural subspace definitions. For

instance, we can define the subspaces Vn := spani〈ϕiψni 〉 := {v ∈ V PU | v =∑
i ϕiv

n
i ψ

n
i }. These subspaces, however, contain functions with global support

on the domain Ω, see Figure 5 (left), and the dimension of each subspace is of
the order O(N). Therefore, a direct solution of A|Vn is not feasible. We would
need to resort to fast iterative solution techniques for these subspace prob-
lems. Furthermore, we are interested in smoothing schemes Sk for Algorithm
3.1 based on our spatial multilevel construction. Hence, there is no additional
benefit from the fact that the solutions to A|Vn contain global information and
the computational cost associated with the solution of the subspace problems
make this splitting unsuitable for our construction.

14 M. Griebel, P. Oswald, M. A. Schweitzer

Figure 5. Subdomains (light gray shaded) associated with the subspaces Vn (left),

Vi (center), and Ṽl (right) and the support of the a single shape function ϕiψ
n
i (dark

gray shaded) based on a cover with α = 1.5.

A more appropriate subspace definition is given by Vi := ϕiV
p
i =

spann〈ϕiψni 〉 := {v ∈ V PU | v =
∑
n ϕiv

n
i ψ

n
i }. These spaces contain functions

with local supports only, see Figure 5 (center). Furthermore, the dimension of
the subspace Vi is given by the dimension O(pd) of the local approximation
spaces V pi . Hence, we can compute the inverse (A|Vi)−1 of each of the sub-
space problems with acceptable complexity of O(p3d); i.e., one iteration of a
PSC or SSC iteration based on this splitting is of the order O(Np3d).

Note that both subspace definitions lead to a direct splitting of our PUM
function space V PU =

∑
i Vi =

∑
n Vn; i.e., every basis function ϕiψ

n
i is con-

tained in exactly one subspace. In terms of the index pairs (i, n) we have
a disjoint decomposition of the index set {(i, n)} which induces a specific
partitioning of the PUM stiffness matrix A = (A(i,n),(j,m)). Using the sub-
spaces Vi we obtain the so-called polynomial block-form. Here, a single block
Ai,j = (A(i,n),(j,m)) corresponds to a local discretization of the PDE on the
domain ωi ∩ ωj ∩Ω.

Note that a PSC iteration (3.9) based on the direct splitting V PU =
∑
i Vi

corresponds to the classical block-Jacobi iteration and the SSC iteration (3.10)
corresponds to the block-Gauss–Seidel iteration (BGS) where we have only a
small overlap between the supports of functions from different subspaces, see
Figure 5 (center). Even though we consider a direct splitting and employ an
exact solver (A|Vi)−1 within a specific subspace Vi there are still couplings
between the subspaces due to the overlap of the supports via the global prob-
lem A. The quality of the PSC and SSC iterations is obviously determined by
the strength of these couplings. The two parameters within our PUM which
can influence the strength of the couplings between two different subspaces
Vi and Vj , and hence the quality of the iterations, are the overlap parameter
α used in our cover construction and the polynomial degree p. Since we are
interested in a smoothing scheme that is truly robust, i.e., that works with
the same quality at least for a large range of parameters α and p, this direct
splitting approach cannot be pursued.

A p-robust Multilevel Solver for Partition of Unity Methods 15

One approach to overcome this problem is to consider subspace splittings
V PU =

∑
l Ṽl which are no longer direct splittings, i.e., a basis function ϕiψ

n
i

may now belong to several subspaces Ṽl. Consider the subspace definition

Ṽl :=
∑

ωi∩ωl 6=∅
Vi = span(i,n),i∈Cl〈ϕiψni 〉 (3.12)

where Cl := {i |ωi ∩ ωl 6= ∅} denotes the neighborhood of the cover patch

ωl, see Figure 5 (right). The subspace Ṽl contains all functions ϕiψ
n
i whose

support ωi has a non-vanishing intersection with the patch ωl. Hence, when
we solve the subspace problem A|Ṽl we resolve all couplings involving the

basis functions ϕlψ
q
l . Thus, for each patch ωl there is one subspace problem

A|Ṽl which resolves all couplings involving the associated basis functions ϕlψ
q
l

independent of the overlap parameter α and the polynomial degree p. Note
that this splitting is similar to the one employed in [17].

Since the subspace splitting into the Ṽl is not a direct splitting it does
not correspond to a simple partitioning scheme of the stiffness matrix A.
Here, we rather have to assemble the (discrete) local subproblems Al,l from
the global linear system via the so-called Galerkin products Al,l := PTl APl
where Pl denotes the discrete extension operator which embeds the subspace
Ṽl in the global PUM space V PU. In our case Pl is just a mask matrix, i.e.,
a reduced identity matrix. With the matrices A and Pl the application of the
SSC iteration operator (3.10) to a linear system Aũ = f̂ can be realized by
Algorithm 3.2. In the following we refer to this iteration as a multiplicative
overlapping Schwarz (MOS) smoother.

Algorithm 3.2 (Successive subspace correction method).

1. For all l = 1, . . . , N :
a) Compute local residual f̂l := PTl (f̂ −Aũ).

b) Solve subspace problem (P Tl A Pl)ũl = Al,lũl = f̂l.
c) Update global iterate ũ = ũ+ Plũl.

In Figure 6 we give the smoothing results obtained after one iteration of the
BGS and the MOS smoother for p = 1 and p = 5. From these surface plots
we can clearly observe that the MOS smoother gives much smoother iterates
than the BGS smoother. More notably, the quality of the BGS smoother
deteriorates for higher order approximations. The results for p = 5 are not as
smooth as for p = 1. For the MOS smoother we find a completely different
behavior. There is no deterioration in the quality for larger p. In fact it even
seems that the results for p = 5 are better than for p = 1.

Note that Algorithm 3.1 corresponds to an SSC iteration based on a mul-
tilevel subspace splitting. Similarly, we can define a PSC type multilevel iter-
ation and the associated preconditioner (3.11). For instance if apply (3.9) not
only the sum of all local subspaces (3.12) on a particular level k but rather

to the sum of all local subspaces Ṽl,k on all levels k, i.e.,
∑
k

∑
l Ṽl,k, together

16 M. Griebel, P. Oswald, M. A. Schweitzer

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
−1

0

1

2

x

Initial Value

y

u(
x,

y)

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
−1

0

1

2

x

Block−Gauss−Seidel Smoother

y

u(
x,

y)

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
−1

0

1

2

x

Multiplicative Overlapping Schwarz Smoother

y

u(
x,

y)

Figure 6. Random valued initial guess (left) and smoothing results using a block-
Gauss–Seidel (center) and a multiplicative overlapping Schwarz smoother (right).
Depicted are the current iterates after a single application of the smoother. The
discretization was based on a uniform node arrangement on level 5 and employed
polynomials of degree p = 1 (upper row) and p = 5 (lower row).

with the mask matrices Pl,k, the prolongations Ikk−1 and the restrictions Ik−1
k ,

we obtain a multilevel PSC iteration. The application of the associated mul-
tilevel additive Schwarz (MAOS) preconditioner (3.11) can be realized with
Algorithm 3.3.

Algorithm 3.3 (Multilevel parallel subspace correction preconditioner).

1. Set initial value ũJ = 0.
2. For all levels k = J, . . . , 1:

a) Set right-hand side f̂k−1 = Ik−1
k f̂k.

b) Set initial value ũk−1 = 0.
3. For all levels k = 0, . . . , J :

a) For all l = 1, . . . , Nk:

i. Set local right-hand side f̂k,l := PTk,l(f̂k).

ii. Solve subspace problem (P Tl,kAkPl,k)ũl,k = (Ak)l,lũk,l = f̂k,l.
iii. Update global iterate ũk = ũk + Pl,kũl,k.

4. For all levels k = 1, . . . , J :
a) Update global iterate ũk = ũk + Ikk−1ũk−1.

In many cases the convergence behavior of the PSC schemes and the respective
SSC schemes are similar. Yet, the PSC methods have certain advantages with
respect to parallelization.

A p-robust Multilevel Solver for Partition of Unity Methods 17

4 Numerical Results

In all our experiments with our multilevel solver (see Algorithm 3.1) and the
multilevel preconditioner (see Algorithm 3.3) we solve a linear system of the
form

Aũ = f̂ = 0.

We choose a vanishing right-hand side vector f̂ = 0 and a random initial guess
uPU

0 with ‖uPU
0 ‖L2 ≈ 1. Here, we approximate the L2-norm of the function

uPU
0 by

‖uPU
0 ‖2L2 ≈ ũT0 Mũ0 =: ‖ũ0‖L2 = 1,

where ũ0 denotes the random valued coefficient vector associated with the
function uPU

0 and M := 〈ϕjψmj , ϕiψni 〉L2 is the mass matrix. The stopping

criterion for the iteration is ‖ũr‖L2 < 10−13 (or r = 50 for Algorithm 3.1 and
r = 250 for Algorithm 3.3) where r denotes the number of iterations. Hence,
the average convergence or error reduction rate of our multilevel iteration with
respect to the L2-norm9 of the error is given by

ρL2 :=

(
ũTrMũr
ũT0 Mũ0

) 1
r

=

(‖ũr‖L2

‖ũ0‖L2

) 1
r

= ‖ũr‖
1
r

L2 .

Furthermore, we also compute the more common convergence rates

ρl2 :=

(‖ũr‖l2
‖ũ0‖l2

) 1
r

and ρR :=

(‖Aũr‖l2
‖Aũ0‖l2

) 1
r

which are based on the l2-norm of the current coefficient vector ũr and the
respective residual vector Aũr. These convergence rates are given for multi-
level iterations M 1,1

1 , the so-called V (1, 1)-cycle, based on the local-to-local
L2-projection using the non-overlapping BGS smoother and the overlapping
MOS smoother. The quality of both these SSC smoothers is dependent on
the ordering of the respective subspaces, i.e., of the cover patches. In all our
experiments we use a space filling curve ordering scheme based on the Hilbert
curve for the cover patches, see [9, 18] for details. Besides the convergence
rates ρBGS and ρMOS we also give the finest discretization level J , the poly-
nomial degree p of the local approximation spaces V p

i , the respective number
of degrees of freedom dof, and the number of nonzeros entries nnz of the stiff-
ness matrix AJ on the finest level. In all experiments, we used a linear B-spline
as the generating weight function W, a uniform node arrangement as initial
point set, and Legendre polynomials up to degree 9 as local approximation
spaces in our PUM discretization.

9 Note that even for uniform covers CΩ we have no uniform correspondence (with
respect to the number of degrees of freedom) between the L2-norm of a function
uPU and the l2-norm of its corresponding coefficient vector ũ due to the use of
local polynomials, just like in the p-version of the finite element method.

18 M. Griebel, P. Oswald, M. A. Schweitzer

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

convergence history MAOS−PCG

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 10 20 30 40 50

10
−10

10
−5

10
0

convergence history VBGS(1,1)−cycle

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 10 20 30 40 50

10
−10

10
−5

10
0

convergence history VMOS(1,1)−cycle

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

convergence history MAOS−PCG

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 10 20 30 40 50

10
−10

10
−5

10
0

convergence history VBGS(1,1)−cycle

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 10 20 30 40 50

10
−10

10
−5

10
0

convergence history VMOS(1,1)−cycle

number of iterations

L2 −n
or

m
 o

f e
rr

or
0 50 100 150 200 250

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

convergence history MAOS−PCG

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 10 20 30 40 50

10
−10

10
−5

10
0

convergence history VBGS(1,1)−cycle

number of iterations

L2 −n
or

m
 o

f e
rr

or

0 10 20 30 40 50

10
−10

10
−5

10
0

convergence history VMOS(1,1)−cycle

number of iterations
L2 −n

or
m

 o
f e

rr
or

Figure 7. Convergence history for a preconditioned conjugate gradient solver with
the MAOS preconditioner (left), the V (1, 1)-cycle using the BGS smoother (center)
and the MOS smoother (right), for the Poisson problem (4.13) in two dimensions.
Depicted are the results for p = 1 on levels 2, . . . , 8 (top row), p = 3 on levels 2, . . . , 7
(center row), and p = 5 on levels 2, . . . , 6 (bottom row).

In our first experiment, we considered the Poisson problem

−∆u = f in Ω = [0, 1]d ⊂ Rd,
u = g on ∂Ω,

(4.13)

in two and three dimensions with f = 0 and Dirichlet boundary conditions
g = 0. The results of this experiment are summarized in Figure 7 and in
Tables 1 and 2. From the plots depicted in Figure 7 we clearly observe that the
convergence behavior of a conjugate gradient method preconditioned with the
MAOS scheme (Algorithm 3.3, Figure 7 (left)) is dependent on the number
of points N as well as the polynomial degree p. The multilevel iteration M 1,1

1

(Algorithm 3.1), i.e., the V (1, 1)-cycle, converges independent of the number
of points N for the BGS smoother (Figure 7 (center)) but not independent
of the polynomial degree p. Only the V (1, 1)-cycle with the MOS smoother
(Figure 7 (right)) shows a convergence behavior that is independent of the
number of points N and the polynomial degree p. Hence, in contrast to FEM

A p-robust Multilevel Solver for Partition of Unity Methods 19

Table 1. Convergence rates ρBGS obtained for a V (1, 1)-cycle using the BGS
smoother, and the rates ρMOS using the overlapping MOS smoother for the Poisson
problem (4.13) in two dimensions.

J p dof nnz ρBGSL2 ρBGSl2 ρBGSR ρMOS
L2 ρMOS

l2 ρMOS
R

8 1 196608 5280804 0.261 0.256 0.220 0.039 0.037 0.020
8 2 393216 21123216 0.166 0.160 0.150 0.002 0.001 0.001
7 3 163840 14592400 0.324 0.337 0.322 0.001 0.001 0.001
6 4 61440 8122500 0.580 0.607 0.581 0.002 0.001 0.001
6 5 86016 15920100 0.692 0.736 0.695 0.001 0.001 0.001
5 6 28672 6927424 0.791 0.868 0.754 0.002 0.004 0.001
5 7 36864 11451456 0.811 0.892 0.781 0.001 0.003 0.001
5 8 46080 17892900 0.829 0.910 0.813 0.002 0.002 0.001
4 9 14080 6400900 0.850 0.926 0.830 0.001 0.002 0.001

Table 2. Convergence rates ρBGS obtained for a V (1, 1)-cycle using the BGS
smoother, and the rates ρMOS using the overlapping MOS smoother for the Poisson
problem (4.13) in three dimensions.

J p dof nnz ρBGSL2 ρBGSl2 ρBGSR ρMOS
L2 ρMOS

l2 ρMOS
R

5 1 131072 13289344 0.319 0.312 0.266 0.034 0.032 0.020
4 2 40960 9733600 0.192 0.182 0.163 0.002 0.002 0.001
3 3 10240 4259200 0.443 0.460 0.430 < 0.001 < 0.001 < 0.001
3 4 17920 13043800 0.657 0.689 0.637 < 0.001 < 0.001 < 0.001

the additive Schwarz or PSC preconditioner (Algorithm 3.3) does not yield a
similar convergence behavior as the multiplicative Schwarz or SSC iteration
(Algorithm 3.1).

The rates ρBGS , see Tables 1 and 2, measured for the V (1, 1)-cycle with
the BGS smoother are clearly p-dependent and deteriorate with increasing
p. We measure ρBGSL2 = 0.261 for p = 1 and ρBGSL2 = 0.850 for p = 9. The
rates ρMOS obtained with the MOS smoother, however, are almost constant
for all polynomial degrees p. Furthermore, these rates are very small. We find
ρMOS
L2 to be no worse than 0.002 for p ≥ 2; i.e., our solver converges up to

machine accuracy in less than 6 iterations. Note that due to storage limitations
not all experiments with increasing p could be carried out up to the same
discretization level J . Here, we were limited by the number of nonzeros nnz of
the stiffness matrix AJ on the finest level J . From the numbers given in Tables
1 and 2 we see that nnz on the finest level J is similar for all experiments and
ranges from 5 million to 21 million entries.

In our second experiment we considered the Navier–Lamé equations

−µ∆u− (λ+ µ)∇(∇ · u) = f in Ω = [0, 1]2 ⊂ R2,
u = g on ∂Ω,

(4.14)

in two dimensions with f = 0 and Dirichlet boundary conditions g = 0. The
measured convergence rates ρ for our multilevel solver with the BGS smoother

20 M. Griebel, P. Oswald, M. A. Schweitzer

Table 3. Convergence rates ρBGS obtained for a V (1, 1)-cycle using the BGS
smoother, and the rates ρMOS using the overlapping MOS smoother for the elas-
ticity problem (4.14) in two dimensions.

J p dof nnz ρBGSL2 ρBGSl2 ρBGSR ρMOS
L2 ρMOS

l2 ρMOS
R

8 1 393216 21123216 0.664 0.658 0.552 0.128 0.124 0.074
7 2 196608 21013056 0.347 0.336 0.277 0.008 0.007 0.003
6 3 81920 14440000 0.671 0.689 0.655 0.010 0.011 0.009
5 4 30720 7952400 0.786 0.813 0.764 0.002 0.001 < 0.001
5 5 43008 15586704 0.791 0.831 0.778 0.002 0.002 < 0.001
4 6 14336 6635776 0.827 0.882 0.805 0.002 0.003 0.001
4 7 18432 10969344 0.857 0.908 0.831 0.002 0.002 0.001
3 8 5760 3920400 0.871 0.927 0.836 0.001 0.001 < 0.001

and the MOS smoother are given in Table 3. Again we observe that the rates
ρBGS for the BGS smoother deteriorate for larger p. The rates ρMOS obtained
for the MOS smoother on the other hand are very small and stay constant
e.g. ρMOS

L2 ≈ 0.002 for increasing p ≥ 2.
In summary, the results of our numerical experiments indicate that only

the multilevel solver (Algorithm 3.1) with the overlapping MOS smoother
(Algorithm 3.2) converges independent ofN and p. Furthermore, the measured
convergence rates ρMOS are very small. It took no more than 6 iterations for
the solver to converge up to machine accuracy for p ≥ 2.

Note, however, that the computational costs associated with the overlap-
ping smoothing scheme involve a rather large and d-dependent constant. Due
to the overlap of the subspace splitting, the local problems are of dimen-
sion O(3dpd) whereas the dimension of the local problems without overlap
is O(pd), see Figure 5 (center) and (right). Since these local problems lead
to dense matrices in both cases, the storage requirement of the overlapping
MOS smoother is larger by a factor of 32d than the storage demand of the
non-overlapping BGS smoother. Similarly, the number of operations required
by the MOS smoother is larger by a factor of 33d due to the direct solution of
the larger local problems. Hence, the overall compute time of the multilevel
solver with the non-optimal BGS smoother may be significantly smaller in the
practical range of N and p. Furthermore, the multilevel solver with the BGS
smoother is applicable to larger problems due to its smaller storage demand.

5 Concluding Remarks

We presented a multilevel solver for PUM discretizations which employs a
tree-based spatial multilevel sequence in conjunction with an overlapping do-
main decomposition type smoothing scheme. The results of our numerical
experiments indicate that the convergence rate ρ of this multilevel solver is
independent of the number of points N and the approximation order p; i.e.,

A p-robust Multilevel Solver for Partition of Unity Methods 21

the solver is robust with respect to p. The overall computational complexity
of our solver is of the order O(Np3d) to reduce the initial error by a pre-
scribed factor which is optimal up to a factor of O(pd). Note, however, that
the constants involved are rather large.

These results hold also for irregular point distributions and different cycle
types. For instance, also the V (1, 0)-cycle with the MOS smoother based on a
graded point set converges independent of N and p. Furthermore, the rate of
the multilevel solver with the MOS smoother seems to robust also for general
domains, i.e., when the domain is not resolved on the coarsest level.

Acknowledgement. Finally, we would like to acknowledge the support of the Sonder-
forschungsbereich 611

”
Singuläre Phänomene und Skalierung in mathematischen

Modellen“ funded by the Deutsche Forschungsgemeinschaft.

References

1. I. Babuška and J. M. Melenk. The Partition of Unity Finite Element Method:
Basic Theory and Applications. Comput. Meth. Appl. Mech. Engrg., 139:289–
314, 1996. Special Issue on Meshless Methods.

2. I. Babuška and J. M. Melenk. The Partition of Unity Method. Int. J. Numer.
Meth. Engrg., 40:727–758, 1997.

3. J. H. Bramble and X. Zhang. Handbook of Numerical Analysis. In P. G. Ciarlet
and J. L. Lions, editors, The Analysis of Multigrid Methods, volume VII, pages
173–416. Elsevier, 2000.

4. W. Dahmen. Multiscale Analysis, Approximation, and Interpolation Spaces. In
C. K. Chui and L. L. Schumaker, editors, Approximation Theory VIII, volume 2,
pages 47–88. World Scientific, 1995.

5. J. A. George. Nested Dissection of a Regular Finite Element Mesh. SIAM J.
Num. Anal., 10:345–363, 1973.

6. T. Gerstner and M. Griebel. Numerical Integration using Sparse Grids. Numer.
Alg., 18:209–232, 1998.

7. M. Griebel and M. A. Schweitzer. A Particle-Partition of Unity Method for the
Solution of Elliptic, Parabolic and Hyperbolic PDE. SIAM J. Sci. Comput.,
22(3):853–890, 2000.

8. M. Griebel and M. A. Schweitzer. A Particle-Partition of Unity Method—
Part II: Efficient Cover Construction and Reliable Integration. SIAM J. Sci.
Comput., 23(5):1655–1682, 2002.

9. M. Griebel and M. A. Schweitzer. A Particle-Partition of Unity Method—Part
III: A Multilevel Solver. SIAM J. Sci. Comput., 24(2):377–409, 2002.

10. M. Griebel and M. A. Schweitzer. A Particle-Partition of Unity Method—
Part IV: Parallelization. In M. Griebel and M. A. Schweitzer, editors, Meshfree
Methods for Partial Differential Equations, volume 26 of Lecture Notes in Com-
putational Science and Engineering, pages 161–192. Springer, 2002.

11. M. Griebel and M. A. Schweitzer. A Particle-Partition of Unity Method—Part
V: Boundary Conditions. In S. Hildebrandt and H. Karcher, editors, Geometric
Analysis and Nonlinear Partial Differential Equations, pages 517–540. Springer,
2002.

22 M. Griebel, P. Oswald, M. A. Schweitzer

12. W. Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer
Series in Computational Mathematics. Springer, 1985.

13. W. Hackbusch. Iterative Solution of Large Sparse Linear Systems of Equations.
Springer, 1994.

14. J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.
Abh. Math. Sem. Univ. Hamburg, 36:9–15, 1970–1971.

15. P. Oswald. Multilevel Finite Element Approximation. Teubner Skripten zur
Numerik. Teubner, 1994.

16. T. N. L. Patterson. The Optimum Addition of Points to Quadrature Formulae.
Math. Comp., 22:847–856, 1968.

17. L. F. Pavarino. Additive Schwarz Methods for the p-Version Finite Element
Method. Numer. Math., 66:493–515, 1994.

18. M. A. Schweitzer. A Parallel Multilevel Partition of Unity Method for Elliptic
Partial Differential Equations, volume 29 of Lecture Notes in Computational
Science and Engineering. Springer, 2003.

19. T. Strouboulis, I. Babuška, and K. Copps. The Design and Analysis of the
Generalized Finite Element Method. Comput. Meth. Appl. Mech. Engrg., 181(I
3):43–69, 2000.

20. T. Strouboulis, K. Copps, and I. Babuška. The Generalized Finite Element
Method. Comput. Meth. Appl. Mech. Engrg., 190:4081–4193, 2001.

21. J. Xu. Iterative Methods by Space Decomposition and Subspace Correction.
SIAM Review, 34(4):581–613, 1992.

22. H. Yserentant. Old and New Convergence Proofs for Multigrid Methods. Acta
Numerica 93, pages 285–326, 1993.

