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Summary. This paper is concerned with the adaptive multilevel solution of elliptic
partial differential equations using the partition of unity method. While much of
the work on meshfree methods is concerned with convergence-studies, the issues of
fast solution techniques for the discrete system of equations and the construction
of optimal order algorithms are rarely addressed. However, the treatment of large
scale real-world problems by meshfree techniques will become feasible only with the
availability of fast adaptive solvers.

The adaptive multilevel solver proposed in this paper is a main step toward
this goal. In particular, we present an h-adaptive multilevel solver for the partition
of unity method which employs a subdomain-type error indicator to control the
refinement and an efficient multilevel solver within a nested iteration approach. The
results of our numerical experiments in two and three space dimensions clearly show
the efficiency of the proposed scheme.
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1 Introduction

One main purpose of this paper is to investigate adaptive h-type refinement
strategies for meshfree methods and their interplay with multilevel solution
techniques; in particular we address these issues for the partition of unity
method [1, 15]. To this end, we employ a classical a posteriori error estimation
technique due to Babuška and Rheinboldt [2]. The resulting error indicator
is used to steer the local refinement procedure in our tree-based cover con-
struction procedure. To obtain an adaptive solver with optimal complexity we
combine the multilevel techniques developed in [7, 9, 15] for the PUM with the
nested iteration approach [12]. The results of our numerical experiments in
two and three space dimensions demonstrate the effectiveness of the proposed
approach and its overall efficiency.
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In this paper we restrict ourselves to the study of a scalar elliptic partial
differential equation, namely we consider the diffusion problem

−∆u = f in Ω ⊂ R
d,

u = gD on ΓD ⊂ ∂Ω,
∂u

∂n
= gN on ΓN = ∂Ω \ ΓD.

(1.1)

The remainder of this paper is organized as follows. In section 2 we give a
short overview of the PUM and its convergence properties. Furthermore, we
outline the implementation of essential boundary conditions using Nitsche’s
method and the Galerkin discretization of the arising variational problem.
The main theme of this paper, the adaptive meshfree multilevel solution of
an elliptic PDE, is presented in section 3. There, we introduce our refinement
algorithm and show that it leads to point sets and covers that are consistent
with the multilevel construction of [9]. Moreover, we present the construction
of our error indicator and discuss how we obtain an adaptive multilevel solver
with optimal complexity using the nested iteration approach. Then, we present
the results of our numerical experiments in two and three space dimensions
in section 4. These results clearly demonstrate the efficiency of the proposed
scheme. Finally, we conclude with some remarks in section 5.

2 Partition of Unity Method

In the following, we shortly review the construction of a partition of unity
space V PU and the Galerkin discretization of an elliptic partial differential
equation using V PU as trial and test space, see [15] for details.

2.1 Construction of a Partition of Unity Space

In a PUM, we define a global approximation uPU simply as a weighted sum
of local approximations ui,

uPU(x) :=

N∑

i=1

ϕi(x)ui(x). (2.1)

These local approximations ui are completely independent of each other, i.e.,
the local supports ωi := supp(ui), the local basis {ψn

i } and the order of
approximation pi for every single ui :=

∑
un

i ψ
n
i ∈ V pi

i can be chosen inde-
pendently of all other uj. Here, the functions ϕi form a partition of unity
(PU). They are used to splice the local approximations ui together in such
a way that the global approximation uPU benefits from the local approxima-
tion orders pi yet it still fulfills global regularity conditions. Hence, the global
approximation space on Ω is defined as
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V PU :=
∑

i

ϕiV
pi

i =
∑

i

ϕi span〈{ψn
i }〉 = span〈{ϕiψ

n
i }〉. (2.2)

The starting point in the implementation of a PUM approximation space V PU

is the construction of an appropriate PU, see Definition 1 and Definition 2.

Definition 1 (Partition of Unity). Let Ω ⊂ R
d be an open set. Let {ϕi}

be a collection of Lipschitz functions with

0 ≤ ϕi(x) ≤ 1,
∑

i ϕi ≡ 1 on Ω,

‖ϕi‖L∞(Rd) ≤ C∞, ‖∇ϕi‖L∞(Rd) ≤ C∇

diam(ωi)
,

where ωi := supp(ϕi), C∞ and C∇ are two positive constants. The sets ωi are
called patches and their collection is referred to as a cover CΩ := {ωi} of the
domain Ω.

For PUM spaces (2.2) which employ such a PU {ϕi} there hold the fol-
lowing error estimates due to [1].

Theorem 1. Let Ω ⊂ R
d be given. Let {ϕi} be a partition of unity according

to Definition 1. Let us further introduce the covering index λCΩ
: Ω → N such

that
λCΩ

(x) = card({i |x ∈ ωi}) (2.3)

and let us assume that λCΩ
(x) ≤ M ∈ N for all x ∈ Ω. Let a collection

of local approximation spaces V
pi

i = span〈{ψn
i }〉 ⊂ H1(Ω ∩ ωi) be given.

Let u ∈ H1(Ω) be the function to be approximated. Assume that the local
approximation spaces V

pi

i have the following approximation properties: On
each patch Ω ∩ωi, the function u can be approximated by a function ui ∈ V pi

i

such that

‖u− ui‖L2(Ω∩ωi) ≤ ǫ̂i, and ‖∇(u− ui)‖L2(Ω∩ωi) ≤ ǫ̃i (2.4)

hold for all i. Then the function

uPU :=
∑

ωi∈CΩ

ϕiui ∈ V PU ⊂ H1(Ω)

satisfies the global estimates

‖u− uPU‖L2(Ω) ≤
√
MC∞

( ∑

ωi∈CΩ

ǫ̂2i

) 1

2

, (2.5)

‖∇(u− uPU)‖L2(Ω) ≤
√

2M
( ∑

ωi∈CΩ

( C∇

diam(ωi)

)2
ǫ̂2i + C2

∞ǫ̃
2
i

) 1

2

. (2.6)

The estimates (2.5) and (2.6) show that the global error is of the same order
as the local errors provided that the covering index is bounded independent
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of the size of the cover, i.e. M = O(1). Note that we need to assume a slightly
stronger condition to obtain a sparse linear system by the Galerkin approach.
To this end, we introduce the notion of a local neighborhood or local cover
CΩ,i ⊂ CΩ of a particular cover patch ωi ∈ CΩ by

CΩ,i := {ωj ∈ CΩ |ωj ∩ ωi 6= ∅} (2.7)

and require maxωi∈CΩ
card(CΩ,i) = O(1).

Note furthermore that the conditions imposed on the PU in Definition 1 do
not ensure that the product functions ϕiψ

n
i of (2.2) are linearly independent.

However, to obtain the linear independence of the product functions ϕiψ
n
i it

is sufficient to require that the PU has the following property.

Definition 2 (Flat top property). Let {ϕi} be a partition of unity accord-
ing to Definition 1. Let us define the sub-patches ωFT,i := {x |λCΩ

(x) = 1}
such that ϕi|ωFT,i

≡ 1. Then, the PU is said to have the flat top property, if
there exists a constant CFT such that for all patches ωi

µ(ωi) ≤ CFT µ(ωFT,i) (2.8)

where µ(A) denotes the Lebesgue measure of A ⊂ R
d. We have C∞ = 1 for a

PU with the flat top property.

Obviously the product functions ϕiψ
n
i are linearly independent if we as-

sume that the PU has the flat top property and that each of the local bases
{ψn

i } is locally linearly independent on the sub-patches ωFT,i ⊂ ωi.
1

The PU concept is employed in many meshfree methods. However, in most
cases very smooth PU functions ϕi ∈ Ck(Ω) with k ≥ 2 are used and the
functions ϕi have rather large supports ωi which overlap substantially. Hence
in most meshfree methods card(CΩ,i) is large and the employed PU does
not have the flat top property. This makes it easier to control ‖∇ϕi‖L∞ ,
compare Definition 1 and (2.6), but it can lead to ill-conditioned and even
singular stiffness matrices. For a flat top PU we obviously have ∇ϕi|ωFT,i

≡ 0
so that it is sufficient to bound ∇ϕi on the complement ωi \ ωFT,i which
requires some additional properties, compare (2.12) and (2.13). Hence, the
cover construction for a flat top PU is somewhat more challenging.

A PU can for instance be constructed by simple averaging, often referred
to as Shepard’s method. Let us assume that we have a cover CΩ = {ωi} of
the domain Ω such that 1 ≤ λCΩ

(x) ≤ M for all x ∈ Ω. With the help
of non-negative weight functions Wk defined on these cover patches ωk, i.e.
Wk(x) > 0 for all x ∈ ωk \ ∂ωk, we can easily generate a partition of unity by

ϕi(x) :=
Wi(x)

Si(x)
where Si(x) :=

∑

ωj∈CΩ,i

Wj(x). (2.9)

1 Note that the flat top property is a sufficient condition only. It is not a necessary
requirement. In practice we already obtain a linearly independent set of shape
functions if the flat top property is satisfied by most but not necessarily all patches
ωi of the cover CΩ.
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Obviously, the smoothness of the resulting PU functions ϕi is determined
entirely by the smoothness of the employed weight functions. Hence, on a
cover with tensor product patches ωi we can easily construct partitions of
unity of any regularity for instance by using tensor products of splines with
the desired regularity as weight functions.2 Hence, let us assume that the
weight functions Wi are all given as linear transformations of a generating
normalized spline weight function W : R

d → R with supp(W) = [0, 1]d, i.e.,

Wi(x) =W ◦ Ti(x), Ti : ωi → [0, 1]d, ‖DTi‖∞ ≤
CT

diam(ωi)
(2.10)

and ‖W‖∞ = 1, ‖∇W‖∞ ≤ CW,U . To show that the PU arising from (2.9) is
valid according to Definition 1 it is sufficient to make the following additional
assumptions:

• Comparability of neighboring patches: There exist constants CL and CU

such that for all local neighborhoods CΩ,i there holds the implication

ωj ∈ CΩ,i ⇒ CL diam(ωi) ≤ diam(ωj) ≤ CU diam(ωi) (2.11)

with absolute constants CL and CU .
• Sufficient overlap: There exists a constant K > 0 such that for any x ∈ Ω

there is at least one cover patch ωi with the property

x ∈ ωi, dist(x, ∂ωi) ≥ K diam(ωi). (2.12)

• Weight function and cover are compatible: There exists a constant CW,L

such that for all cover patches ωi

|∇Wi(x)| >
CW,L

diam(ωi)
holds for all x ∈ Ω with λCΩ

(x) > 1, (2.13)

compare Figure 2.1.

Lemma 1. The PU defined by (2.9) with weights (2.10) is valid according to
Definition 1 under the assumptions (2.11), (2.12), and (2.13).

Proof. For x ∈ Ω with λCΩ
(x) = 1 we have ∇ϕi(x) = 0. Note that we have

|Si(x)| ≥ |Wl(x)| = |Wl(x)−Wl(y)|

where ωl denotes the cover patch with property (2.12) for x ∈ Ω and y ∈ ∂ωl

is arbitrary. For any x ∈ Ω with λCΩ
> 1 we therefore obtain with the mean

value theorem, (2.12) and (2.13)

2 Other shapes of the cover patches ωi ∈ CΩ are of course possible, e.g. balls or
ellipsoids, but the resulting partition of unity functions ϕi are more challenging to
integrate numerically. For instance a subdivision scheme based on the piecewise
constant covering index λCΩ

leads to integration cells with very complicated
geometry.
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Figure 2.1. A one-dimensional weight function Wi on a patch ωi = (C − h, C + h)
with ωFT,i = (a, b) that does not satisfy (left) the compatibility condition (2.13),
and one that does (right).

|Si(x)| ≥ CW,LK.

Together with (2.10) and (2.11) this yields the point-wise estimate

|∇ϕi(x)| =
∣∣∣
Wi(x)∇Si(x) −∇Wi(x)Si(x)

S2
i (x)

∣∣∣

≤

(
|∇W ◦ Ti(x)DTi(x)Si(x)|+ |Wi(x)

∑
k∇W ◦ Tk(x)DTk(x)|

)

|S2
i (x)|

≤ (CW,LK)−2 2MCTCW,U

diam(ωi)
,

which gives the asserted bound ‖∇ϕi‖L∞(Rd) ≤ C∇

diam(ωi)
with C∇ ≥ 2MCT CW,U

(CW,LK)−2 .
⊓⊔

In general any local space which provides some approximation property
such as (2.4) can be used in a PUM. Furthermore, the local approximation
spaces are independent of each other. Hence, if there is a priory knowledge
about the (local) behavior of the solution u available, it can be utilized to
choose operator-dependent approximation spaces. For instance, the a priori
information can be used to enrich a space of polynomials by certain singu-
larities or it maybe used to choose systems of eigenfunction of (parts) of the
considered differential operator as local approximation spaces. Such special-
ized local function spaces may be given analytically or numerically.

If no a priori knowledge about the solution is available classical multi-
purpose expansion systems like polynomials are used. In this paper we employ
products of univariate Legendre polynomials throughout, i.e., we use

V
pi

i (ωi) := Ppi ◦ T̃i, T̃i : ωi → (−1, 1)d

Ppi((−1, 1)d) = span〈{ψn |ψn =

d∏

l=1

Ln̂l , ‖n̂‖1 =

d∑

l=1

n̂l ≤ pi}〉,
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where Lk denotes the Legendre polynomial of degree k.

2.2 Essential Boundary Conditions and Galerkin Discretization

The treatment of essential boundary conditions in meshfree methods is not
straightforward and a number of different approaches have been suggested. In
[10] we have presented how Nitsche’s method [13] can be applied successfully
in the meshfree context.

In order to formulate the resulting weak formulation of (1.1) arising from
Nitsche’s approach, we introduce some additional notation. Let ∂nu := ∂u

∂n

denote the normal derivative, ΓD,i := ωi ∩ ΓD, and

CΓD
:= {ωi ∈ CΩ |ΓD,i 6= ∅}

denote the cover of the Dirichlet boundary. Furthermore, we define the cover-
dependent norm

‖∂nu‖2− 1

2
,CΩ

:=
∑

ωi∈CΓD

diam(ΓD,i)‖∂nu‖2L2(ΓD,i)
.

With these conventions we obtain the weak formulation

aβ(u, v) = lβ(v) for all v ∈ V PU (2.14)

with the cover-dependent bilinear form

aβ(u, v) :=

∫

Ω

∇u∇v −
∫

ΓD

(∂nuv + u∂nv) + β
∑

ωi∈CΓD

diam(ΓD,i)
−1

∫

ΓD,i

uv

(2.15)
and the corresponding linear form

lβ(v) :=

∫

Ω

fv−
∫

ΓD

gD∂nv+

∫

ΓN

gNv+ β
∑

ωi∈CΓD

diam(ΓD,i)
−1

∫

ΓD,i

gDv (2.16)

from the minimization of the functional

Jβ(w) :=

∫

Ω

|∇w|2 − 2

∫

ΓD

∂nww + β
∑

ωi∈CΓD

diam(ΓD,i)
−1

∫

ΓD,i

|w|2. (2.17)

Note that this minimization is completed for the error in V PU, i.e., we are
looking for minuPU∈V PU JN,β(u − uPU). There is a unique solution uPU if
the regularization parameter β is chosen large enough; i.e., the regularization
parameter is dependent on the discretization space V PU. The solution uPU of
(2.14) satisfies an optimal error estimate if the space V PU admits the following
inverse estimate

‖∂nu‖− 1

2
,CΩ
≤ Cinv‖∇u‖L2(Ω) for all v ∈ V PU (2.18)
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with an absolute constant Cinv depending on the cover CΩ , the generating
weight function W and the employed local bases {ψn

i }. If Cinv is known, the
regularization parameter β can be chosen as β > 2C2

inv. Hence, the main task
is the automatic computation of the constant Cinv. Fortunately, C2

inv can be
approximated very efficiently, see [10]. To this end, we consider the inverse
assumption (2.18) as a generalized eigenvalue problem locally on each patch
ωi ∈ CΓD

which intersects the Dirichlet boundary and solve for the largest
eigenvalue to obtain an approximation to C2

inv.
Note that this (overlapping) variant of Nitsche’s approach is slightly dif-

ferent from the one employed in [10, 15], e.g., there the inverse assumption
(2.18) was formulated using a cover-independent norm. To attain a conver-
gent scheme from (2.17) it is essential that the covering index λCΓD

(x) < M

is bounded. The implementation of (2.15) and (2.16) is somewhat more in-
volved since the numerical integration scheme must be capable of handling
the overlap region correctly. The main advantage of this overlapping variant
is that the regularization parameter β is dependent on the employed local
approximation spaces, i.e., on the employed polynomial degrees, and on the
maximal level difference L close to the boundary only. It is not dependent on
diam(ωi). Hence, it is sufficient to pre-compute β for the maximal allowable
value of L and the maximal polynomial degree. This value can then be used
for all patches on all levels.

For the Galerkin discretization of (2.14), which yields the linear system

Aũ = f̂ , with A(i,k),(j,n) = aβ(ϕjψ
n
j , ϕiψ

k
i ), and f̂(i,k) = lβ(ϕiψ

k
i ),

we need to employ numerical integration since the PU functions are in general
piecewise rational functions. Note that the flat top property is also beneficial
to the numerical integration since all PU functions are constant on each ωFT,i

so that the integration on a large part of the domain
⋃

i ωFT,i ⊂ Ω involves
only the local basis functions ψn

i . Therefore, a subdivision scheme based on
the covering index λCΩ

which employs sparse grid numerical integration rules
of higher order on the cover-dependent integration cells seems to be the best
approach, see [8] for details. Note that the use of an automatic construction
procedure for the numerical integration scheme is a must for adaptive compu-
tations since an a priori prescribed background integration scheme can hardly
account for the (possibly) huge variation in the support sizes diam(ωi) and
may lead to stability problems.

With respect to the assembly of the system matrix A for a refined PUM
space it is important to note that we do not need to compute all its entries
A(i,k),(j,n). We can re-use the entries A(i,k),(j,n) which stem from a patch ωi

with the property that none of its neighbors ωj ∈ CΩ,i have been refined.
Hence, there are a number of complete block-rows A(i,·),(·,·) that do not need
to be computed for the refined space and we need to compute only a minimal
number of matrix entries A(i,k),(j,n) from level to level.
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3 Adaptive Multilevel Solution

In [8, 9] we have developed a tree-based cover construction scheme that gives a
sequence of covers {Ck

Ω} based on a given point set P = {xi}. The fundamental
construction principle employed in [8] is a d-binary tree. Based on the given
point data P , we sub-divide a bounding-box CΩ ⊃ Ω until each of the tree
cells

Ci =

d∏

l=1

(cli − hl
i, c

l
i + hl

i)

contains at most a single point xi ∈ P , see Figure 3.2 (left). We obtain a valid
cover from this tree by choosing

ωi =

d∏

l=1

(cli − αhl
i, c

l
i + αhl

i), with α > 1. (3.1)

Note that we define a cover patch ωi and a corresponding PU function ϕi

for cells that contain a point xi ∈ P as well as for empty cells that do not
contain any point from P .3 This procedure increases the dimension of the
resulting PUM space, yet (under some assumptions) only by a constant factor
[5, 8]. The main benefit of using a larger number of cover patches is that
the resulting neighborhoods CΩ,i are smaller and that we therefore obtain a
smaller number of entries in the stiffness matrix. The coarser covers Ck

Ω are
defined considering coarser versions of the constructed tree, i.e., by removing
the complete set of leaves of the tree. For details of this construction see [8].

The constructed covers Ck
Ω all satisfy the conditions of the previous sec-

tion.

Lemma 1. A cover CΩ = {ωi} arising from the stretching of a d-binary tree
cell decomposition {Ci} according to (3.1) with α > 1 satisfies conditions
(2.10), (2.11) and (2.12).

Proof. For the ease of notation let us assume hi = hk
i for k = 1, . . . , d. Then,

we have hi ≍ 2−li diam(Ω) where li refers to the tree-level of the cell Ci.
Obviously, we have CT = 1,

CU = max
ωi∈CΩ

max
ωj∈CΩ,i

2|li−lj |, and CL = C−1
U .

Due to the stretching of the tree cells we can find for any x ∈ Ω at least one
cover patch ωi such that x ∈ ωi and that the inequality

dist(x, ∂ωi) ≥
α− 1

2
min

ωj∈CΩ,i

2−lj

3 This approach can be interpreted as a saturation technique for our d-binary tree.
To this end, we can define an additional point set P̃ = {ξi} such that each cell of
the tree now contains exactly one point of the union P̃ ∪ P , compare [8, 9].
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Figure 3.2. Subdivision corresponding to an initial cover (left). Subdivision with
cells of neighborhood CΩ,i (light gray) and cell corresponding to patch ωi (dark
gray) (center). Subdivision with cells of subset RΩ,i (gray) (right).

holds. Hence, with the maximal difference in tree levels of two overlapping
cover patches L := maxωi∈CΩ

maxωj∈CΩ,i
|li − lj | we obtain CU = 2L and

K = (α− 1)2−L−1. ⊓⊔

Therefore, the resulting PU defined by (2.9) using a tensor product B-
spline as generating weight function satisfies the assumptions of Definition
1 and the error estimates (2.5) and (2.6) hold for our multilevel PUM on
each level k. Furthermore, we can easily enforce that each PU of the resulting
sequence {ϕi,k}k has the flat top property.

Corollary 1. The PU resulting from (2.9) based on a cover CΩ = {ωi} arising
from the stretching of a d-binary tree cell decomposition {Ci} with α > 1
according to (3.1) has the flat top property if α ∈ (1, 1 + 2−L).

3.1 Particle Refinement

In the following we consider the refinement of the given point set P and the
respective sequence of covers Ck

Ω obtained from the tree construction reviewed
above. One of the properties this refinement procedure should have is that we
are able to bound the maximal level difference L of the resulting tree. Only
then will we obtain a sequence of covers {Ck

Ω} and a sequence of PUs {ϕi,k}
which satisfy the conditions given above with uniform constants.

In general any local refinement procedure employs a Boolean refinement
indicator function r : CΩ → {true, false} which identifies or marks regions
which should be refined. Often the refinement indicator is based on thresh-
olding of local error estimates ηi ≈ ‖u− uPU‖H1(Ω∩ωi), e.g.

r(ωi) =

{
true if 2ηi ≥ ηmax

false else
, with ηmax := max

ωi∈CΩ

ηi. (3.2)

Based on this refinement indicator we then employ certain refinement rules to
improve the resolution on a patch ωi. Since we are interested in the refinement
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of a particle set, these refinement rules must essentially create new particles
in the regions {ωi ∈ CΩ | r(ωi) = true}. Furthermore, this refinement process
should be consistent with our tree construction.

Before we consider our refinement rules for particles, let us first consider if a
simple refinement indicator function like (3.2) is suitable for the PUM. To this
end let us assume that we have ηi ≈ ‖u−uPU‖H1(Ω∩ωi) an estimate of the error
u− uPU locally on each patch ωi, see section 3.3 for the construction of such
an error estimator. Note that the ηi are (overlapping) subdomain estimators
which are fundamentally different from the more common (disjoint) element
estimators in the FEM.

Recall that the local error is given by

‖u− uPU‖H1(Ω∩ωi) = ‖
∑

ωj∈CΩ,i

ϕj(u− uj)‖H1(Ω∩ωi) (3.3)

since
∑

ωj∈CΩ,i
ϕj(x) ≡ 1 for all x ∈ ωi. Thus, using a simple indicator like

(3.2) which would just mark the patch ωi for refinement may not be sufficient
to reduce the error on ωi. It seems necessary that at least some of the neighbors
are also marked for refinement to achieve a sufficient error reduction. Another
reason why the highly local indicator (3.2) is not suitable for our PUM is
the fact that we need to bound the maximal level difference L of neighboring
patches. This can hardly be achieved using (3.2). A simple solution to this
issue could be to refine all patches ωj ∈ CΩ,i since they all contribute to the
error on ωi. This will certainly ensure that the error on ωi is reduced, however,
it may lead to a substantial yet unnecessary increase in computational work
and storage. Taking a closer look at (3.3) we find that the contribution of a
patch ωj to the error on ωi lives on the intersection ωj ∩ωi only. Hence, it is a
promising approach to select an appropriate subset of neighbors ωj ∈ CΩ,i via
the (relative) size of these intersections. This approach is further in perfect
agreement with our constraint of bounding the maximal level difference since
the intersection ωj ∩ ωi will be (relatively) large if lj < li, i.e., ωj is a coarser
patch than ωi. Hence, we introduce the sets

RΩ,i := {ωi} ∪ {ωj ∈ CΩ,i | lj < li}

of patches with a large contribution to the local error on ωi. With the help of
these sets we define our refinement indicator function as

r(ωj) =

{
true if ωj ∈ RΩ,i and 2ηi ≥ ηmax

false else
, (3.4)

see Figure 3.2. Note however that this does not guarantee that the maximal
level difference L stays constant. But it ensures that L increases somewhat
slower and only in regions where the error is already small. Hence, the adverse
effect of larger constants in the error bound (2.6) is almost negligible. Also
note that the presented procedure can be interpreted as a refinement with
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implicit smoothing of the cover due to the selection of a subset of neighbors.
This strategy gave very favorable results in all our numerical studies and it is
employed in the numerical experiments presented in this paper.

Now that we have identified the refinement region, we need to consider
the refinement rules for our particle set P based on the patch-wise refinement
indicator function (3.4). Our goal is to define a set of refinement rules which
create new points xn and a respective cover C̃Ω, so that our original cover
construction algorithm with the input P ∪ {xn} will give the refined cover
C̃Ω . Hence, the locations of the created points are constrained to certain cells
of our tree. In this paper we employ a very simple and numerically cheap
positioning scheme4 for the new points based on a local center of gravity,
which is defined as

gi =
1

card(GΩ,i)

∑

xk∈GΩ,i

xk, GΩ,i = {xk ∈ P |xk ∈ ωk ∈ CΩ,i}.

Note that gi is well-defined for all patches. Due to our tree-based cover con-
struction we can always find at least one given point xi in the local neighbor-
hoods CΩ,e even for empty patches ωe, i.e. ωe∩P = ∅. Besides the local centers
of gravity gi we furthermore use the geometric centers ci of the tree-cell Ci
associated with the considered patch ωi and the centers ci,q of the refined tree-
cells Ci,q with q = 1, . . . , 2d for our positioning scheme. The overall refinement
scheme for a patch ωi reads as follows.

Algorithm 1 (Particle Refinement).

1. Set counter w = 0.
2. If there is xi ∈ P with xi ∈ Ci ⊂ ωi, then determine sub-cell Ci,q̃ ⊂ ωi,q̃

with xi ∈ Ci,q̃.
3. If gi ∈ Ci ⊂ ωi, then determine sub-cell Ci,q̂ ⊂ ωi,q̂ with gi ∈ Ci,q̂. Set
P = P ∪ {gi} and w = w + 1. If w ≥ 2d−1, then stop.

4. If q̂ 6= q̃, then
For q = 1, . . . , 2d compute projection pi,q of sub-cell center ci,q on line
xigi and the projection p̃i,q of ci,q on line xici.
If pi,q ∈ Ci,q, then set P = P ∪ {pi,q} and w = w + 1. If w ≥ 2d−1,
then stop.
If pi,q 6∈ Ci,q and p̃i,q ∈ Ci,q, then set P = P ∪ {p̃i,q} and w = w + 1.
If w ≥ 2d−1, then stop.

5. If q̂ = q̃ and gi = ci, then assume that data is gridded and set P =
P ∪ {ci,q} with q = 1, . . . , 2d.

4 Note that many other approaches to the construction of new points are possible.
For instance we can minimize the local fill distance or the separation radius
under the constraint of positioning the new points within the sub-cells of the tree
construction. Such approaches, however, involve the solution of a linear system
and hence are computationally more expensive.
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Now that we have our refined point set P , let us consider the question of
how to define the respective cover patches ωi. The refinement of a cover is
straightforward since a d-binary tree is an adaptive data-structure. Here, it is
sufficient to use a single subdivision step to split the tree-cell Ci into 2d sub-
cells Ci,q if the refinement indicator function r(ωi) = true for the associated
cover patch ωi. Then, we insert the created particles in the respective cells
and set the patches ωi,q on all refined (sub-)cells Ci,q with q = 1, . . . , 2d using
(3.1) with the same overlap parameter α.

Due to our careful selection of the positions of the new points {xn} in
our refinement scheme we ensure that the refined cover C̃Ω is identical to the
cover obtained by our original cover construction algorithm using the refined
point set P ∪ {xn} as input. Hence, a refined cover is guaranteed to have the
same properties as the covers obtained from the original algorithm.

Recall that our tree-based cover construction algorithm provides a com-
plete sequence of covers Ck

Ω. Hence, we must deal with the question how to
introduce a refined cover into an existing sequence of covers Ck

Ω such that
the resulting refined sequence is consistent with our multilevel construction
[9, 15].

3.2 Iterative Solution

In [9] we have constructed a sequence of covers {Ck
Ω = {ωi,k}} with k =

0, . . . , J where J denotes the maximal subdivision level of the tree, that is all
covers Ck

Ω have the property

k = max
ωi∈Ck

Ω

li. (3.5)

The respective PUM spaces V PU
k are defined as

V PU
k :=

∑

ωi,k∈Ωk

ϕi,kV
pi,k

i,k

with the PU functions (2.9) based on the cover CΩ,k and local approximation
spaces V

pi,k

i,k of degree pi,k.
Note that property (3.5) ensures that we have a minimal number of levels

J + 1 and thus minimal work and storage in the iterative multilevel solver.
Hence, the covers of a refined sequence must also satisfy (3.5).

Let us assume that we have a sequence of covers {Ck
Ω} with k = 0, . . . , J

satisfying the level property (3.5) and that we refine the cover CJ
Ω . To obtain a

sequence {Ck
Ω} with this property by the refinement scheme presented above

we need to distinguish two cases.
First we consider the simple case where we refine the cover CJ

Ω in such a
way that at least one patch ωi with li = J is marked for refinement. Then,
the resulting cover R(CJ

Ω) has at least one element ωj with lj = J + 1 and
we can extend our sequence of covers {Ck

Ω} with k = 0, . . . , J + 1 where
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CJ+1
Ω = R(CJ

Ω). In the case where we refine only patches ωi with li < J ,
we obtain a refined cover R(CJ

Ω) for which maxωi∈R(CJ
Ω

) li = J holds and

we cannot extend the existing sequence of covers by R(CJ
Ω). We rather need

to replace the cover CJ
Ω by its refined version R(CJ

Ω) to obtain a consistent
sequence of covers. Thus, we end up with the modified sequence {Ck

Ω} with
k = 0, . . . , J where we assign CJ

Ω = R(CJ
Ω).

With these conventions it is clear that our refinement scheme leads to
a sequence of covers {Ck

Ω} that satisfies all assumptions of our multilevel
construction and our iterative multilevel solver is applicable also in adaptive
computations.

To reduce the computational work even further, we couple our multilevel
solver with the nested iteration technique [12], see Algorithm 2.

Algorithm 2 (Nested Iteration).

1. If l > 0, then set initial guess

ũ0
l = P l

l−1ũ
kl−1

l−1 .
Else, set initial guess
ũ0

l = 0.

2. Set ũkl

l ← ISkl

l (ũ0
l , f̂l, Al) .

The ingredients of a nested iteration are the basic iterative solution procedure
IS l (in our case IS l will be a multilevel iterationMGl(0, f̂J)) defined on each
level l and prolongation operators P l

l−1. One key observation which lead to the

development of Algorithm 2 is that the approximate solution ũ
kl−1

l−1 obtained on
level l−1 is a good initial guess ũ0

l for the iterative solution on level l. To this
end, we need the prolongation operator P l

l−1 to transfer a coarse solution on
level l−1 to the next finer level l, see step 1 of Algorithm 2. Another property
that is exploited in our nested iteration solver is that there is nothing to gain
from solving the linear system of equations (almost) exactly since its solution
describes an approximate solution of the considered PDE only. The iterative
solution process on level l can be stopped once the error of the iteration is
of the same order as the discretization error on level l. Thus, if the employed
iterative solver IS l has a constant error reduction rate, as it is the case for
an optimal multilevel iteration MGl, then a (very small) constant number
of iterations kl that is independent of l in step 2 is sufficient to obtain an
approximate solution ũl on each level l within discretization accuracy. The
overall iterative process is also referred to as full multigrid [6, 11].

In all our numerical studies no more than 2 applications of a V (1, 1)-cycle
with block-Gauss-Seidel smoothing (compare [9]) were necessary to obtain an
approximate solution within discretization accuracy.

3.3 Error Estimation

The final ingredient of our adaptive multilevel PUM is the local error estimator
ηi ≈ ‖u− uPU‖H1(Ω∩ωi) which steers our particle refinement process and can
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be used to assess the quality of the computed global approximation [2, 3, 16,
17]. In this section we now construct an error estimator ηi for the PUM based
on the subdomain approach due to [2].

We employ an a posteriori error estimation technique based on the solution
of local Dirichlet problems defined on (overlapping) subdomains introduced in
[2] which is very natural to the PUM. To this end let us consider the additional
local problems

−∆wi = f in Ω ∩ ωi,

wi = uPU on ∂(Ω ∩ ωi) \ ΓN ,
∂wi

∂n
= gN on ΓN ∩ ∂(Ω ∩ ωi)

(3.6)

to approximate the error u − uPU on Ω ∩ ωi by wi − uPU ∈ H1(Ω ∩ ωi), see
[2]. This leads to the local error estimator ηi := ‖wi − uPU‖H1(Ω∩ωi).

Note that the local problems (3.6) employ inhomogeneous Dirichlet bound-
ary values. As discussed in section 2.2, the implementation of essential bound-
ary conditions is somewhat more involved in the PUM. There we have pre-
sented a non-conforming approach due to Nitsche to realize the global Dirich-
let conditions of our model problem (1.1). Of course this technique can also be
pursued here, however, since we consider (3.6) on very special subdomains, i.e.,
on the support of a PU function ϕi, there is a much simpler and conforming
approach.

Enforcing homogeneous boundary conditions on the boundary ∂ωi is trivial
since ϕi|∂ωi

≡ 0. For patches close to the boundary we can easily enforce
homogeneous boundary values on ∂(Ω∩ωi)\ΓN \ΓD. Hence, if we reformulate
(3.6) in such a way that we have to deal with vanishing boundary data on
∂(Ω∩ωi)\ΓN \ΓD only, we can realize the (artificial) boundary conditions in a
conforming way. Only for the global boundary data on ΓD we need to employ
the non-conforming Nitsche technique. Therefore, we employ a discrete version
of the following equivalent formulation of (3.6)

−∆w̃i = f − fPU in Ω ∩ ωi,

w̃i = 0 on ∂(Ω ∩ ωi) \ ΓN \ ΓD,

w̃i = gD − uPU on ∂(Ω ∩ ωi) ∩ ΓD,

∂w̃i

∂n
= gN −

∂uPU

∂n
on ΓN ∩ ∂(Ω ∩ ωi),

(3.7)

where fPU denotes the best approximation of f in V PU, with mostly homo-
geneous boundary conditions within our implementation.

We approximate (3.7) using the trial and test spaces Vi,∗(Ω ∩ ωi) :=
ϕiV

pi+qi

i with qi > 0. Obviously, the functions wi ∈ Vi,∗(Ω ∩ ωi) satisfy
the homogeneous boundary conditions on ∂(Ω ∩ ωi) \ ΓN \ ΓD due to the
multiplication with the partition of unity function ϕi. Note that these local
problems fit very well with the global Nitsche formulation (2.17) since the
solution of (3.7) coincides with the minimizer of

Jγi
(u− uPU − w̃i)→ min{w̃i ∈ Vi,∗(Ω ∩ ωi)}
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where the parameter γi now depends on the local discretization space Vi,∗(Ω∩
ωi) ⊂ H1(Ω ∩ωi) and not on V PU ⊂ H1(Ω).5 Note that the utilization of the
global Nitsche functional is possible due to the use of a conforming approach
for the additional boundary ∂(Ω ∩ ωi) \ ΓN \ ΓD only.

We obtain our local approximate error estimator

ηi := ‖w̃i‖H1(Ω∩ωi) (3.8)

from the approximate solution w̃i ∈ Vi,∗(Ω ∩ ωi) of the local problem (3.7).
The global error is then estimated by

η :=
( ∑

ωi∈CΩ

(ηi)
2
) 1

2

=
( ∑

ωi∈CΩ

‖w̃i‖2H1(Ω∩ωi)

) 1

2

. (3.9)

Note that we solve (3.7) in the complete space Vi,∗(Ω ∩ ωi) = ϕiV
pi+qi

i and

not just the space ϕiV
pi+qi\pi

i where V
pi+qi\pi

i denotes the hierarchical com-
plement of V pi

i in V pi+qi

i .
This subdomain error estimation approach was already analyzed in the

PUM context in [1]. There it was shown that the subdomain estimator is
efficient and reliable, i.e., there holds the equivalence

C−1
∑

ωi∈CΩ

‖wi‖2H1(Ω∩ωi)
≤ ‖u− uPU‖2H1(Ω) ≤ C

∑

ωi∈CΩ

‖wi‖2H1(Ω∩ωi)
. (3.10)

Yet, it was assumed that the variational problem is globally positive definite
and that a globally conforming implementation of essential boundary condi-
tions is employed. However, both these assumptions are not satisfied in our
PUM due to the Nitsche approach. The analysis of the presented estimator is
an open issue.

Also note that there are other a posteriori error estimation techniques
based on the strong residual in Mortar finite elements based Nitsche’s ap-
proach e.g. [4] which can be used in the PUM context. Finally, let us point out
an interesting property of the PUM which might be beneficial in the construc-
tion of error estimators based on the strong residual. Recall from Theorem 1
that the global error is essentially given as an overlapping sum of the local
errors with respect to the local approximation spaces. The properties of the
PU required by Definition 1 enter in the constants of the estimates (2.5) and
(2.6) only. They do not affect the attained approximation order. Hence, the
global approximation error in a PUM is essentially invariant of the employed
PU — if the PU is based on the same cover CΩ .

Corollary 2. Let Ω ⊂ R
d be given. Let {ϕ1

i } and {ϕ2
i } be partitions of unity

according to Definition 1 employing the same cover CΩ = {ωi}, i.e. for all i
assume that ω1

i = ω2
i = ωi. Let us assume that λCΩ

(x) ≤M ∈ N for all x ∈ Ω.

5 We may also pre-compute the Nitsche regularization parameter βmax for maximal
total degree max pi + qi and employ βmax on all levels and for all local problems.
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Let a collection of local approximation spaces V pi

i = span〈{ψn
i }〉 ⊂ H1(Ω∩ωi)

be given as in Theorem 1. Let u ∈ H1(Ω) be the function to be approximated.
Then there hold the global equivalencies

C−1
1,2‖uPU,1 − u‖L2(Ω) ≤ ‖uPU,2 − u‖L2(Ω) ≤ C2,1‖uPU,1 − u‖L2(Ω) (3.11)

and

C−1
1,2,∇‖∇(uPU,1−u)‖L2(Ω) ≤ ‖∇(uPU,2−u)‖L2(Ω) ≤ C2,1,∇‖∇(uPU,1−u)‖L2(Ω)

(3.12)
for the functions

uPU,1 :=
∑

ωi∈CΩ

ϕ1
iui ∈ V PU,1 and uPU,2 :=

∑

ωi∈CΩ

ϕ2
iui ∈ V PU,2

with constants C1,2, C2,1, C1,2,∇, C2,1,∇ depending on the partitions of unity
only.

Due to this equivalence it is easily possible to obtain an approximation
ũPU with higher regularity k > 0 from a C0 approximation uPU in our PUM
simply be changing the employed generating weight functionW . The smoother
approximation ũPU can for instance be used to evaluate/approximate higher
order derivatives without the need to consider jumps or other discontinuities
explicitly.

3.4 Overall Algorithm

Let us shortly summarize our overall adaptive multilevel algorithm which
employs three user-defined parameters: ǫ > 0 a global error tolerance, q > 0
the increment in the polynomial degree for the estimation of the error and
k > 0 the number of multilevel iterations employed in the nested iteration.

Algorithm 3 (Adaptive Multilevel PUM).

1. Let us assume that we are given an initial point set P and that we have
a sequence of PUM spaces V PU

k =
∑

ωi,k∈CΩ,k
ϕi,kV

pi,k

i,k with k = 0, . . . , J

based on a respective sequence of covers CΩ,k = {ωi,k} arising from a
d-binary tree construction using the point set P , see [8, 15] for details.
Let P l

l−1 : V PU
l−1 → V PU

l and Rl−1
l : V PU

l → V PU
l−1 denote transfer operators

and Sl : V PU
l × V PU

l → V PU
l appropriate smoothing schemes so that we

can define a multilevel iterationMGJ : V PU
J × V PU

J → V PU
J , see [7, 9, 15]

for details. Set ũJ = MGkinit

J (0, f̂J) where the number of iterations kinit

is assumed to be large enough.
2. Compute the local error estimates ηi from (3.8) using the local spaces

ϕJ,iV
pJ,k+q

J,i . Estimate the global error by (3.9).
3. If the global estimate satisfies η < ǫ: STOP.
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4. Define the refinement indicator function (3.4) on the cover CΩ,J based on
the local estimates ηi.

5. Using the refinement rules of section 3.1 define a refined point set P , a
refined cover R(CΩ,J ) and its associated PUM space R(V PU

J ).
6. If R(CΩ,J ) satisfies the level property (3.5) with J :

a) Delete the transfer operators P J
J−1 and RJ−1

J .
b) Compute an intermediate transfer operator PJ : V PU

J → R(V PU
J ).

c) Set ṽJ = PJ ũJ .
d) Delete the intermediate transfer operator PJ .
e) Remove the cover CΩ,J and its associated PUM space V PU

J from the
respective sequences.

f) Set CΩ,J := R(CΩ,J ) and V PU
J := R(V PU

J ).
7. If R(CΩ,J ) satisfies the level property (3.5) with J + 1:

a) Extend the sequence of covers by CΩ,J+1 := R(CΩ,J) and the sequence
of PUM spaces by V PU

J+1 := R(V PU
J ).

b) Set ṽJ = 0.
c) Set J = J + 1.

8. Set up the stiffness matrix AJ and right-hand side f̂J using an appropriate
numerical integration scheme.

9. Compute transfer operators P J
J−1 : V PU

J−1 → V PU
J andRJ−1

J : V PU
J → V PU

J−1

and define appropriate smoother SJ : V PU
J × V PU

J → V PU
J on level J .

10. If ṽJ = 0 , set ṽJ = P J
J−1ũJ−1.

11. Apply k > 0 iterations and set ũJ =MGk
J (ṽPU

J , f̂J).
12. GOTO 2.

4 Numerical Results

In this section we present some results of our numerical experiments using the
adaptive PUM discussed above. To this end, we introduce some shorthand
notation for various error norms, i.e., we define

eL∞ :=
‖u− uPU‖L∞

‖u‖L∞

, eL2 :=
‖u− uPU‖L2

‖u‖L2

, and eH1 :=
‖(u− uPU)‖H1

‖u‖H1

.

(4.1)
Analogously, we introduce the notion

e∗H1 :=
η

‖u‖H1

=

(∑
ωi∈CΩ

η2
i

) 1

2

‖u‖H1

for the estimated (relative) error using (3.8) and (3.9). These norms are ap-
proximated using a numerical integration scheme with very fine resolution, see
[15]. For each of these error norms we can compute the respective convergence
rate ρ by considering the error norms of two consecutive levels l − 1 and l
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Figure 4.3. Surface plot of approximate
solution uPU on level J = 11.
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Figure 4.4. Refined point set P on level
J = 11 for Example 1 using quadratic
polynomials for error estimation.

ρ := −
log

(
‖u−uPU

l ‖

‖u−uPU

l−1
‖

)

log( dofl

dofl−1

)
, dofk :=

∑

ωi,k∈Ck
Ω

dim(V
pi,k

i,k ). (4.2)

To assess the quality of our error estimator we give its effectivity index with
respect to the H1-norm

ǫ∗H1 :=
e∗H1

eH1

=
η

‖(u− uPU)‖H1

in the tables. We also give the maximal subdivision level J of our tree for
the cover construction, and the total number of degrees of freedom dof of the
constructed PUM space V PU on level J .

Example 1. In our first example we consider the standard test case of an L-
shaped domain in two space dimensions with homogeneous boundary condi-
tions at the re-entrant corner. That is we discretize the problem

−∆u = f in Ω = (−1, 1)2 \ [0, 1)2,
u = gD on ∂Ω

with our adaptive PUM where we choose f and gD such that the solution
u ∈ H 3

2 (Ω) in polar coordinates is given by u(r, θ) = r
2

3 sin(2θ−π
3 ), see Figure

4.3. We employ linear Legendre polynomials as local approximation spaces
V 1

i and estimate the local errors once with quartic (Table 4.1 and Figure 4.5)
and once with quadratic (Table 4.2 and Figure 4.6) Legendre polynomials, i.e.
Vi,∗ = ϕiV

4
i and Vi,∗ = ϕiV

2
i respectively.

It is well-known that in this two-dimensional example uniform refinement
will yield a convergence rate of ρH1 = 1

3 only instead of the optimal ρH1 =
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Table 4.1. Relative errors e (4.1) and convergence rates ρ (4.2) for Example 1 using
quartic Legendre polynomials for error estimation.

J dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1 e∗H1 ρ∗

H1 ǫ∗H1

0 3 3.303−1 1.01 2.469−1 1.27 5.272−1 0.58 4.150−1 0.80 0.79
1 9 1.162−1 0.95 5.301−2 1.40 2.153−1 0.82 2.327−1 0.53 1.08
2 36 7.431−2 0.32 2.084−2 0.67 1.572−1 0.23 1.344−1 0.40 0.85
3 144 4.628−2 0.34 8.947−3 0.61 1.034−1 0.30 8.702−2 0.31 0.84
4 252 2.908−2 0.83 4.207−3 1.35 7.291−2 0.62 6.030−2 0.66 0.83
5 360 1.830−2 1.30 2.774−3 1.17 5.632−2 0.72 4.566−2 0.78 0.81
6 468 1.152−2 1.76 2.389−3 0.57 4.821−2 0.59 3.836−2 0.66 0.80
7 576 7.252−3 2.23 2.277−3 0.23 4.457−2 0.38 3.505−2 0.43 0.79
8 1008 4.564−3 0.83 1.164−3 1.20 3.244−2 0.57 2.554−2 0.57 0.79
9 1566 2.874−3 1.05 6.580−4 1.29 2.524−2 0.57 1.981−2 0.58 0.78
10 2124 1.811−3 1.52 5.282−4 0.72 2.174−2 0.49 1.701−2 0.50 0.78
11 3636 1.140−3 0.86 2.669−4 1.27 1.635−2 0.53 1.280−2 0.53 0.78
12 5418 7.183−4 1.16 1.834−4 0.94 1.306−2 0.56 1.023−2 0.56 0.78
13 8226 4.525−4 1.11 1.230−4 0.96 1.063−2 0.49 8.324−3 0.49 0.78
14 13491 2.850−4 0.93 6.996−5 1.14 8.298−3 0.50 6.493−3 0.50 0.78
15 20412 1.796−4 1.12 4.731−5 0.94 6.618−3 0.55 5.191−3 0.54 0.78
16 30438 1.131−4 1.16 3.305−5 0.90 5.455−3 0.48 4.277−3 0.48 0.78
17 49842 7.125−5 0.94 1.926−5 1.09 4.288−3 0.49 3.359−3 0.49 0.78
18 77256 4.489−5 1.05 1.225−5 1.03 3.385−3 0.54 2.657−3 0.53 0.79
19 115326 2.828−5 1.15 8.611−6 0.88 2.786−3 0.49 2.187−3 0.49 0.78
20 189585 1.781−5 0.93 5.119−6 1.05 2.193−3 0.48 1.720−3 0.48 0.78
21 298440 1.122−5 1.02 3.129−6 1.09 1.719−3 0.54 1.350−3 0.53 0.79
22 446850 7.069−6 1.14 2.201−6 0.87 1.411−3 0.49 1.109−3 0.49 0.79
23 737478 4.453−6 0.92 1.321−6 1.02 1.110−3 0.48 8.715−4 0.48 0.78
24 1171548 2.805−6 1.00 7.915−7 1.11 8.672−4 0.53 6.814−4 0.53 0.79
25 1756818 1.767−6 1.14 5.570−7 0.87 7.109−4 0.49 5.585−4 0.49 0.79
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Figure 4.5. Convergence history for
Example 1 using quartic polynomials for
error estimation.
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Figure 4.6. Convergence history for
Example 1 using quadratic polynomials
for error estimation.
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Table 4.2. Relative errors e (4.1) and convergence rates ρ (4.2) for Example 1 using
quadratic Legendre polynomials for error estimation.

J dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1 e∗H1 ρ∗

H1 ǫ∗H1

0 3 3.303−1 1.01 2.469−1 1.27 5.272−1 0.58 4.287−1 0.77 0.81
1 9 1.162−1 0.95 5.301−2 1.40 2.153−1 0.82 1.496−1 0.96 0.69
2 36 7.431−2 0.32 2.084−2 0.67 1.572−1 0.23 9.882−2 0.30 0.63
3 144 4.628−2 0.34 8.947−3 0.61 1.034−1 0.30 6.502−2 0.30 0.63
4 252 2.908−2 0.83 4.207−3 1.35 7.291−2 0.62 4.696−2 0.58 0.64
5 360 1.830−2 1.30 2.774−3 1.17 5.632−2 0.72 3.753−2 0.63 0.67
6 468 1.152−2 1.76 2.389−3 0.57 4.821−2 0.59 3.306−2 0.48 0.69
7 873 7.250−3 0.74 1.181−3 1.13 3.484−2 0.52 2.418−2 0.50 0.69
8 1278 4.566−3 1.21 7.443−4 1.21 2.778−2 0.59 1.950−2 0.56 0.70
9 1854 2.875−3 1.24 5.693−4 0.72 2.298−2 0.51 1.615−2 0.51 0.70
10 3123 1.811−3 0.89 3.101−4 1.16 1.765−2 0.51 1.243−2 0.50 0.70
11 4842 1.140−3 1.05 1.963−4 1.04 1.380−2 0.56 9.784−3 0.55 0.71
12 7146 7.184−4 1.19 1.408−4 0.85 1.136−2 0.50 8.054−3 0.50 0.71
13 11385 4.525−4 0.99 8.684−5 1.04 9.076−3 0.48 6.422−3 0.49 0.71
14 17937 2.851−4 1.02 5.109−5 1.17 7.102−3 0.54 5.047−3 0.53 0.71
15 26235 1.796−4 1.22 3.806−5 0.77 5.863−3 0.50 4.173−3 0.50 0.71
16 41598 1.131−4 1.00 2.404−5 1.00 4.710−3 0.47 3.347−3 0.48 0.71
17 67266 7.126−5 0.96 1.344−5 1.21 3.654−3 0.53 2.602−3 0.52 0.71
18 99162 4.489−5 1.19 9.895−6 0.79 2.999−3 0.51 2.138−3 0.51 0.71
19 157779 2.828−5 0.99 6.324−6 0.96 2.410−3 0.47 1.714−3 0.48 0.71
20 259047 1.781−5 0.93 3.465−6 1.21 1.861−3 0.52 1.325−3 0.52 0.71
21 383805 1.122−5 1.18 2.532−6 0.80 1.521−3 0.51 1.085−3 0.51 0.71
22 612792 7.070−6 0.99 1.621−6 0.95 1.220−3 0.47 8.686−4 0.47 0.71
23 1014804 4.454−6 0.92 8.828−7 1.20 9.396−4 0.52 6.695−4 0.52 0.71
24 1509102 2.806−6 1.16 6.403−7 0.81 7.659−4 0.51 5.465−4 0.51 0.71
25 2412603 1.767−6 0.98 4.109−7 0.95 6.143−4 0.47 4.375−4 0.47 0.71
26 4014459 1.113−6 0.91 2.230−7 1.20 4.723−4 0.52 3.366−4 0.51 0.71
27 5983155 7.014−7 1.16 1.610−7 0.82 3.844−4 0.52 2.743−4 0.51 0.71
28 9575469 4.419−7 0.98 1.034−7 0.94 3.082−4 0.47 2.195−4 0.47 0.71
29 15969915 2.784−7 0.90 5.600−8 1.20 2.368−4 0.52

1
2 . An efficient self-adaptive method however must achieve the optimal rate
ρH1 = 1

2 and show a very sharp local refinement near the re-entrant corner,
compare Figure 4.4. From the numbers displayed in Table 4.1 and the graphs
depicted in Figure 4.5 we can clearly observe that our adaptive PUM achieves
this optimal value of ρH1 ≈ 1

2 . The corresponding L2-convergence rate ρL2

and L∞-convergence rate ρL∞ are also optimal with a value close to 1. We
can also observe the convergence of the effectivity index ǫ∗H1 to 0.79 from
Table 4.1. Hence, we see that our approximation to the local error using
quartic Legendre polynomials is rather accurate. The convergence of ǫ∗

H1 is
clear numerical evidence that the subdomain estimator described in section
3.3 satisfies an equivalence such as (3.10) also for the non-conforming Nitsche
approach and solutions with less than full elliptic regularity.
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Of course, an approximation of the error estimator using quartic polyno-
mials is rather expensive. We have to solve a local problem of dimension 15
on each patch. If we are interested in steering the refinement only, then this
amount of computational work might be too expensive. Hence, we carried out
the same experiment using quadratic Legendre polynomials for the approxi-
mation of (3.7) only. Here, we need to solve local problems of dimension 6. The
measured errors and convergence rates are displayed in Table 4.2 and in Fig-
ure 4.6. From these numbers we can clearly observe that we retain the optimal
rates of ρH1 ≈ 1

2 and ρL2 ≈ 1 also with this coarser approximation. However,
we also see that the quality of our approximate estimate is slightly reduced,
i.e., the effectivity index converges to the smaller value 0.71. Furthermore,
we find that our refinement scheme based on the quadratic approximation
selects more patches for refinement than in the quartic case; e.g., on level 9
we have dof = 1854 for the quadratic polynomials and only dof = 1566 for
the quartic polynomials. However, we obtain covers with a maximal level dif-
ference of L = 1 for both approximation to the local errors. Obviously, the
use of the quadratic approximation for the error estimation leads to an un-
necessary increase in the total number of degrees of freedom, however, since
we attain optimal convergence rates with both approximations this cheaper
approximation for the error may well pay off with respect to the total compute
time.

The solution of the arising linear systems using our nested iteration mul-
tilevel solver required an almost negligible amount of compute time. In this
experiment it was sufficient to employ a single V (1, 1)-cycle with block-Gauss-
Seidel smoothing (compare [9]) within the nested iteration solver to obtain an
approximate solution within discretization accuracy.

Finally, let us point out that the obtained numerical approximations uPU

to the considered singular solution are highly accurate with eL∞ ≈ 10−7.
Such quality requires an accurate and stable numerical integration scheme
which can account for the sharp localization in the adaptive refinement and
the singular character of the solution u automatically. Our subdivision sparse
grid integration scheme meets these requirements.

In summary we can say that the results of this numerical experiment indi-
cate that our adaptive PUM can handle problems with singular solutions with
optimal complexity. We obtain a stable approximation with optimal conver-
gence rates already with a relatively cheap approximation to the local errors.
The application of a nested iteration with our multilevel method as inner iter-
ation yields approximate solution of very high quality with a minimal amount
of computational work.

Example 2. In our second example we consider our model-problem (1.1) with
Dirichlet boundary conditions on the cube (0, 1)3 in three space dimensions.

We choose f and gD such that the solution is given by u(x) = |x| 13 . Again,
we use linear Legendre polynomials for the approximation and estimate the
local errors using quadratic Legendre polynomials. The optimal convergence
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Figure 4.7. Refined point set P on level
J = 9 for Example 2.
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Figure 4.8. Convergence history for
Example 2.

Table 4.3. Relative errors e (4.1) and convergence rates ρ (4.2) for Example 2.

J dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1 e∗H1 ρ∗

H1 ǫ∗H1

0 4 5.204−1 0.47 3.635−2 2.39 2.001−1 1.16 1.157−1 1.56 0.58
1 32 3.605−1 0.18 1.323−2 0.49 1.619−1 0.10 1.043−1 0.05 0.64
2 256 2.804−1 0.12 4.285−3 0.54 9.998−2 0.23 6.530−2 0.23 0.65
3 480 2.173−1 0.41 2.061−3 1.16 6.908−2 0.59 4.728−2 0.51 0.68
4 704 1.673−1 0.68 1.733−3 0.45 5.615−2 0.54 4.003−2 0.44 0.71
5 928 1.276−1 0.98 1.703−3 0.06 5.159−2 0.31 3.745−2 0.24 0.73
6 2440 9.678−2 0.29 9.047−4 0.65 3.600−2 0.37 2.673−2 0.35 0.74
7 4540 7.116−2 0.50 5.046−4 0.94 2.774−2 0.42 2.108−2 0.38 0.76
8 7424 5.140−2 0.66 4.099−4 0.42 2.386−2 0.31 1.822−2 0.30 0.76
9 15964 3.580−2 0.47 2.673−4 0.56 1.941−2 0.27 1.412−2 0.33 0.73
10 30076 2.355−2 0.66 1.472−4 0.94 1.613−2 0.29 1.112−2 0.38 0.69

rate with respect to the H1-norm in three dimensions is ρH1 = 1
3 . From the

numbers given in Table 4.3 we can clearly observe this optimal convergence
behavior of our adaptive PUM. The rates ρL2 and ρL∞ obtained for the L2-
norm and L∞-norm respectively are comparable to the optimal value of 2

3 .
The effectivity index of our error estimator converges to a value of ǫ∗H1 ≈ 0.64.
Hence, the quality of the quadratic approximation to the error estimator in
three dimensions is of comparable quality to that in two dimensions.

The maximal level difference in this example was L = 1 as in the previous
example, see also Figure 4.7. Again, it was sufficient to use a single V (1, 1)-
cycle within the nested iteration to obtain an approximate solution within
discretization accuracy.
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J = 8 for for Example 1 with p = 1.
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approximate solution computed on level
l = 10 with p = 1.

Table 4.4. Relative errors e (4.1) and convergence rates ρ (4.2) for Example 3 using
linear Legendre polynomials.

J dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1 e∗H1 ρ∗

H1 ǫ∗H1

3 84 5.853−1 0.92 4.360−1 1.24 6.941−1 0.52 5.591−1 0.45 0.81
4 156 2.940−1 1.11 1.371−1 1.87 4.764−1 0.61 3.117−1 0.94 0.65
5 291 1.041−1 1.67 5.489−2 1.47 3.281−1 0.60 2.332−1 0.47 0.71
6 822 3.772−2 0.98 1.944−2 1.00 2.042−1 0.46 1.566−1 0.38 0.77
7 1524 2.102−2 0.95 1.428−2 0.50 1.508−1 0.49 1.178−1 0.46 0.78
8 5619 4.824−3 1.13 4.716−3 0.85 7.710−2 0.51 5.963−2 0.52 0.77
9 13332 2.648−3 0.69 1.805−3 1.11 4.947−2 0.51 3.841−2 0.51 0.78
10 74838 3.061−4 1.25 2.875−4 1.06 2.106−2 0.50 1.649−2 0.49 0.78
11 275997 1.168−4 0.74 8.154−5 0.97 1.090−2 0.50 8.520−3 0.51 0.78
12 899823 2.819−5 1.20 2.872−5 0.88 6.002−3 0.51 4.667−3 0.51 0.78
13 2885646 9.056−6 0.97 1.025−5 0.88 3.358−3 0.50 2.612−3 0.50 0.78
14 13579752 1.841−6 1.03 2.062−6 1.04 1.546−3 0.50 1.201−3 0.50 0.78

Example 3. In our last example we consider the Poisson problem (1.1) with
Dirichlet boundary conditions where we choose f and gD such that the solu-
tion [14] is given by

u(x) =
1

2000

2∏

l=1

(xl)2(1 − xl)2(exp(10(xl)2)− 1),

see also Figure 4.10.
Here, we now consider not only a linear approximation but also a higher or-

der approach with quadratic polynomials since the solution is smooth enough.
First, we approximate the solution using linear Legendre polynomials and es-
timate the error with quadratic Legendre polynomials as before. Then, we
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Table 4.5. Relative errors e (4.1) and convergence rates ρ (4.2) for Example 3 using
quadratic Legendre polynomials.

J dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1 e∗H1 ρ∗

H1 ǫ∗H1

3 168 2.073−1 1.49 9.459−2 2.48 4.184−1 0.58 2.375−1 1.36 0.57
4 240 4.879−2 4.06 3.147−2 3.09 2.504−1 1.44 1.527−1 1.24 0.61
5 600 1.608−2 1.21 1.100−2 1.15 9.248−2 1.09 6.380−2 0.95 0.69
6 1824 2.492−3 1.68 1.742−3 1.66 2.523−2 1.17 1.628−2 1.23 0.65
7 4974 4.917−4 1.62 2.885−4 1.79 7.416−3 1.22 4.774−3 1.22 0.64
8 18492 7.648−5 1.42 6.033−5 1.19 1.854−3 1.06 1.158−3 1.08 0.62
9 61134 9.078−6 1.78 6.262−6 1.89 5.518−4 1.01 3.351−4 1.04 0.61
10 222414 1.392−6 1.45 1.216−6 1.27 1.512−4 1.00 9.025−5 1.02 0.60
11 959100 1.359−7 1.59 1.163−7 1.61 3.444−5 1.01 2.028−5 1.02 0.59
12 3580440 1.952−8 1.47 1.608−8 1.50 9.302−6 0.99 5.451−6 1.00 0.59
13 13422120 2.766−9 1.48 2.321−9 1.46 2.507−6 0.99 1.467−6 0.99 0.59

consider the case when we approximate the solution with quadratic polyno-
mials and use cubic Legendre polynomials to estimate the errors locally. With
respect to the measured convergence rates we expect to find the optimal rates
ρH1 ≈ 1

2 for the linear approximation, see Table 4.4 and Figure 4.11, and
ρH1 ≈ 1 for the quadratic approximation, see Table 4.5 and Figure 4.12.6

Our adaptive PUM achieves this anticipated optimal convergence behavior
with respect to the H1-norm as well as in the L2-norm for which we find the
optimal rates ρL2 ≈ 1 and ρL2 ≈ 3

2 respectively. The cover refinement car-
ried out for a linear approximation (compare Figure 4.9) is in fact different
from the one attained for the quadratic approximation. For instance we find
a maximal level difference of L = 3 for the linear approximation and L = 1
for the quadratic approximation, i.e., the point sets and covers obtain for the
higher order approximation is somewhat smoother.

The quality of the quadratic approximation of the error estimator is again
similar to those obtain in the previous examples, i.e., we observe ǫ∗H1 ≈ 0.78.
Since the relative increase in the number of degrees of freedom going from
quadratic to cubic polynomials is smaller than when we use quadratic poly-
nomials to estimate the error of a linear approximation we can expect to find
a smaller value of ǫ∗

H1 in Table 4.5. In fact the effectivity index converges to
0.59 only. Note that the results of further numerical experiments confirm that
the quality of the estimator is essentially influenced by the relative increase
of the polynomial degree. For instance we found a value of ǫ∗

H1 ≈ 0.8 again,
when we use polynomials of order 6 to approximate the error of a quadratic
approximation. Hence, this example demonstrates that using only a polyno-
mial of degree p+ 1 to estimate the error of an approximation of order p may

6 Note that not all refinement steps are given in the tables and graphs for Example
3. Due to the smoothness of the solution our refinement scheme constructs several
refined covers R(CJ

Ω) with J = maxωi∈R(CJ
Ω

) li. For better readability we only give

the final results on the respective level J .
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Figure 4.11. Convergence history for
Example 3 using linear Legendre poly-
nomials.
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Figure 4.12. Convergence history for
Example 3 using quadratic Legendre
polynomials.

not yield very accurate estimates for large p. Nonetheless, our experiments
also indicate that the actual refinement is only very slightly affected by this
issue.

5 Concluding Remarks

In this paper we have considered the adaptive multilevel solution of a scalar
elliptic PDE by the PUM. We have presented a particle refinement scheme
for h-type adaptivity in the PUM which is steered by a local subdomain-type
error estimator which is in turn approximated by local p-type enrichment.
The results of our numerical experiments in two and three space dimensions
are strong numerical evidence that the estimator is efficient and reliable.

Note that the adaptively constructed point sets may provide a novel way to
approximate density distributions which can be related to solutions of PDEs.
Also note that a local hp-type refinement is (in principle) straightforward in
the PUM due to the independence of the local approximation spaces. The
extension of the presented scheme to hp-type adaptivity however is subject of
current research.

The nested multilevel iteration developed in this paper provides a highly
efficient solver with optimal computational complexity. In summary, the pre-
sented meshfree scheme is a main step toward the availability of efficient adap-
tive meshfree methods which will enable us to tackle large scale complicated
problems.
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