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Abstract In this sequel to [12, 13, 14, 15] we focus on the implementation of
Dirichlet boundary conditions in our partition of unity method. The treatment of
essential boundary conditions with meshfree Galerkin methods is not an easy task
due to the non-interpolatory character of the shape functions. Here, the use of an
almost forgotten method due to Nitsche from the 1970’s allows us to overcome these
problems at virtually no extra computational costs. The method is applicable to
general point distributions and leads to positive definite linear systems. The results
of our numerical experiments, where we consider discretizations with several million
degrees of freedom in two and three dimensions, clearly show that we achieve the
optimal convergence rates for regular and singular solutions with the (adaptive)
h-version and (augmented) p-version.
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1.1 Introduction

Meshfree methods for the numerical treatment of partial differential equa-
tions gained much attention in recent years. These methods allow for the
construction of shape functions without the need of a mesh or grid so that
they are promising approaches to overcome the problem of mesh generation.

Since meshfree methods are independent of a mesh, their shape functions
are in general more complex than finite element shape functions. In a meshfree
method the shape functions are usually piecewise rational functions, whereas
in a finite element method (FEM) they are piecewise polynomials. This makes
the meshfree Galerkin discretization of a partial differential equation (PDE)
more challenging than its discretization with a FEM. See [12, 13, 27, 28]
for details on the discretization process with the partition of unity method
(PUM). Furthermore, the shape functions are in general non-interpolatory
which makes the design of optimal linear solvers [14] as well as the imple-
mentation of essential boundary conditions not an easy task.

Many different approaches toward the treatment of Dirichlet problems
have been proposed over the years [4, 10, 12, 13, 16, 17, 19, 22, 27]. Most of
them, however, suffer from one or several drawbacks (restrictions on the dis-
tribution of the discretization points, need for an additional boundary func-
tion space, saddle-point structure, non-optimal convergence rates, etc.). Yet,



2 M. Griebel and M. A. Schweitzer

the problem was in fact already solved in the early 1970’s when Nitsche [23]
developed a general approach for the treatment of essential boundary condi-
tions where the trial and test functions do not have to fulfill the boundary
conditions. Nitsche’s method, however, seems to be quite unknown. Recently,
Stenberg [29] revived the interest in this non-standard method by showing
its connection to some stabilization techniques for the Lagrange multiplier
method.

In this paper we present the implementation of essential boundary con-
ditions by Nitsche’s method in the context of our partition of unity method
for the numerical solution of elliptic PDE. The remainder of the paper is or-
ganized as follows. We begin with a short review of the construction of PUM
spaces, the Galerkin discretization of an elliptic PDE and the multilevel so-
lution of the arising linear block-system in §1.2. The treatment of essential
boundary conditions is presented in §1.3. Here, we discuss the various ap-
proaches and their difficulties and give a detailed introduction to Nitsche’s
method. Then, we present the results of our numerical experiments where
we apply our PUM Dirichlet problems with regular and singular solutions in
two and three dimensions in §1.4. Finally, we conclude with some remarks in
§1.5.

1.2 Partition of Unity Method

In the following, we shortly review the construction partition of unity spaces
and the meshfree Galerkin discretization of an elliptic PDE, see [12, 13] for
details. Furthermore, we give a summary of the efficient multilevel solution
of the arising linear block-system, see [14] for details.

1.2.1 Construction of Partition of Unity Method

In a partition of unity method, we define a global approximation uPU simply
as a weighted sum of local approximations ui,

uPU(x) :=
N∑
i=1

ϕi(x)ui(x). (1.1)

These local approximations ui are completely independent of each other,
i.e., the local supports ωi := supp(ui), the local basis {ψni } and the order
of approximation pi for every single ui :=

∑
uni ψ

n
i ∈ V pii can be chosen

independently of all other uj . Here, the functions ϕi form a partition of unity
(PU). They are used to splice the local approximations ui together in such a
way that the global approximation uPU benefits from the local approximation
orders pi yet it still fulfills global regularity conditions, see [12]. Hence, the
global approximation space on Ω is defined as
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V PU :=
∑
i

ϕiV
pi
i =

∑
i

ϕi span〈{ψni }〉 = span〈{ϕiψni }〉. (1.2)

The starting point for any meshfree method is a collection of N independent
points P := {xi ∈ Rd |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need to
construct a partition of unity {ϕi} on the domain of interest Ω to define an
approximate solution (1.1) where the union of the supports supp(ϕi) = ωi
covers the domain Ω ⊂

⋃N
i=1 ωi and ui ∈ V pii (ωi) is some locally defined

approximation of order pi to u on ωi. Thus, the first (and most crucial)
step in a PUM is the efficient construction of an appropriate cover CΩ . This
is not and easy task [13, 27]. Throughout this paper we use a tree-based
construction algorithm for d-rectangular covers presented in [13]. Here, the
cover patches ωi are products of intervals (xli − hli, xli + hli). With the help of
weight functions Wk defined on these cover patches ωi we can easily generate
a partition of unity by Shepard’s method, i.e., we define

ϕi(x) =
Wi(x)∑

ωk∈CiΩ
Wk(x)

, (1.3)

where Ci := {ωj ∈ CΩ |ωi ∩ωj 6= ∅} is the set of all geometric neighbors of a
cover patch ωi. Due to the use of d-rectangular patches ωi, the most natural
choice for a weight function Wi is a product of one-dimensional functions,
i.e., Wi (x) =

∏d
l=1W

l
i (xl) =

∏d
l=1W (x−x

l
i+h

l
i

2hli
) with supp(W) = [0, 1] such

that supp(Wi) = ωi. It is sufficient for this construction to choose a one-
dimensional weight function W with the desired regularity which is non-
negative. The partition of unity functions ϕi inherit the regularity of the
generating weight function W. We always use a normed B-spline [27] as the
generating weight function W.

In general, a partition of unity {ϕi} can of course only recover the constant
function on the domain Ω. Hence, we need to improve the approximation
quality to use the method for the discretization of a PDE. To this end, we
multiply the partition of unity functions ϕi locally with polynomials ψni .
Since we use d-rectangular patches ωi only, a local tensor product space is
the most natural choice. Throughout this paper, we use products of univariate
Legendre polynomials as local approximation spaces V pii , i.e., we choose

V pii = span〈{ψni |ψni =
d∏
l=1

Ln̂li , ‖n̂‖1 =
d∑
l=1

n̂l ≤ pi}〉,

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate
Legendre polynomials Ln̂li : [xli−hli, xli+hli]→ R, and n is the index associated
with the product function ψni =

∏d
l=1 L

n̂l
i .

In summary, we can view the construction given above as follows{xi}W
{pi}

→
 {ωi}

{Wi}
{V pii = span〈ψni 〉}

→ (
{ϕi}
{V pii }

)
→ V PU =

∑
ϕiV

pi
i ,
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where the set of points P = {xi}, the generating weight function W and the
local approximation orders pi are assumed to be given.

1.2.2 Basic Convergence Theory

In this section we state the notation and basic theory of the partition of unity
method as developed by Babuška and Melenk in [5, 6]. Crucial to the theory
of the partition of unity method is the notion of a (M,C∞, C∇) partition of
unity. The conditions formulated in the following definitions allow to show
the basic approximation properties as given in Theorem 1 of a partition of
unity space V PU (1.2).

Definition 1 (Partition of Unity). Let Ω ⊂ Rd be an open set, let CΩ =
{ωi} be an open cover of Ω satisfying a point-wise overlap condition

∃M ∈ N ∀x ∈ Ω card({i |x ∈ ωi}) ≤M .

Let {ϕi} be a Lipschitz partition of unity subordinate to the cover CΩ satis-
fying

supp(ϕi) ⊂ ωi for all i,
∑
i ϕi ≡ 1 on Ω,

‖ϕi‖L∞(Rd) ≤ C∞, ‖∇ϕi‖L∞(Rd) ≤ C∇
diam(ωi)

,

where C∞ and C∇ are two positive constants. Then {ϕi} is called a (M,C∞, C∇)
partition of unity subordinate to the cover CΩ. The partition of unity is said
to be of degree k ∈ N0 if ϕi ∈ Ck(Rd) for all i. The covering sets ωi are called
patches.

Definition 2 (Partition of Unity Space). Let CΩ = {ωi} be an open
cover of Ω ⊂ Rd and let {ϕi} be a (M,C∞, C∇) partition of unity subordinate
to CΩ. Let V pii = span〈{ψni }〉 ⊂ H1(Ω ∩ ωi) be given. Then the space

V PU :=
∑
i

ϕiV
pi
i =

∑
i

ϕi span〈{ψni }〉 = span〈{ϕiψni }〉

is called a partition of unity space. The space V PU is said to be of degree k ∈ N
if V PU ⊂ Ck(Ω). The spaces V pii are referred to as the local approximation
spaces.

Theorem 1 (Approximation Property). Let Ω ⊂ Rd be given. Let CΩ =
{ωi}, {ϕi} and V pii be as in Definitions 1 and 2. Let u ∈ H1(Ω) be the func-
tion to be approximated. Assume that the local approximation spaces V pii have
the following approximation properties: On each patch Ω ∩ωi, the function u
can be approximated by a function vi ∈ V pii such that ‖u− vi‖L2(Ω∩ωi) ≤ ε̂i,
and ‖∇(u− vi)‖L2(Ω∩ωi) ≤ ε̃i hold. Then the function

uPU :=
∑
i

ϕivi ∈ V ⊂ H1(Ω)
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satisfies

‖u− uPU‖L2(Ω) ≤
√
MC∞

( N∑
i=1

ε̂2i

) 1
2
,

‖∇(u− uPU)‖L2(Ω) ≤
√

2M
( N∑
i=1

( C∇
diam(ωi)

)2
ε̂2i + C2

∞ε̃
2
i

) 1
2
.

Proof. See [5, 6].

Due to this theorem we can use the partition of unity method as an h-
version, a p-version or even an hp-version. From the above estimate we can
see that the approximation property of the approximation space V PU may
be improved via the reduction of the diameters of the cover patches ωi (the
insertion of points xi) or via the enhancement of the approximation qualities
of the local spaces V pii (the increment of the local approximation order pi).
These refinement strategies are independent of each other, thus we may use
both at the same time. Since the PUM only employs a scattered data set,
an adaptive h-refinement (by the insertion of new points xi) does not have
to cope with problems caused by the grid-structure like hanging nodes, etc.
Furthermore, there are no compatibility restrictions on the local spaces V pii .
Hence, we may also employ an adaptive p-refinement on the local spaces V pii ,
i.e., we may use a different order of approximation pi and even different basis
functions ψni in different parts of the domain.

1.2.3 Galerkin Discretization of Elliptic Equations

We want to solve elliptic boundary value problems of the type

Lu = f in Ω ⊂ Rd ,
Bu = g on ∂Ω ,

(1.4)

where L is a symmetric partial differential operator of second order and B
expresses suitable boundary conditions.

In the following let a (·, ·) be the continuous and elliptic bilinear form
induced by L on V := H1(Ω). We discretize the partial differential equation
using Galerkin’s method. Then, we have to compute the stiffness matrix

A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψmj , ϕiψ
n
i ) ∈ R ,

and the right hand side vector

f̂ = (f(i,n)) , with f(i,n) = 〈f, ϕiψni 〉L2 =
∫
Ω

fϕiψ
n
i ∈ R .

If we restrict ourselves for reasons of simplicity to the case L = −∆ we have
to compute the integrals

∫
Ω
ϕiψ

n
i f for the right hand side and the integrals
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Ω
∇(ϕiψni )∇(ϕjψmj ) for the stiffness matrix. Recall that ϕi is defined by

(1.3), i.e.

ϕi(x) =
Wi(x)∑
Wk(x)

.

Now we carry out the differentiation in
∫
Ω
∇(ϕiψni )∇(ϕjψmj ). With the no-

tation S :=
∑
Wk, T :=

∑
∇Wk and Gi := ∇WiS −WiT we end up with

the integrals

a(ϕjψmj , ϕiψ
n
i ) =

∫
Ω

S−4Giψni Gjψmj +
∫
Ω
S−2Wi∇ψni Wj∇ψmj +∫

Ω

S−3Giψni Wj∇ψmj +
∫
Ω
S−3Wi∇ψni Gjψmj

(1.5)

for the stiffness matrix and the integrals

〈f, ϕiψni 〉L2 =
∫
Ω

S−1Wiψ
n
i f (1.6)

for the right hand side. These integrands may have quite a number of jumps
of significant size since we use piecewise polynomial weights Wi whose sup-
ports ωi overlap in the Shepard construction (1.3). Therefore, the integrals of
the weak form have to be computed with certain care using an appropriate
numerical quadrature scheme, see [12, 13].

1.2.4 Multilevel Solution of Resulting Linear System

The product structure of the shape functions ϕiψni implies two natural block-
partitions of the resulting linear system Aũ = f̂ , where ũ denotes a coefficient
vector and f̂ denotes a moment vector.

1. The stiffness matrix A can be arranged in spatial blocks. A spatial block
Anm corresponds to a discretization of the PDE on the complete domain
Ω using the trial functions ϕjψmj and the test function ϕiψni with fixed n
and m. Here, all blocks Anm are sparse matrices and have the same row
and column dimensions which corresponds to the number of partition of
unity functions ϕi.

2. The stiffness matrix A may also be arranged in polynomial blocks. Here,
a single block Aij corresponds to a local discretization of the PDE on
the domain ωi ∩ ωj ∩ Ω. The polynomial blocks Aij are dense matrices
and may have different dimensions corresponding to the dimensions of
the local approximation spaces V pjj and V pii .

This separation of the degrees of freedom into local approximation functions
ψni and partition of unity functions ϕi can be used to define two different
multilevel concepts [14]. Throughout this paper we assume that the stiffness
matrix is given in polynomial block-form and we use the corresponding spa-
tial multilevel solver developed in [14] for the fast and efficient solution of
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the resulting large sparse linear block-system Aũ = f̂ , where ũ denotes a
coefficient block-vector and f̂ a moment block-vector.

In a multilevel method we need a sequence of discretization spaces Vk
with k = 0, . . . , J where J denotes the finest level. To this end we construct
a sequence of PUM spaces V PU

k as follows. We use a tree-based algorithm
developed in [13, 14] to generate a sequence of point sets Pk and covers CkΩ
from a given initial point set P̃ . Following the construction given in §1.2.1 we
can then define an associated sequence of PUM spaces V PU

k . Note that these
spaces are nonnested, i.e., V PU

k−1 6⊂ V PU
k , and that the shape functions ϕi,kψni,k

are non-interpolatory. Thus, we need to construct appropriate transfer op-
erators Ikk−1 : V PU

k−1 → V PU
k and Ik−1

k : V PU
k → V PU

k−1. With such transfer
operators Ikk−1, Ik−1

k and the stiffness matrices Ak coming from the Galerkin
discretization on each level k we can then set up a standard multiplicative
multilevel iteration to solve the linear system AJ ũJ = f̂J .

Our multilevel solver utilizes special localized L2-projections for the in-
terlevel transfers and a block-smoother to treat all local degrees of freedom
ψni within a patch ωi simultaneously. The convergence rates of this multilevel
iteration are independent of the number of cover patches card(CJΩ) and only
slightly dependent on the polynomial degrees. The typical convergence rate
of a V (1, 1)-cycle is ρ ≤ 0.25 for a PUM space with linear local approximation
spaces. For further details see [14].

1.3 Boundary Conditions

Our PUM shape functions ϕiψni are non-interpolatory since the partition
of unity functions ϕi are (in general) non-interpolatory, i.e., ϕi(xj) 6= δij .
Furthermore the usage of local approximation spaces V pii with dim(V pii ) > 1
generates an approximation space V PU =

∑
i ϕiV

pi
i with more degrees of

freedom than interpolation nodes xi. Thus, we have to cope with the problem:
How to fulfill boundary conditions?

First consider (1.4) with Neumann boundary conditions Bu = un :=
∂u/∂n := ∇u · n = g on ∂Ω, where n denotes the outer normal. Here, we
learn from the variational formulation

F (v) :=
1
2
a(v, v)− 〈f, v〉L2 −

∫
∂Ω

gv → min{v ∈ H1(Ω)}, (1.7)

that the trial functions v have to fulfill no additional constraint besides being
from the definition space H1(Ω) of the differential operator L in its weak
form. The boundary conditions are not imposed explicitly on the function
space. Thus, the basis of a finite-dimensional subspace V ⊂ H1(Ω) used to
approximate the solution of (1.7) may be compiled of arbitrary functions
v ∈ H1(Ω). The basis functions do not need to be interpolatory. Hence, we
may use our functions ϕiψki as trial and test functions in a Galerkin procedure
without any modification.
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However, Dirichlet boundary conditions Bu = u = g on ∂Ω explicitly
impose the values of the solution u on the boundary ∂Ω. Thus, the trial
space of the usual weak formulation

Find u ∈ H1
g (Ω) : a(u, v) = 〈f, v〉L2 for all v ∈ H1

0 (Ω)

is not the complete space H1(Ω) but H1
g (Ω) := {v ∈ H1(Ω) |u = g on ∂Ω},

whereas the test space is H1
0 (Ω). Note that we can enforce vanishing Dirichlet

boundary conditions within the PUM by the selection of appropriate local
approximation spaces V pii , i.e., we need ψki |∂Ω ≡ 0 for all local basis functions
ψki [4, 10]. But the implementation of a trial space V ⊂ H1

g (Ω) with g 6≡ 0
by the selection of appropriate local approximation spaces is not feasible.

There are many different approaches toward the treatment of Dirichlet
boundary conditions with meshfree methods [4, 10, 16, 27], e.g.

1. coupling to mesh-based methods close to the boundary [19],
2. penalty or perturbation methods [17, 22],
3. the Lagrange multiplier method [12, 27],
4. and Nitsche’s method [4, 28].

Obviously the coupling of a meshfree method to a mesh-based method de-
stroys the meshfree character of the original method just for the sake of the
implementation of Dirichlet boundary conditions. This loss of generality and
freedom can hardly be justified. Furthermore, the coupling itself must be
consistent with the local approximation orders pi of the local spaces or we
also experience an adverse effect on the approximation quality of the overall
method only due to the poor implementation of Dirichlet boundary condi-
tions.

The penalty or perturbation approaches are very general concepts for
the implementation of constraints in a variational problem. In our setting
we would introduce an additional surface term in the variational formula-
tion to enforce the boundary conditions. This penalty term may change the
properties of the functional and we need to be concerned with the issues of ex-
istence and uniqueness of a solution. Furthermore, we usually do not achieve
the maximal rate of convergence [2, 4, 23], i.e., again we would experience a
reduction in the approximation quality of the overall method just because of
the inappropriate treatment of boundary conditions.

The Lagrange multiplier method is a general approach toward the solution
of constrained minimization problems which is also used in the finite element
[3, 8] and wavelet [20] context to implement essential boundary conditions.
It is well-known that the method converges with the optimal rates if the
function spaces involved, in our setting the interior PUM approximation space
and the multiplier space on the boundary, fulfill a (discrete) Ladyzhenskaya–
Babuška–Brezzi (or inf-sup) condition. Here, the main problem is the design
of an appropriate multiplier space on the boundary. Within the finite element
context Pitkäranta [24, 25, 26] showed that there is not much freedom in the
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design of the multiplier space if the optimal convergence of the method is
desired. Furthermore, the use of Lagrange multipliers (in general) leads to
a saddle-point problem and the arising linear system is indefinite and the
design of an optimal solver is not an easy task.

A different variational approach to Dirichlet problems due to Nitsche [23],
however, allows for the use of subspaces VN ⊂ H1(Ω) which do not have to
fulfill the boundary conditions explicitly, yet it gives the optimal rate of
convergence. Let us consider the Poisson problem

−∆u = f in Ω ⊂ Rd,
u = g on ∂Ω,

(1.8)

for reasons of simplicity. We are interested in finding an approximate solution
uN ∈ VN ⊂ H1(Ω) to (1.8) — within optimal error bounds. In an early yet
not widely known paper [23] Nitsche proposed to minimize the functional
JN (v − u) among all v ∈ VN where u is the solution of (1.8),

JN (w) :=
∫
Ω

|∇w|2 − 2
∫
∂Ω

wwn + βN

∫
∂Ω

w2,

and βN > 0 depends only on the subspace VN , i.e., the approximation uN is
given by J(uN − u) := infv∈VN JN (v− u). Note that the subscript n denotes
the normal derivative, i.e., wn = ∇w · n, whereas the subscript N indicates
a dependence on the discretization space VN ⊂ H1(Ω). The minimizer uN ∈
VN can be computed from the input data f and g of (1.8) since

JN (v − u) = JN (v) + JN (u)− 2
(∫

Ω

∇v∇u+
∫
∂Ω

u(βNv − vn)− vun
)
,

= JN (v) + JN (u)− 2
(∫

Ω

fv +
∫
∂Ω

g(βNv − vn)
)
.

The corresponding weak formulation is given by aN (uN , v) = 〈lN , v〉 for all
v ∈ VN where

aN (w, v) :=
∫
Ω

∇v∇w −
∫
∂Ω

vwn −
∫
∂Ω

wvn + βN

∫
∂Ω

vw,

〈lN , v〉 :=
∫
Ω

fv −
∫
∂Ω

gvn + βN

∫
∂Ω

gv.

Although the bilinearform aN (·, ·) is indefinite on the space H1(Ω) it is sym-
metric positive definite on the subspace VN under the assumptions that

‖vn‖L2(∂Ω) ≤ CN‖∇v‖L2(Ω) (1.9)

holds for all v ∈ VN with CN > 0 and that βN > 2C2
N since
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aN (v, v) = ‖∇v‖2L2(Ω) − 2
∫
∂Ω

vvn + βN‖v‖2L2(∂Ω)

≥ ‖∇v‖2L2(Ω) − 2CN‖v‖L2(∂Ω)‖∇v‖L2(Ω) + βN‖v‖2L2(∂Ω)

≥ 1
2
‖∇v‖2L2(Ω) + (βN − 2C2

N )‖v‖2L2(∂Ω).

Nitsche furthermore proved optimal error estimates if the relation

C2
N ' diam(supp(φ))−1 (1.10)

for CN in (1.9) holds for all basis functions φ ∈ VN and if the respective
approximation property is given in VN . The proportionality (1.10) is valid
e.g. if we have estimates of the form∫

∂Ω

|φn|2 ≤ CN,1(diam(supp(φ)))d−1 (1.11)

and ∫
Ω

|∇φ|2 ≥ CN,2(diam(supp(φ)))d (1.12)

for all basis functions φ ∈ VN with supp(φ) ∩ ∂Ω 6= ∅. Note that (1.11) and
(1.12) essentially introduce some geometric constraints on the intersections
supp(φ)∩Ω and supp(φ)∩ ∂Ω, i.e., in our meshfree context on the cover CΩ
or in the finite element context on the regularity of the mesh.

The proof of (1.10), i.e., of (1.11) and (1.12), for linear finite elements on a
regular mesh is trivial since the first order derivatives ∂iφ of a shape function
φ are constant on an element. In general a proof of (1.10) is simplified when
we only need to consider a regular reference configuration, i.e., where the
map to the reference configuration is affine. Here, we find∫

∂ supp(φ)

|φn|2∫
supp(φ)

|∇φ|2
=

det(J∂T )
∫
∂ωref

|φn ◦ ∂T |2

det(JT )
∫
ωref

|∇φ ◦ T |2

=
det(J∂T )
det(JT )

CN,ref

' (diam(supp(φ)))−1CN,ref

where CN,ref is only dependent on the polynomial degree of the shape func-
tion φ. Thus, if we limit ourselves to the use of uniform covers and a fixed
local approximation space we only need to consider very few reference cases
(depending on the number of edges of supp(ϕiψni ) ∩ ∂Ω and the polynomial
degree pi of V pii ). However, for the general situation where we have an irregu-
lar point distribution and locally varying approximation spaces this approach
cannot be pursued. Furthermore, from a computational point of view we must
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be interested in the value of CN in (1.9), not only the type of the propor-
tionality (1.10). Only a large enough value CN will lead to a definite problem
formulation. Yet, a wrong choice of the regularization parameter may have an
impact on the condition number of the linear system or other adverse effects
on the applicability of certain linear solvers. The parameter CN is not only
dependent on the support sizes but also on the selected local basis functions
ψki for the space V pii and the local approximation orders pi. Hence, we need
to be concerned with the automatic computation of a reliable estimate of CN .
Here, we decided to approach the estimate (1.9) as a generalized eigenvalue
problem

Ax = λBx (1.13)

where
A(i,k),(j,m) :=

∫
∂Ω

(ϕjψmj )n(ϕiψki )n

and
B(i,k),(j,m) :=

∫
Ω

∇(ϕjψmj )∇(ϕiψki )

for all index pairs (i, k), (j,m) which correspond to a shape function which
overlaps the boundary ∂Ω, i.e., ωi ∩ ∂Ω 6= ∅ and ωj ∩ ∂Ω 6= ∅. Solving (1.13)
for the maximal eigenvalue λmax we get a good estimate for C2

N .
Note that the assembly of the matrices A and B does not introduce a

significant amount of additional computational costs. The entries of B are
needed for the stiffness matrix anyway and can be re-used. The remaining
additional costs associated with the computation of the regularization pa-
rameter βN come from the solution of the eigenvalue problem (1.13). The
eigenvalue λmax can be computed very efficiently by a simultaneous Rayleigh-
quotient minimization method [7, 11, 21] due to the similar structure of the
matrices A and B. Here, the minimization of xTBx

xTAx only involves matrix-
vector-products. We do not need to solve a linear system. Furthermore, the
eigenvalue problem (1.13) involves only boundary degrees of freedom and is
therefore of smaller dimension. Hence, the computational costs associated
with the assembly of a Dirichlet problem are comparable to the costs associ-
ated with the respective Neumann problem.

Nitsche’s method is closely related to some stabilized Lagrange multiplier
techniques [29] which are used in Discontinuous Galerkin methods [1], Do-
main decomposition methods [9] and Mortar finite element methods [18, 30].
From our point of view, this approach provides the most natural implemen-
tation of Dirichlet boundary conditions for meshfree methods. The main ad-
vantages of Nitsche’s method are:

1. It does not introduce constraints on the distribution of the points xi ∈ P .
2. The problem formulation involves only the a single function space. There

is no need of an additional appropriate function space on the boundary.
3. The method leads to symmetric definite linear systems. We do not need

to be concerned with linear solvers for saddle-point problems.
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Furthermore, we can automatically compute the regularization parameter βN
without significant extra computational costs. This is especially important for
highly irregular point sets P , varying local basis functions ψki or varying local
approximation orders pi. Hence, we use Nitsche’s method for the implemen-
tation of Dirichlet boundary conditions throughout this paper. In summary,
the implementation of Neumann or Dirichlet boundary conditions involve
only the evaluation of boundary integrals of the PUM shape functions ϕiψki
and their gradients. We get the same rates of convergence for both types
of boundary conditions and the arising linear systems are positive definite
independent of the boundary conditions. The computational costs associated
with the assembly of the stiffness matrix A and right-hand side vector f̂ are
comparable for both types of boundary conditions. Finally, we give the weak
formulation of a Poisson problem

−∆u = f in Ω ⊂ Rd,
u = gD on ΓD ⊂ ∂Ω,
un = gN on ΓN = ∂Ω \ ΓD,

with mixed boundary conditions where the Dirichlet boundary conditions are
realized with Nitsche’s method and the Neumann boundary conditions are
implemented in the standard fashion as an additional surface term on the
right-hand side. This weak formulation∫
Ω

∇u∇v +
∫
ΓD

u(βv − vn)− unv =
∫
Ω

fv +
∫
ΓD

gD(βv − vn) +
∫
ΓN

gNv,

where β now denotes the respective regularization parameter, is the prob-
lem formulation which we have implemented. Here, the volume and surface
integrals are computed with the help of a sparse grid quadrature scheme
presented in [13].

Note that the introduction of a space-dependent (i.e. level-dependent)
regularization parameter may effect the quality of a multilevel solver for the
resulting linear system. The regularization parameter grows with the number
of levels due to the relation βl ∼ h−1 = 2l so that one approach could be the
use of βl from the finest level l also on the coarser levels k < l, i.e. βk = β := βl
for all k = 0, . . . , l. With this choice for β we have the same variational
form on all levels k. This approach, however, leads to an imbalance between
the approximation of the boundary conditions and the approximation of the
PDE in the domain on the different levels which may adversely effect the
overall convergence rate of the multilevel solver. Furthermore, if we use the
regularization from the finest level on all levels we need to fix the finest
discretization level in advance. We cannot re-use the discretized systems from
previous computations or levels if we need to refine the underlying cover
(uniformly or in an adaptive way). These issues make this approach less
useful.

Thus, we use a different approach. On each level k = 0, . . . , l we use the
minimal regularization parameter βk so that we have a different variational
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form on each level, i.e., now we are faced with a sequence of nonnested dis-
cretization spaces with non-interpolatory basis functions and a sequence of
non-inherited variational forms. The results of our numerical experiments
with these two multilevel approaches showed that this second approach with
a level-dependent regularization parameter βk leads to iterations with smaller
convergence rates ρ than the first approach. In fact the convergence rates of
a multilevel V (1, 1)-cycle with a different variational form on each level are
essentially the same as we have for a respective Neumann problem (ρ ≤ 0.25),
see [28] for details.

1.4 Numerical Experiments

We apply our PUM to the model problem

−∆u = f in Ω,
u = g on ∂Ω,

(1.14)

in two and three dimensions. In all our experiments we use a linear spline
as the generation weight function W for the partition of unity (1.3) and
we use uniform, quasi Monte Carlo and graded point sets P for our cover
construction algorithm [13]. Here, we use α = 1.3 so that we have an overlap
of 30% of two cover patches (in the uniform case). As local approximation
spaces we use Legendre polynomials.

Example 1. In our first example we consider the model problem (1.14) on the
unit square Ω = (0, 1)2 and choose f and g such that the solution to (1.14)
is given by

u(x, y) = arctan
(

100
(x+ y√

2
− 0.8

)(
x− x2

)(
y − y2

))
, (1.15)

see Figure 1.1.
We use the uniform h-version of our PUM for the approximation of (1.14),

i.e., we use the cell centers of a uniform grid for the cover construction.
Here, we increase the number of points N = card(P ) = 2ld for our PUM
construction by increasing the refinement level l of the underlying uniform
grid. Hence, we expect an algebraic error estimate of the form

‖u− uPU
l ‖ = O(dofρl )

and compute the respective convergence rates

ρ :=
log
(
‖u−uPU

l ‖
‖u−uPU

l−1‖

)
log( dofl

dofl−1
)

(1.16)
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Table 1.1. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 1
and solution (1.15) with the uniform h-version of the PUM.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

3 64 1 192 1.554−1 9.484−2 3.880−1

4 256 1 768 5.059−2 −0.810 2.806−2 −0.879 1.997−1 −0.479
5 1024 1 3072 1.444−2 −0.904 7.503−3 −0.951 1.003−1 −0.497
6 4096 1 12288 3.969−3 −0.932 1.913−3 −0.986 5.028−2 −0.498
7 16384 1 49152 1.020−3 −0.980 4.816−4 −0.995 2.515−2 −0.500
8 65536 1 196608 2.567−4 −0.995 1.205−4 −0.999 1.258−2 −0.500
9 262144 1 786432 6.423−5 −0.999 3.012−5 −1.000 6.287−3 −0.500
10 1048576 1 3145728 1.606−5 −1.000 7.529−6 −1.000 3.143−3 −0.500

10 20 30 40 50 6020

40

60

−1

−0.5

0

0.5

continuous solution

Figure 1.1. Surface plot of the solution
(1.15).
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60

−3
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−1

0

1

2

x 10
−3

error: u − uPU

Figure 1.2. Surface plot of the error
u − uPU

l with l = 6 for the h-version
PUM.

from the errors u − uPU
l measured in various norms. These error norms

‖u − uPU
l ‖ are computed with the help of the numerical quadrature scheme

presented in [13], i.e., the L∞-norm is approximated in the quadrature points
only.

Note that due to the use of such regular point sets P we have N−1/d = h
and we can compute the standard O(hγ) convergence rates γ for an h-version
PUM. We have dof ' Npd = h−dpd and thus we find

γ = −ρd.

Due to our choice of parameters we expect a quadratic h-convergence in
the L2-norm and a linear h-convergence in the H1-norm, i.e., we expect to
measure ρL2 = −1 and ρH1 = −0.5 in this two dimensional example. This
anticipated convergence behavior can be observed from the relative errors

eL∞ :=
‖u− uPU

l ‖L∞
‖u‖L∞

, eL2 :=
‖u− uPU

l ‖L2

‖u‖L2
,

and eH1 :=
‖∇(u− uPU

l )‖L2

‖∇u‖L2

(1.17)
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Figure 1.3. Convergence history of the
h-version of the PUM for Example 1 and
solution (1.15).
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Figure 1.4. Convergence history of the
p-version of the PUM for Example 1 and
solution (1.18).

displayed in Table 1.1 and the respective convergence rates ρL∞ , ρL2 and ρH1 .
Also the graphs depicted in Figure 1.3 clearly show the expected convergence
behavior of the h-version of our PUM with linear polynomials.

Let us now consider higher order discretizations, i.e., we now use Legendre
polynomials of degree p = 1, . . . , 12 for the approximation of (1.14). Here, we
choose f and g such that the solution is given by the analytic function

u(x, y) = exp(4(x+ y)). (1.18)

Due to the unlimited smoothness of (1.18) we expect that the algebraic
convergence rates (1.16) for the L2-norm is given by ρL2 = −p+1

d and by
ρH1 = −pd for the energy norm if we use an h-refinement. This anticipated
convergence behavior can be observed from the numbers displayed in Table
1.2. We see some fluctuations in the convergence rates for higher polynomial
degrees (p > 7) where we do not fully achieve the anticipated convergence
rates. Here, the errors are already so small (‖e‖L∞ ≤ 10−12) that we expe-
rience some effects from the limited accuracy of floating-point arithmetic. If
we use a p-refinement where we increase the polynomial degree successively
but keep the number of points fixed we anticipate an exponential convergence
behavior. From the plots of the relative errors against the number of degrees
of freedom given in Figure 1.4, we can observed the exponential convergence
of the p-version of our PUM for smooth functions as expected. Again, we see
a drop-off in the convergence rates for very small errors (‖e‖L∞ ≤ 10−12).

In summary, the results of this example clearly show that the implemen-
tation of Dirichlet boundary conditions by Nitsche’s method preserves the
approximation properties of the h-version as well as the p-version of our
PUM.
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Table 1.2. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 1
and solution (1.18) with the p-version of the PUM.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 4 2 24 1.069−1 −0.808 1.287−1 −0.974 3.045−1 −0.536
2 16 2 96 2.373−2 −1.086 1.979−2 −1.350 9.773−2 −0.820
3 64 2 384 4.324−3 −1.228 2.196−3 −1.586 2.530−2 −0.975
4 256 2 1536 6.411−4 −1.377 2.398−4 −1.597 6.258−3 −1.008

1 4 3 40 1.991−2 −1.233 3.235−2 −1.856 9.496−2 −1.097
2 16 3 160 2.348−3 −1.542 2.474−3 −1.855 1.522−2 −1.321
3 64 3 640 2.257−4 −1.689 1.532−4 −2.007 2.000−3 −1.464
4 256 3 2560 1.824−5 −1.815 8.843−6 −2.057 2.455−4 −1.513

1 4 4 60 3.584−3 −1.675 5.667−3 −2.255 2.096−2 −1.586
2 16 4 240 2.095−4 −2.048 2.169−4 −2.354 1.656−3 −1.831
3 64 4 960 9.712−6 −2.216 6.193−6 −2.565 1.004−4 −2.022
4 256 4 3840 3.881−7 −2.323 1.661−7 −2.610 5.781−6 −2.059

1 4 5 84 8.455−4 −1.884 7.812−4 −2.691 3.706−3 −2.042
2 16 5 336 1.878−5 −2.746 1.848−5 −2.701 1.658−4 −2.241
3 64 5 1344 4.617−7 −2.673 3.087−7 −2.952 5.507−6 −2.456
4 256 5 5376 9.590−9 −2.795 4.724−9 −3.015 1.693−7 −2.512

1 4 6 112 1.158−4 −2.525 1.151−4 −2.960 6.213−4 −2.400
2 16 6 448 1.962−6 −2.942 1.282−6 −3.244 1.368−5 −2.753
3 64 6 1792 2.278−8 −3.214 1.124−8 −3.417 2.385−7 −2.921
4 256 6 7168 2.117−10 −3.375 9.043−11 −3.479 3.851−9 −2.976

1 4 7 144 1.739−5 −2.745 1.397−5 −3.452 8.879−5 −2.858
2 16 7 576 1.483−7 −3.436 7.875−8 −3.736 1.000−6 −3.236
3 64 7 2304 8.300−10 −3.741 3.393−10 −3.929 8.690−9 −3.423
4 256 7 9216 4.167−12 −3.819 1.303−12 −4.012 6.865−11 −3.492

1 4 8 180 1.594−6 −3.385 1.731−6 −3.790 1.206−5 −3.234
2 16 8 720 7.233−9 −3.892 5.162−9 −4.195 7.233−8 −3.691
3 64 8 2880 2.378−11 −4.124 1.215−11 −4.365 3.372−10 −3.872
4 256 8 11520 1.155−13 −3.843 4.033−14 −4.117 2.044−12 −3.683

1 4 9 220 1.558−7 −3.848 1.886−7 −4.180 1.439−6 −3.638
2 16 9 880 3.698−10 −4.359 2.963−10 −4.657 4.577−9 −4.148
3 64 9 3520 1.052−12 −4.229 8.197−13 −4.249 2.898−11 −3.652

1 4 10 264 1.747−8 −4.498 1.705−8 −4.516 1.482−7 −4.070
2 16 10 1056 2.048−11 −4.868 1.263−11 −5.199 2.315−10 −4.661
3 64 10 4224 9.127−14 −3.905 2.960−14 −4.369 1.197−12 −3.798

1 4 11 312 1.963−9 −4.788 1.479−9 −4.991 1.408−8 −4.541
2 16 11 1248 1.562−12 −5.148 5.720−13 −5.668 1.107−11 −5.156

1 4 12 364 1.793−10 −5.003 1.226−10 −5.420 1.273−9 −4.908
2 16 12 1456 4.401−13 −4.335 1.107−13 −5.057 4.271−12 −4.110

Example 2. In our second example we consider the model problem (1.14) on
the unit cube Ω = (0, 1)3 where we choose f and g such that the solution to
(1.14) is given by

u(x) = ‖x‖52. (1.19)
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Table 1.3. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 2
with the uniform h-version of the PUM.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 8 1 32 2.054−1 −0.450 1.349−1 −0.617 4.967−1 −0.189
2 64 1 256 8.970−2 −0.398 3.239−2 −0.686 2.537−1 −0.323
3 512 1 2048 2.448−2 −0.625 9.225−3 −0.604 1.303−1 −0.321
4 4096 1 16384 5.974−3 −0.678 2.640−3 −0.602 6.565−2 −0.330
5 32768 1 131072 1.573−3 −0.642 7.183−4 −0.626 3.286−2 −0.333
6 262144 1 1048576 3.872−4 −0.674 1.886−4 −0.643 1.643−2 −0.333
7 2097152 1 8388608 9.616−5 −0.670 4.836−5 −0.654 8.213−3 −0.333

Table 1.4. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 2
with the h-version of the PUM using Halton(2, 3, 5) point sets.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

2 64 1 256 2.676−2 −0.653 1.034−2 −0.824 2.000−1 −0.290
4 176 1 704 1.999−2 −0.288 9.083−3 −0.128 1.832−1 −0.087
6 1373 1 5492 5.142−3 −0.661 2.724−3 −0.586 9.289−2 −0.331
6 10606 1 42424 1.621−3 −0.565 7.277−4 −0.646 4.686−2 −0.335
7 91820 1 367280 3.763−4 −0.676 1.847−4 −0.635 2.322−2 −0.325

Again, we begin with a uniformly refined sequence of point sets before we
discuss the results of the h-version of our PUM based on randomly chosen
points. We expect to measure convergence rates ρL2 = − 2

3 and ρH1 = − 1
3

which correspond to the usual O(h2) and O(h) behavior in three dimensions.
The measured errors and convergence rates for the uniform h-version of our
PUM are given in Table 1.3. From these we can clearly observe the anticipated
convergence behavior.

Up to now we have considered uniform point sets only to avoid any fluc-
tuations in the measured convergence rates due to an irregular point distri-
bution. Now that we have seen that our PUM does indeed converge with the
expected properties we turn to the use of general point sets. To this end,
we employ a Halton(2, 3, 5) sequence1 to generate an initial point set for our
tree-based cover construction algorithm [13]. Here, we use the same number
of points as we had for the uniform point set (see N in Table 1.3) but since
our cover construction automatically introduces additional points to insure
the shape regularity of the cover patches ωi we find a larger number of points
N than before. Hence, the number points cannot be prescribed exactly so
that N does not grow by a constant factor of 2d from row to row in Table
1.4. The values of l now correspond to the maximal refinement level of the
cover tree, i.e., the minimal support size is given by diam(ωi) ' α2−l. This
1 Halton sequences are quasi Monte Carlo sequences, which are used in sampling

and numerical integration. Consider n ∈ N0 given as
∑
j njp

j = n for some prime
p. We can define the transformation Hp from N0 to [0, 1] with n 7→ Hp(n) =∑
j njp

−j−1. Then, the Halton(p, q) sequence with N points in two dimensions
is given by {(Hp(n), Hq(n)) |n = 0, . . . , N − 1}.
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(1.20) for Example 3.

10
20

30
40

50
60

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

x 10
−3

error: u − uPU

Figure 1.6. Error u − uPU
l with l = 6

for Example 3.

Table 1.5. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 3
with the uniform h-version of the PUM.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

3 48 1 144 5.792−2 6.487−3 1.112−1

4 192 1 576 3.122−2 −0.446 3.195−3 −0.511 7.296−2 −0.304
5 768 1 2304 1.816−2 −0.391 1.434−3 −0.578 4.723−2 −0.314
6 3072 1 9216 1.160−2 −0.324 5.659−4 −0.671 3.003−2 −0.327
7 12288 1 36864 7.275−3 −0.336 2.272−4 −0.658 1.906−2 −0.328
8 49152 1 147456 4.507−3 −0.345 9.244−5 −0.649 1.208−2 −0.329
9 196608 1 589824 2.869−3 −0.326 3.629−5 −0.674 7.622−3 −0.332
10 786432 1 2359296 1.826−3 −0.326 1.424−5 −0.675 4.804−3 −0.333

fluctuation in the number of degrees of freedom, however, should not effect
the measured convergence rates substantially since the Halton point sets are
uniformly distributed. The results presented in Table 1.4 clearly support this
assertion. Again, we find ρL2 = − 2

3 and ρH1 = − 1
3 .

Example 3. So far all considered problems were H2-regular and hence the
solutions of these problems could be approximated with the usual optimal
convergence rates ρ. Let us now turn to the treatment of problems with
singular solutions. To this end, we consider our model problem (1.14) on an
L-shaped domain Ω = (−1, 1)2 \ [0, 1)2 where we choose f and g such that
the solution (see Figure 1.5) is given by

u(r, θ) = r
2
3 sin

(2θ − π
3

)
(1.20)

which is in Hs with s < 1 + 2
3 only. Hence, we cannot expect to measure

the same convergence rates as we did in the previous examples. From finite
element theory [31, Chapter 8] we know that a solution u to a homogeneous
Dirichlet problem on an L-shaped domain can be split into a regular part uR ∈
H2 and a singular part uS where this singular part is given by the our solution
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Figure 1.7. Fine level point set P10 generated from a graded Halton(2, 3) point
set with 1024 points (left), zoom-in (right).

(1.20). Hence, this example represents the hard part of the general situation.
If we can approximate solution (1.20) with a particular convergence rate then
we can approximate any solution to a homogeneous Dirichlet problem on an
L-shaped domain using the same PUM space with the same convergence rate.

It is well-known that a uniform h-version with linear elements will give
an O(h2/3) convergence in the energy norm only. Thus, we may achieve a
convergence of ρH1 < − 1

3 with the corresponding linear h-version PUM where
we approximate the (singular) boundary value by Nitsche’s method. This
anticipated convergence behavior can be observed from the measured errors
(see also Figure 1.9 (left)) and convergence rates displayed in Table 1.5. From
the surface plot of the continuous solution (1.20) given in Figure 1.5 and the
surface plot of the error u−uPU

l with l = 6 depicted in Figure 1.6 we see the
singular character of the solution at the re-entrant corner.

One approach to this singular problem is the use of an adaptive h-
version PUM so that the singularity is resolved. To this end we use a graded
Halton(2, 3) point set, see Figure 1.7, for the cover construction. The results
of this experiment are given in Table 1.6 and Figure 1.9 (center). The mea-
sured convergence rates clearly indicate that we can resolve the singularity
at the re-entrant corner by local (h-type) refinement of the cover patches.
Again, we measure the optimal rates ρL2 = −1 and ρH1 = − 1

2 .
The PUM approach, however, also allows for a different p-type adapta-

tion process. One benefit of the PUM approach is the independence of the
local approximation spaces, i.e., we may include singular functions in a local
approximation space without the need to pay any attention to neighboring
(overlapping) local spaces. Hence, the introduction of a singular function into
the local approximation spaces V pii in the vicinity of the re-entrant corner can
be realized very easily within the PUM. From finite element theory we know
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Table 1.6. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 3
with the h-version of the PUM using graded Halton(2, 3) point sets.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

5 186 1 558 8.075−2 −0.398 2.896−2 −0.560 1.877−1 −0.265
7 300 1 900 2.727−2 −2.271 1.059−2 −2.104 1.261−1 −0.833
10 1293 1 3879 7.265−3 −0.905 3.173−3 −0.825 6.569−2 −0.446
11 4968 1 14904 1.945−3 −0.979 7.927−4 −1.030 3.268−2 −0.519
14 20142 1 60426 5.029−4 −0.966 2.048−4 −0.967 1.677−2 −0.476
17 80574 1 241722 1.394−4 −0.925 5.030−5 −1.013 8.239−3 −0.513
17 317637 1 952911 3.820−5 −0.944 1.272−5 −1.002 4.158−3 −0.499
20 1310847 1 3932541 9.223−6 −1.003 3.224−6 −0.969 2.092−3 −0.485

that this may improve the convergence from O(h2/3) in the energy norm to
the usual O(h) behavior.

To this end, consider the sub-domains Ωp := Ω \ [−a, a]2 ⊂ Ω and Ωa :=
Ω ∩ [−a, a]2 ⊂ Ω. On the cover patches ωi whose associated center point xi
is sufficiently far away from the singularity at the origin, i.e. xi ∈ Ωp, we use
the linear Legendre polynomials as before to approximate the (smooth part
of the) solution. But close to the singularity, xi ∈ Ωa, we use augmented local
approximation spaces V p

a
i

i := span〈V pii , Φ〉 where Φ is the (global) singular
function (1.20). Similar constructions have also been used in the GFEM [32]
and in the FEM [31] context.

The numerical results of this experiment with two different values for a,
namely a = 0.5 and a = 0.25, are presented in Table 1.7 and Figure 1.9
(right). From the numbers given there we can clearly observe that the mea-
sured convergence rates are now ρL2 = −1 and ρH1 = − 1

2 which correspond
to the usual O(h2) and O(h) convergence behavior respectively. This im-
provement in the error evolution can also be observed from a comparison of
the plots depicted in Figure 1.9. The size of the sub-domain Ωa where we
use augmented local spaces V p

a
i

i essentially determines the location and the
absolute value of the maximal error which can be observed from the surface
plots given in Figure 1.8. But it has no effect on the (asymptotic) convergence
rates as long as it is fixed on all levels.

Finally, we use the augmented p-version of our PUM to approximate
(1.14) on the L-shaped domain where we choose f and g such that the solution
is given by

u(r, θ) = (1− (r cos(θ))2)(1− (r sin(θ))2)r
2
3 sin

(2θ − π
3

)
, (1.21)

see Figure 1.10. Again, we use augmented spaces in Ωa with a = 0.25 but
we now use a p-version refinement. Note that we use the singular function
(1.20) as before for the augmentation of the local spaces, we do not use
the solution (1.21). Since the introduction of the singularity into the PUM
space V PU should resolve the singularity at the re-entrant corner, we expect
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Table 1.7. Relative errors e (1.17) and convergence rates ρ (1.16) for Example 3
with the uniform h-version of the PUM using augmented local spaces.

l N p dof eL∞ ρL∞ eL2 ρL2 eH1 ρH1

a = 0.5

2 12 1 39 2.186−2 8.939−3 8.802−2

3 48 1 156 5.897−3 −0.945 2.141−3 −1.031 4.044−2 −0.561
4 192 1 624 1.727−3 −0.886 5.182−4 −1.023 1.925−2 −0.535
5 768 1 2496 4.896−4 −0.909 1.284−4 −1.006 9.330−3 −0.523
6 3072 1 9984 1.278−4 −0.969 3.204−5 −1.002 4.559−3 −0.517
7 12288 1 39936 3.310−5 −0.974 8.035−6 −0.998 2.256−3 −0.508
8 49152 1 159744 8.483−6 −0.982 2.014−6 −0.998 1.122−3 −0.504
9 196608 1 638976 2.122−6 −1.000 5.043−7 −0.999 5.594−4 −0.502

a = 0.25

2 12 1 39 2.186−2 8.939−3 8.802−2

3 48 1 147 1.054−2 −0.550 4.121−3 −0.584 6.207−2 −0.263
4 192 1 588 3.635−3 −0.768 1.043−3 −0.991 3.066−2 −0.509
5 768 1 2352 1.117−3 −0.851 2.511−4 −1.027 1.497−2 −0.517
6 3072 1 9408 3.053−4 −0.936 6.051−5 −1.027 7.335−3 −0.515
7 12288 1 37632 8.095−5 −0.957 1.486−5 −1.013 3.630−3 −0.507
8 49152 1 150528 2.102−5 −0.973 3.683−6 −1.006 1.805−3 −0.504
9 196608 1 602112 5.305−6 −0.993 9.169−7 −1.003 8.999−4 −0.502
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Figure 1.8. Error u−uPU
l with l = 6 for the h-version PUM with augmented local

spaces (left: a = 0.5, right: a = 0.25).

an exponential convergence of the p-version for the singular solution (1.21).
This anticipated convergence behavior can be observed from the plots given
in Figure 1.14 for larger errors (‖e‖L∞ ≥ 10−4). Then, we experience some
pollution effect within Ωa which comes from the couplings between overlap-
ping polynomial spaces in Ωp and augmented spaces in Ωa, see Figures 1.11,
1.12, and 1.13. Here, a smaller overlap between augmented and polynomial
spaces may overcome this pollution effect and could extend the exponential
convergence behavior even further. Nonetheless, we are able to approximate
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Figure 1.9. Convergence history of the h-version of the PUM with linear local
spaces (left: uniform point set, center: graded Halton(2, 3) point set) and augmented
local spaces (right: solid lines a = 0.5, dashed lines a = 0.25) for Example 3.

the singular solution (1.21) with a relative accuracy of five digits with about
1000 degrees of freedom only.

In summary, the results of our numerical experiments clearly show the
expected convergence properties of our PUM independent of the boundary
conditions. The implementation of Dirichlet boundary conditions by Nitsche’s
method has no adverse effect on the convergence rates for regular as well as
singular solutions. We achieve the optimal convergence rates for regular as
well as irregular point sets, polynomial basis functions and singular basis
functions.

1.5 Concluding Remarks

We presented a meshfree Galerkin discretization technique, the partition
of unity method, for the numerical treatment of elliptic partial differential
equations of second order. We focused on the implementation of Dirichlet
boundary conditions which is not trivial since the shape functions are non-
interpolatory. Here, an almost forgotten method due to Nitsche enabled us to
use our partition of unity shape functions without any modification for the
treatment of Dirichlet problems.

This approach involves only the original partition of unity space and the
evaluation of an additional boundary integral term so that there is no need to
change the method or the implementation in any way. We can use our general
cover construction algorithm [13], our sparse grid integration scheme [13] as
well as our multilevel solver [14] without any modification for the treatment
of Dirichlet problems with our partition of unity method. Hence, also the
parallelization and parallel efficiency of the method [15] is not effected by
the boundary conditions. Furthermore, Nitsche’s method is also applicable
to general domains, it was in fact developed for general domains.

The results of our numerical experiments where we considered two- and
three-dimensional problems with several million degrees of freedom clearly
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Figure 1.10. Surface plot of solution
(1.21) for Example 3.
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Figure 1.11. Error u−uPU
l with l = 2,

p = 3 for Example 3.
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Figure 1.12. Error u−uPU
l with l = 2,

p = 5 for Example 3.
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Figure 1.13. Error u−uPU
l with l = 2,

p = 8 for Example 3.

showed that we achieve optimal convergence rates of the h-version and p-
version of our PUM for Dirichlet problems. This observation holds not only
for regular point sets and regular solutions but also for highly adaptive dis-
cretizations and singular solutions.
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