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Abstract. We present an algebraic multigrid (AMG) method for the efficient solution of linear
(block-)systems stemming from a discretization of a system of partial differential equations (PDEs).
It generalizes the classical AMG approach for scalar problems to systems of PDEs in a natural
blockwise fashion. We apply this approach to linear elasticity and show that the block-interpolation,
described in this paper, reproduces the rigid body modes, i.e., the kernel elements of the discrete
linear elasticity operator. It is well-known from geometric multigrid methods that this reproduction
of the kernel elements is an essential property to obtain convergence rates which are independent of
the problem size. We furthermore present results of various numerical experiments in two and three
dimensions. They confirm that the method is robust with respect to variations of the Poisson ratio
ν. We obtain rates ρ < 0.4 for ν < 0.4. These measured rates clearly show that the method provides
fast convergence for a large variety of discretized elasticity problems.
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1. Introduction. The solution of large sparse linear systems is an essential in-
gredient in most scientific computations. The ever growing demand for efficient solvers
led to the development of geometric multigrid methods in the 1970’s [2, 3, 14, 15].
But for many applications it is difficult to construct a sequence of (nested) discretiza-
tions or meshes needed for geometric multigrid. Furthermore, geometric multigrid
methods are in general not robust with respect to a deterioration of the coefficients
of the operator or singular perturbations. In the 1980’s algebraic multigrid (AMG)
methods were developed [4, 6, 8, 9, 18] to cope with these problems by extending
the main ideas of geometric multigrid methods to a purely algebraic setting. This
approach is based only on information available from the linear system to be solved.
These methods can be applied successfully to many linear systems which come from
a discretization of a scalar (elliptic) partial differential equation (PDE) [12, 13, 20].
But in the case of systems of PDEs most of the AMG methods fail.

In this paper we present a generalization of classical AMG to systems of PDEs
where we assume only that the linear system is provided in point-block-form, i.e., all
couplings between the unknowns corresponding to a particular node of the discretiza-
tion make up a local block of the system matrix. Then, the so-called point-block
approach, which was first proposed by Brandt [5], defines in a natural way the restric-
tion and prolongation operators in a blockwise fashion. Here, a block-prolongation
operator based on a basic interpolation scheme and standard coarse grids leads to the
exact interpolation of the kernel elements of the linear elasticity operator. Further-
more, this main theoretical result shows that classical AMG concepts can successfully
be applied to the system case and no modifications such as smoothed aggregation [22]
or other techniques are necessary to obtain fast convergence.

The remainder of the paper is organized as follows: In section 2 we give a short
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review of the (scalar) AMG algorithm and the respective heuristics, which led to its
development. Then, we present the two main difficulties which classical AMG can
encounter in the systems case. These two issues can be overcome with the help of
our generalized (point-block-)AMG approach which we present in section 3. As a
main result, we prove in section 3.3 the exact interpolation of the kernel elements of
the linear elasticity operator, the rigid body modes, which is, as for any multigrid
algorithm, a fundamental property for the convergence behavior of the method. In
section 4, we present the results of our numerical experiments with the point-block-
AMG method for discretizations from linear elasticity. We focus on the stability of
the method with respect to the mesh-width as well as on the robustness with respect
to the Poisson ratio ν. Here, we also consider discretizations on complex geometries
and unstructured grids. Finally, we conclude with some remarks in section 5.

2. Algebraic Multigrid Methods for Scalar PDEs. In this section we give
a short review of the basic algebraic multigrid algorithm (for scalar PDEs) and the
heuristics which led to its development, see [20] for a detailed introduction to AMG.

Algebraic multigrid methods were first introduced in the early 1980’s [4, 6, 8, 9, 18]
for the solution of linear systems Au = f coming from the discretization of scalar el-
liptic PDEs. The development of AMG was led by the idea to mimic (geometric)
multigrid methods, i.e. their functionality and convergence behavior, in applications
where a hierarchy of (nested) meshes and interlevel transfer operators could not (or
only with huge effort) be provided. The amount of input information for the iter-
ation scheme should be minimal, i.e., the linear system itself should provide all the
information needed for the algorithm.

In any multigrid method we devise two components which work on different parts
of the spectrum of the (discrete) operator A, namely the smoother and the coarse
grid correction, to reduce all error components in the overall iteration. Here, the
coarse grid correction itself (i.e. its quality) is dependent on two ingredients: The
coarse grid selection and the design of appropriate prolongation operators which are
used to transfer information between the grids (i.e. the function spaces). In geometric
multigrid methods the freedom in the selection of the coarse grid is somewhat limited.
We usually deal with nested grids which are uniformly coarsened or semi-coarsened.
In any case the sequence of grids is constructed based on information other than
the system matrix A. The coarse grids are usually part of the discretization process
itself. Either they come from an earlier, less accurate discretization of the continuous
problem or they are constructed by means of geometric information and a-priori know-
ledge about the continuous problem and its solution. Here, the coarse grids are
designed in such a way that (geometrically) smooth functions can be represented
accurately on the coarser grids.

In algebraic multigrid we have (in general) no access to the geometry of the
problem or even the continuous problem itself. Here, we have to devise the smoother,
the coarse grids and the transfer operators based only on information we can get
from the linear system itself, i.e. from the discrete operator. Hence, we already lack
the notion of (geometrically) smooth functions which could be used to design coarser
grids. Therefore, we have to generalize the concept of geometric smoothness to some
measurable quantity which can be (easily) computed from the discrete operator itself.
Several different measures for the so-called algebraic smoothness are used today in
the various algebraic multigrid methods developed over the years. Common to all
these heuristic definitions is the general observation that a simple relaxation scheme—
most often Gauß–Seidel smoothing is used in AMG—damps (efficiently) high energy
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components, i.e. eigenvectors associated with large eigenvalues, only. Consequently,
the coarse grid correction must be able to deal with the remaining small energy
components. These small energy functions should be represented accurately on coarser
grids. Some of the characterizations for such small energy components e are:

1) Ae ' 0,
2) 〈Ae, e〉 ' 0,
3) Ae = λe, with λ ' 0.

In the classical AMG [18] approach 1) and in the element-based AMGe [10] criterion
2) is used for the characterization of smooth error, whereas in the spectral version of
AMGe [11] 3) characterizes smooth components. Also Brandt’s compatible relaxation
[7] can be used to define an appropriate coarse grid selection.

2.1. Coarsegrid Selection. Based on such an algebraic smoothness measure
we can now introduce the notion of strong couplings between unknowns. For fixed
0 ≤ α ≤ 1 and the index set N := {1, ..., n} of all unknowns, an unknown i is
said to be strongly coupled to an unknown j if |aij | ≥ α · maxk∈N |aik|. We define
Si := {j | |aij | ≥ α ·maxk∈N |aik|} as the set of all unknowns j to which i is strongly
coupled and STi as the set of all points which are strongly coupled to i, i.e. j ∈ STi
if i ∈ Sj . F ⊂ N is the set of all unknowns on the fine grid which are not on the
coarse grid while C ⊂ N is the set of all coarse grid unknowns. Note that for scalar
problems one can uniquely map the index i to the geometric grid point xi, where the
ith basis function of the discretization is nonzero on the grid point xi. For the ease
of notation we sometimes refer to a grid point xi or the associated unknowns simply
by the respective index i.

Finally, we need the auxiliary sets Ni := {j | aij 6= 0}, Ci := C ∩ Ni and
Fi := F ∩Ni. With these definitions we can introduce the first step of the coarse grid
selection [13, 17], the setup phase one.

Algorithm 1 (Setup Phase 1).
1. Set C = ∅ and F = ∅
2. While C ∪ F 6= N do

Pick i ∈ N \ (C ∪ F ) with maximal |STi |+ |S
T
i ∩ F |

If |STi | = 0 then
set F = N \ C

else
set C = C ∪ {i}, F = F ∪ (STi \ C)

Note that the Setup Phase 1 does not guarantee that each point i in F is strongly
coupled to a coarse grid point j ∈ C, which can lead to less effective coarse grids.
Hence, we employ a second setup phase, which updates the coarse grid selection from
phase 1 in an appropriate fashion, see [12] for details. To this end, we define the
measure

d(i, I) := γ
∑

j∈I

|aij |, where γ :=
(

max
k∈Ni

|aik|
)−1

and I is any subset of N .
Algorithm 2 (Setup Phase 2).
1. Set T = ∅
2. While T ⊂ F do

Pick i ∈ F \ T and set T = T ∪ {i}
Set C̃ = ∅, Ci = Si ∩ C and Fi = Si ∩ F
While Fi 6= ∅ do
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Pick j ∈ Fi and set Fi = Fi \ {j}
If d(j, Ci)/d(i, {j}) ≤ β then

If |C̃| = 0
Set C̃ = {j} and Ci = Ci ∪ {j}

else
Set C = C ∪ {i} and F = F \ {i} and Goto 2

endif
endif

Set C = C ∪ C̃ and F = F \ C̃

2.2. Prolongation. For scalar elliptic PDEs of second order we usually have the
constant function in the kernel of the continuous operator. Note that in the classical
AMG [18] we assume that the constant vector is the discrete representation of the
constant function. Hence, there is essentially a single constraint we have to respect in
the construction of the interpolation operator I = (wij): Constant vectors should be
interpolated exactly, i.e., the sum

∑

j wij of the weights of the interpolation operator

I must equal one for all i.1 But this simple scheme does not provide satisfactory
results for non M-matrices.

More involved interpolation schemes like the so-called standard interpolation
scheme due to Stüben [20] improve the robustness of the method with respect to
non M-matrices. Here, the characterization 2) of the algebraic smooth error, Ae ' 0,
is used to define the so-called direct interpolation [20] ID. For a given fine grid point
i the direct interpolation ID yields

(IDFCeC)i =
∑

j∈Pi

wijej = −
(
∑

j∈Ni
aij)

aii ·
∑

j∈Pi
aij

∑

j∈Pi

aijej (2.1)

for a fine grid point i ∈ F , where Pi ⊂ C is some appropriately chosen set of inter-
polation nodes and the subscripts C and F denote the indices of the coarse and fine
grid points respectively. Here, we use Pi := C ∩ Si. This scheme however provides
good results only if the set Pi = C ∩ Si is large enough, which is not guaranteed by
the coarsening algorithm. Therefore, Stüben proposed the standard interpolation IS

which employs the modified weights w̃ij given by

(ISFCeC)i =
∑

j∈Pi

w̃ijej = −
(
∑

j∈Ni
ãij)

ãii ·
∑

j∈Pi
ãij

∑

j∈Pi

ãijej , (2.2)

where Pi := {j | j ∈ Ci or ∃k ∈ Si: j ∈ Ck}. Here, we compute the new coefficients
ãij by replacing ej for all j ∈ Si \ C in the equation

∑

j∈Ni
aijej = 0 by ej =

−
∑

k∈Nj
ajkek/ajj . Even though such sophisticated interpolation schemes widen the

area of application for scalar AMG, the convergence of a scalar AMG method may
still break down in the systems case.

2.3. Scalar AMG and Systems of PDE. One reason for the deterioration or
break down of the convergence of classical AMG in the systems case is the coarsening
process of scalar AMG methods. This process can lead to different coarse grids for
the different physical unknowns, although all unknowns were discretized on the same
(fine) grid. Even worse, coarse grids from scalar AMG coarsening can consist of

1Smoothed aggregation AMG [21, 22] allows for the prescription of the functions, i.e. vectors,
which should be interpolated accurately on coarser grids.
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only one physical unknown. The second reason is the interpolation of scalar AMG.
The quality of interpolation of the kernel elements of the continuous operator plays a
fundamental role for the convergence of the AMG method. For scalar elliptic problems
the kernel of the continuous operator contains only constant functions represented by
a constant vector. Therefore the condition that the sum of the interpolation weights
equals one suffices to reproduce exactly these constant elements in the case of zero
row sum matrices. In the system case, however, the kernel of the continuous operator
generally contains more elements than constant scalar functions and the condition
on the row sum of the interpolation operator given above does no longer lead to the
exact interpolation of the kernel elements. One approach to overcome these issues is
the so-called point-block approach which we present in the next section.

3. Algebraic Multigrid Methods for Systems of PDEs. We now present
the generalization of the scalar AMG algorithm from the last section. To this end we
translate the scalar coarse grid selection (compare section 2.1) and the definition of
the scalar prolongation operators (see section 2.2) to the system case via the so-called
point-block approach.

Here, we assume that all d physical unknowns are discretized on the same grid.
If this condition is satisfied, we can partition a coefficient vector û = (uk)

n·d
k=1 in two

different ways. First, into blocks û = (ul)
d
l=1, where ul ∈ Rn is the vector of all

coefficients which correspond to the same physical unknown. In the second partition,
the so-called point-block partition, we get a block-vector û = (uk)

n
k=1, where uk ∈ Rd

is the vector of all coefficients which correspond to the same physical grid point.

Based on these two block-partitions of the stiffness matrix we can define two
AMG approaches to systems, respectively. For instance, as proposed in [19], we could
apply the scalar AMG in the d diagonal blocks of the first partition independently.
This approach, however, cannot deal with strong couplings between different physical
unknowns. The point-block partition, however, allows for a straightforward general-
ization of the complete AMG philosophy to the systems case and can handle such
couplings very efficiently. Roughly speaking, this approach is as follows. In a first
step we condense the point-blocks Aij = (aijkl) ∈ Rd×d of the resulting block-matrix

A = (Aij) to scalars ãij in an appropriate fashion to obtain a scalar matrix Ã = (ãij).
With the help of this matrix we can then define strong couplings between grid points
and a (physical) coarse grid along the lines of section 2, so that all different physical
unknowns are again “discretized” on the same coarse grid. Therefore, we can now de-
fine appropriate interpolation schemes which can deal with strong couplings between
different physical unknowns without difficulty. The details of this construction are
given in the following subsections.

3.1. Coarse Grid Selection. The coarse grid selection used in classical AMG
algorithms works well for scalar elliptic problems where the notion of strong couplings
between unknowns also gives the coupling between grid points which is what we are
really interested in. Therefore, it is reasonable to use a generalization of these coars-
ening algorithms in an AMG for systems of PDEs. To use the algorithm from section
2.1 in the context of the point-block approach, it is necessary to modify the definition
of strong couplings in such a way that we capture couplings between blocks of the ma-
trix which correspond to a geometric grid point rather than couplings between single
scalar (unknown) coefficients. Then, the classical coarse grid selection can be applied
to the block structure by selecting all the unknowns, which belong to a particular
coarse grid block, as coarse grid unknowns.
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The most natural way to define strong couplings between the blocks of the matrix
seems to be a condensation approach. Here, we condense the block-matrix A to
a scalar matrix Ã by replacing a block Aij with its associated matrix-norm ãij :=
|||Aij |||, i.e., given a matrix norm ||| · ||| we define the condensed matrix

Ã = (ãij) := (|||Aij |||). (3.1)

With this definition, we can now introduce the notion of strong couplings between
grid points analogously to section 2.1. Given 0 ≤ α ≤ 1 we say the grid point i is
strongly coupled to the grid point j if ãij ≥ αmaxk ãik.

The remaining problem is to find the matrix norm which provides the best coarse
grid results. From the two-level analysis of the point-block-approach [16] it follows
that the size of the eigenvalues of the blocks Aij play an important role for the coarse
grid selection. Hence, it seems that the L2-norm is a suitable choice for ||| · |||. The
computation of this norm, however, is very expensive. Furthermore, it usually suffices
to have an upper bound for the eigenvalues. Therefore, the use of cheaper matrix-
norms like the Frobenius-norm ||| · |||F , the column-sum norm ||| · |||1, or the row-sum
norm ||| · |||∞ usually leads to more efficient methods. The results presented in [16]
indicate that the row-sum norm gives the most favorable results. Hence, we use |||·|||∞
for the condensation of the point-blocks throughout this paper.

3.2. Prolongation. While for scalar elliptic PDEs of second order only constant
functions belong to the kernel of the continuous operator, systems of PDEs usually
have a larger kernel which contains more functions. In linear elasticity the elements
of the kernel, the so-called rigid body modes, are the constant vector functions and
the orthogonal rotations. Hence, scalar interpolation schemes will no longer supply
appropriate results.

A straightforward generalization for systems is the following. Instead of setting
up the interpolation with the scalar entries of the matrix, we use the blocks Aij or
their diagonal Dij := diag(Aij) in the interpolation schemes. From a theoretical point
of view we can justify this approach with the proof of the exact interpolation of the
rigid body modes for the respective generalization of (2.1).

If we apply the direct interpolation scheme (2.1) to the complete block-structure,
we obtain the direct block interpolation IDB

(IDBFC eC)i = −A
−1
ii

(

∑

k∈Ni

Aik

)(

∑

k∈Pi

Aik

)−1
ek. (3.2)

If we use only the diagonals Dij of the blocks Aij , we obtain the direct point inter-
polation IDP

(IDPFC eC)i = −D
−1
ii

(

∑

k∈Ni

Dik

)(

∑

k∈Pi

Dik

)−1
ek, (3.3)

where Pi := C ∩Si. The analogous generalizations of the standard interpolation (2.2)
are called block interpolation IB and point interpolation IP , respectively, depending
on whether they employ the complete blocks Aij or the diagonal Dij only.

Important for the efficiency of an AMG-cycle is the number of nonzeros of the
coarse grid operators. The more nonzero entries exist in the coarse grid operators,
the more computational work is needed in the setup phase and for a single multilevel
cycle. It is well-known that a direct truncation of the coarse grid operators, however,
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can lead to indefinite or singular operators [20]. To avoid this phenomenon, we rather
truncate the interpolation operators as proposed in [20] prior to the computation of
the coarse grid operator AC via the Galerkin identity ITAI =: AC . This truncation
is done by looking at the condensed interpolation matrix Ĩ = (w̃ij) = (|||Iij |||). Here,

we set a block Iij of the (block-)interpolation matrix I to zero if Ĩij < αtr ·maxk Ĩik
holds for a fixed parameter αtr ∈ [0, 1].

3.3. Interpolation of the rigid body modes. As already mentioned, the
quality of the interpolation of the kernel elements of the continuous operator is es-
sential for the convergence behavior of the complete multigrid method. Therefore, we
prove the exact representation of the rigid body modes by the direct block interpola-
tion IDB in the case of discretizations with linear or bilinear elements.

In linear elasticity we are looking for a displacement vector u of a solid described
by the domain Ω ⊂ R3 under the influence of different forces, i.e. an external force
f and a surface force g on the boundary Γ1 ⊂ ∂Ω. Let ε(u) := (εij)

3
i,j=1 be defined

as εij := 1
2 (∂iuj + ∂jui), the so-called strain tensor. Then, the equation for the

displacement vector u is given by

µ4u+ (λ+ µ)∇div u = f in Ω,

u = 0 on Γ0,

σ(u) · n = g on Γ1,

with the Lamé constants λ > 0 and µ > 0. Here, the body is fixed at the boundary
Γ0 ⊂ ∂Ω and the stress tensor σ(u) := (σ(u)ij)

3
i,j=1 is defined as

















σ11
σ22
σ33
σ12
σ13
σ23

















= θ ·

















1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

































ε11
ε22
ε33
ε12
ε13
ε23

















,

where θ := E
(1+ν)(1−2ν) with ν ∈ [0, 0.5) being the Poisson ratio and E being the Young

modulus. In the following, we consider discretizations which are obtained from the
weak formulation: Find u ∈ H1

Γ := {v ∈ H1(Ω)3 | v|Γ0
= 0} so that

∫

Ω

ε(u) : σ(v)dx = (f, v)0 −

∫

Γ1

g · v dx for all v ∈ H1
Γ, (3.4)

where ε(u) : σ(v) :=
∑

i,j ε(u)ijσ(v)ij . An analogous problem formulation, which
has the same structure as (3.4), for the two-dimensional case corresponds to the well-
known plane strain formulation [1, Chapter 6]. Let us introduce some helpful notation
for the proof of the exact interpolation of the rigid body modes. Let ĉ denote the
coefficient vector corresponding to the constant vector valued function c(x) = c ∈ Rd.

Similarly, we use the notation f̂ for the coefficient vector associated with a particular
function f : Ω 7→ Rd. Furthermore, we assume that the discretization is obtained
using a linear, bilinear or trilinear finite element basis.

If we apply the direct block interpolation IDB (3.2) to the coefficient vector ĉ, we

7



�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

i
Ci

2
x

x

x

π( )l

fine grid point

coarse grid point

xk

C i
1

lxπ( )k

Figure 3.1. Point-symmetric grid at the fine grid point xi.

obtain

(IDBFC ĉC)i = −A
−1
ii

(

∑

k∈Ni

Aik

)(

∑

k∈Pi

Aik

)−1( ∑

k∈Pi

Aik ĉk

)

= −A−1ii

(

∑

k∈Ni

Aik

)(

∑

k∈Pi

Aik

)−1( ∑

k∈Pi

Aik

)

ĉ

= −A−1ii

(

∑

k∈Ni

Aik

)

ĉ

= c,

for a fine grid point i ∈ F . Thus, constant functions are exactly interpolated inde-
pendent of the underlying coarse grid. Note that this is in general not the case for the
rotations. However, for some standard coarse grids, we can prove that also the rota-
tions are reproduced exactly. To this end we define the notion of a point-symmetric
grid. An example for a point-symmetric grid at a grid point xi in two dimensions is
given in Figure 3.1.

Definition 3.1. Let xi, i ∈ F , be a fine grid point. We call the grid Ωh :=
{xj | j ∈ N} point-symmetric at the grid point xi if there exist two disjoint subsets
C1i , C

2
i ⊂ Ci, C

1
i ∪ C

2
i = Ci, a bijective function π : C1i 7→ C2i and a constant vector

c ∈ Rd so that the mapping Q(x) := −x+c is a bijection between supp(ϕli)∩ supp(ϕ
l
k)

and supp(ϕli) ∩ supp(ϕlπ(k)) and Q(xk) = xπ(k) for all k ∈ C1i .

Theorem 3.2. Let xi, i ∈ F , be a fine grid point and let the grid Ωh be point-

symmetric at this point. Then, the rigid body modes, i.e. their coefficient vectors r̂,
are interpolated exactly at the point xi,

(IFC r̂C)i = r̂i ∀ rigid body modes r. (3.5)

Proof. It remains to prove the statement for a rotation r(x). Without loss of
generality we assume that xi = 0. Since xi = 0 and therefore r(xi) = 0, we have to
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show (IFC r̂C)i = 0. For j ∈ C1i we have r̂j = −r̂π(j), so that

(IDBFC r̂C)i = −A
−1
ii

(

∑

k∈Ni

Aik

)(

∑

k∈Ci

Aik

)−1 ∑

k∈Ci

Aik r̂k

= −A−1ii

(

∑

k∈Ni

Aik

)(

∑

k∈Ci

Aik

)−1 ∑

k∈C1
i

(

Aik r̂k +Aiπ(k)r̂π(k)

)

= −A−1ii

(

∑

k∈Ni

Aik

)(

∑

k∈Ci

Aik

)−1 ∑

k∈C1
i

(

Aik r̂k −Aiπ(k)r̂k

)

holds. Therefore, it suffices to show that Aik = Aiπ(k). Since ϕlk(x) = ϕlπ(k)(−x) is

valid for all x ∈ supp(ϕlk) ∩ supp(ϕli), the application of the transformation rule of
integration shows the equality (3.5).

4. Numerical Results. In this section we present the results of our numerical
experiments with the block interpolation IB and point interpolation IP . We set the
right hand side vector f to zero and start the iteration with a random valued initial
guess u0 whose l2-norm is equal to one, i.e. ||u0||l2 = 1. Due to this choice of
parameters we have that the iterate uk (from the kth iteration) corresponds to the
error ek = uk = uk − u. We stop the AMG-iteration when ||Auk||l2 ≤ 10−12 and
measure the speed of convergence by the asymptotic error reduction factor

ρ :=

(

||uk||l2
||uk−10||l2

)1/10

. (4.1)

To give insight to the structure of the coarsening process and the coarser grids, we
also give the total-grid-complexity,

c(G) :=

J−1
∑

i=0

niu/n
0
u, (4.2)

where niu denotes the number of grid points of the ith level, and J is the total number
of the levels. The computational costs of one iteration step is important for the
efficiency of the AMG method. Hence, we give an estimate of the computational
costs associated with a single V-cycle via the total-operator-complexity,

c(A) :=

J−1
∑

i=0

niz/n
0
z, (4.3)

where niz is the number of nonzero blocks of the grid operator on the ith level. In
all our experiments we set the parameter αtr for the truncation of the interpolation
operator to 0.2 (compare subsection 3.2) and use the setup parameters α = 0.25 and
β = 0.35 for the coarsening algorithm. Note that we coarsen down to a single grid
point.

We give numerical results for different discretized linear elasticity problems. First,
we study the robustness of our point-block AMG with respect to the Poisson ratio
ν and with respect to jumps of the elasticity modulus E for problems with vanish-
ing Dirichlet boundary conditions. Then, we take a closer look at problems with
free boundaries. Finally, we give results obtained for discretizations on complicated
geometries and unstructured grids.

9



Table 4.1

Asymptotic error reduction ρ (4.1) and complexities c(A) (4.3) and c(G) (4.2) for Example 1
in two dimensions in the case of the point interpolation (PI) and the block interpolation (BI).

PI BI
h c(G) c(A) ρ c(G) c(A) ρ

1/16 1.72 2.49 0.15 1.73 2.51 0.14
1/32 1.69 2.61 0.21 1.70 2.65 0.21
1/64 1.68 2.69 0.22 1.68 2.72 0.33
1/128 1.68 2.75 0.23 1.67 2.78 0.43
1/256 1.67 2.75 0.26 1.67 2.78 0.46

Table 4.2

Asymptotic error reduction ρ (4.1) and complexities c(A) (4.3) and c(G) (4.2) for Example 1
in three dimensions obtained with the point (PI) and block interpolation (BI).

PI BI
h c(G) c(A) ρ c(G) c(A) ρ

1/16 1.64 3.25 0.18 1.65 3.64 0.16
1/24 1.63 3.38 0.23 1.64 3.87 0.21
1/32 1.62 3.44 0.27 1.62 3.97 0.26
1/40 1.62 3.48 0.28 1.62 4.02 0.29

Example 1 (h-stability and robustness with respect to the Poisson ratio). In
the first example we study the independence of the rate of convergence ρ from the
mesh-width for a discretization of (3.4) on the unit square/cube with Poisson ratio
ν = 0.3 and Dirichlet boundary conditions.

Table 4.1 shows the asymptotic error reduction rate ρ, the total-grid-complexity
c(G) and the total-operator-complexity c(A) obtained for discretizations of the two-
dimensional problem for different mesh-widths h = 1/n. Both interpolations (the
block interpolation and the point interpolation) lead to iterations which converge
with a rate that is independent of the mesh-width. The point interpolation provides
faster convergence than the block interpolation. For example, the asymptotic error
reduction rate obtained with the point interpolation is ρ = 0.26 for h = 1/256 whereas
we find ρ = 0.46 for the block interpolation.

In three dimensions, both interpolations seem to give similar results. For a mesh-
width of h = 1/40 we find ρ ≈ 0.3 which is comparable to the two-dimensional
case. Note however, that the deterioration of the convergence rates for the block
interpolation in two dimensions occurred for h ≤ 1/64 only. For h > 1/64 both
interpolation schemes gave very much the same results. Hence, we may also find a
deterioration of the block interpolation (asymptotically) in three dimensions. Note
further that the operator-complexity c(A) = 4.02 obtained for the block interpolation
(h = 1/40) is significantly higher in three dimensions than in two dimensions. This is
an algorithmic problem and cannot be improved with the choice of a bigger truncation
parameter αtr [16].

Another important property is the robustness of our point-block approach with
respect to the Poisson ratio. The left picture of Figure 4.1 shows the asymptotic
error reduction for the two-dimensional Dirichlet-problem on the unit square for a
mesh-width h = 1/256 and different Poisson ratios ν. While the convergence results
obtained for both interpolations are comparable for Poisson ratios less than 0.2, the
point interpolation provides much better results for 0.2 < ν < 0.4 than the block
interpolation. With the point interpolation out point-block AMG converges with an
asymptotic error reduction rate of ρ = 0.23 whereas the block interpolation provides

10
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Figure 4.1. Left: Asymptotic error reduction ρ (4.1) for Example 1 in two dimensions with
h = 1/256 and varying Poisson ratios ν. Right: Convergence histories of a V(1,1)-cycle with the
point interpolation and different Poisson ratios ν.
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Figure 4.2. Sketch of the mesh-structure used in Example 2 in two dimensions.

almost half the speed of convergence with ρ = 0.43 only. The point-block approach
seems to be robust for Poisson ratios ν ≤ 0.36. The deterioration of the convergence
rate ρ for Poisson ratios larger than 0.36 is not surprising and relates to the condition
of the problem. As described in [1, Chapter 6] the condition of the elasticity problem
depends on the Poisson ratio. The larger ν is, the worse the condition of the discretized
problem is. This effect is also known as Poisson locking. Therefore, we fix the Poisson
ratio at ν = 0.3 (which is a typical value in practice and smaller ν only improve the
convergence results) for our remaining examples.

Example 2 (The cantilever beam). In this example we focus on the problem of
bad aspect ratios. We discretize the two-dimensional cantilever beam problem on a
rectangular domain with the mesh width hx1

in the x1-direction and hx2
= l · hx1

in
the x2-direction, where l > 0 is the stretching factor of the mesh as shown in Figure
4.2. In three dimensions we distinguish the two cases

Ω = [0, l]× [0, 1]2 and hx1
= l · hx2

(= hx3
), (4.4)

Ω = [0, l]2 × [0, 1] and hx1
= hx2

= l · hx3
, (4.5)

as presented in Figure 4.3.
In the two-dimensional case we expect similar results as for classical scalar AMG

methods in the presence of anisotropic diffusion: Since the problem decouples more
and more to a one-dimensional problem with a growing stretching factor l, AMG
degenerates to a direct solver. Indeed, looking at Figure 4.4, where the convergence
and complexity results for the two-dimensional problem with h = 1/256 are depicted,
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Figure 4.3. The two different domains for the three-dimensional problem of Example 2.

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

l

ρ

PI
BI

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

l

c
(A

)/
c
(G

)

PI
BI

c(G) 

c(A) 

Figure 4.4. Example 2 in two dimensions for h = 1/256 and the point (PI) and block interpo-
lation (BI). Left: Asymptotic error reduction rate ρ (4.1) for different l. Right: Grid- (c(A) (4.3))
and operator-complexity (c(G) (4.2)).

we clearly see this expected behavior of our method. After a short decline of the
speed of convergence for l ∈ [1, 4] for both interpolation operators, convergence speeds
up. For l = 128 we obtain an asymptotic error reduction rate ρ = 0.06 for both
interpolations. Furthermore, we find a decline of the total-operator-complexity c(A)
for both interpolations when we increase l. For instance we have c(A) = 2.80 and
c(G) = 1.65 for l = 1 and for l = 128 we find c(A) = 2.02 and c(G) = 2.06.
This resembles the semi-coarsening of the method that can also be noticed for scalar
anisotropic diffusion problems.

In the three-dimensional case, we have to distinguish between the two different
problem types (4.4) and (4.5). For the first problem (4.4), where the brick-type domain
is only stretched in the x1-direction, semi-coarsening appears only in one direction
which does not influence the convergence rate ρ but the total-operator-complexity
c(A). This fact becomes clear in Figure 4.5, which displays the results for h = 1/32.
While the asymptotic error reduction rate ρ seems to be relatively independent of
the parameter l, the total-operator-complexity is reduced from c(A) = 3.44 for l = 1
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Figure 4.5. Example 2 in three dimensions for h = 1/32 and the point (PI) and block inter-
polation (BI). Upper left : Asymptotic error reduction ρ (4.1) for different l for problem type 4.4.
Upper right: Grid- (c(A) (4.3)) and operator-complexity (c(G) (4.2)) for problem type 4.5. Lower
left : Asymptotic error reduction ρ for different l for problem type 4.5. Lower right: Grid- (c(A))
and operator-complexity (c(G)) for problem type 4.5.

Table 4.3

Convergence rates ρ (4.1) and complexity results c(A) (4.3) and c(G) (4.2) for Example 3 with
h = 1/128 and the use of the point (PI) and block interpolation (BI).

PI BI
E2 c(A) c(G) ρ c(A) c(G) ρ
1 2.75 1.68 0.23 2.78 1.67 0.43
10 2.81 1.68 0.37 2.86 1.68 0.43
102 2.81 1.68 0.40 2.85 1.68 0.49
103 2.80 1.68 0.47 2.84 1.68 0.49
104 2.80 1.68 0.42 2.84 1.68 0.49

to c(A) = 2.57 for l = 16. The second problem (4.5) degenerates with growing l
to a decoupled one-dimensional problem. Thus, the asymptotic error reduction rate
and the total-operator-complexity decrease for growing l. Now, the method converges
with ρ = 0.070 for l = 16 almost four times faster than in the case of l = 1 with
ρ = 0.27.

Example 3 (Jumps in the elasticity modulus). In practice, we are often confronted
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Figure 4.6. The decomposition of the
domain used in Example 3.

Figure 4.7. Hierarchy of grids gener-
ated for Example 3 of the method with point
interpolation for h = 1/32 and E2 = 103 and
h = 1/32 (larger points indicate coarser lev-
els).

Table 4.4

Asymptotic error reduction rate ρ (4.1) for Example 4 with different numbers of free sides.

BI PI
Number of free sides 1/64 1/128 1/256 1/64 1/128 1/256

0 0.32 0.43 0.46 0.22 0.23 0.26
1 0.53 0.51 0.60 0.31 0.30 0.28
2 0.69 0.65 0.71 0.57 0.49 0.54
3 0.83 0.75 0.88 0.64 0.69 0.70

with structural objects which are made of many different materials with different
properties. This, however, leads to jumps in the coefficients of the elasticity operator,
which makes the solution of the respective linear system even harder. In this example
we examine such problems in two dimensions. Consider the decomposition of the
domain Ω = [0, 1]2 into four sub-domains Ω1, ...,Ω4 as shown in Figure 4.6. We
set the Young modulus E to E1 = 1 in Ω1 and Ω4, and to E2 = 10n in the other
two sub-domains. Table 4.3 gives the convergence rates ρ and complexities c(A) and
c(G) obtained for h = 1/128 and 0 ≤ n ≤ 4. As in the previous examples, the
point interpolation provides better results than the block interpolation. But now the
difference in the speed of convergence gets smaller for larger jumps of the elasticity
modulus. While the convergence results of the block interpolation are almost constant,
with the fastest convergence (ρ = 0.43) for n = 0 and the slowest convergence (ρ =
0.49) for n = 4, the convergence of our point-block AMG with the point interpolation
decreases from ρ = 0.23 for n = 0 to ρ = 0.42 for n = 4. Although the convergence gets
slower in comparison with the previous examples, it is still uniformly bounded with
respect to the jumps of the elasticity modulus with ρ < 0.5 for both interpolations.
The coarsening algorithm seems to detect the jumps in the elasticity modulus. This
assertion is supported by the resulting hierarchy of grids shown in Figure 4.7 for
h = 1/32 and n = 4.

Example 4 (Free boundaries). In the previous examples homogeneous Dirichlet
conditions were used on all boundaries. In practice, however, there are also Neumann
boundary conditions or simply no conditions on some parts of the boundary. In this
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Figure 4.8. Complete grid hierarchy (left) and first and second coarse grid (right) of Example
4 (h = 1/32) with three free sides (larger points indicate coarser level).

Table 4.5

Asymptotic error reduction rate ρ (4.1) for Example 4 with a varying number of free sides and
the different coarsening. PI denotes the point and BI for the block interpolation.

h = 1/128 h = 1/256
1 2 3 1 2 3

no separate coarsening 0.30 0.49 0.70 0.28 0.54 0.70
separate coarsening of the complete boundary 0.27 0.37 0.56 0.26 0.34 0.59
separate coarsening of the free boundary 0.24 0.34 0.52 0.26 0.30 0.54

example we therefore consider elasticity problems with free boundaries.

The convergence deteriorates for a growing number of free boundaries, as we can
see in Table 4.4 for the two-dimensional problem for h = 1/256 and a varying number
of free sides. For example, our point-block AMG with the block interpolation IB

converges in the case of three free sides and h = 1/256 with ρ = 0.70 three times
slower than in the case of no free sides where we have ρ = 0.26.

One reason for the increase in the convergence rates is the selection of points on
the free boundary for the coarse grids. The complete coarse grid hierarchy and the
first and second coarse grid for h = 1/32 and three free sides are shown in Figure 4.8.
The coarse grid selection leads to a standard coarse grid for points in the interior but
not for points lying on the boundary. Therefore, neither our block interpolation nor
our point interpolation does reproduce the rigid body modes at such points exactly.
Since this property is essential for the quality of our multilevel solver, the convergence
deteriorates for a larger number of free sides.

One way to overcome this problem is to develop a coarsening algorithm which
provides a standard coarsening also for boundary points. Since the classic coarsening
algorithm produces good results for interior points, it is natural to use this coarsening
process in a first step to coarsen all boundary points separately and then, in a second
step, to coarsen the interior points. To this end, it is necessary to separate the
boundary grid points from the interior grid points. Since an AMG method should
employ only algebraic information given through the stiffness matrix A, we have to
develop a method which can find the boundary points purely with the help of algebraic
information. Let us make the reasonable assumption

supp(ϕqi ) ∩ supp(ϕqj) 6= ∅ for any 1 ≤ q ≤ d⇔ ∃1 ≤ k, l ≤ d : a(ϕki , ϕ
l
j) 6= 0.

Then, it follows for regular rectangular grids that a point i belongs to the boundary,
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Figure 4.9. Convergence results for Example 4 with the point interpolation. Left: Asymptotic
error reduction rate ρ (4.1)in two dimensions, h = 1/256, in dependence of the relaxation parameter
ω. Right: Asymptotic error reduction rate ρ in three dimensions with h = 1/16 plotted against the
relaxation parameter ω using the point interpolation.

if it satisfies

|Ni| <

∑

j∈Ni
|Nj |

|Ni|
.

For triangulations or unstructured rectangular grids, this condition is not necessarily
satisfied. However, our experiments showed, that this assumption leads to acceptable
results also on such grids and triangulations.

It is not necessary to coarsen the points on the Dirichlet boundary separately
since the smoother reduces the error effectively in these points, which is underlined
by the fast convergence of our AMG method in the previous examples. Thus, we
can divide the set of boundary points also in Dirichlet grid points and points on
the free boundary. Such a splitting can easily be obtained due to the fact that the
discretization with nodal basis functions

∑

j

Aij = 0

holds for the points on the free boundary only.
Now, we can coarsen the selected boundary points separately but (almost) in the

standard fashion (compare 2.1). Here, we use the new parameters αb and βb for this
boundary coarsening step. Furthermore, we make the following slight modification:
In the setup phase one we use in the criterion for the coarse grid selection the new
set S̃Ti := {j ∈ STi | j is on the boundary} instead of the set Si. Is the point chosen
to be a coarse grid point, we let all points of STi be fine grid points.

Table 4.5 shows the results obtained with our point-block AMG when we use
the separate boundary coarsening step together with the point interpolation IP . The
most significant improvement is achieved for the problem with two free boundaries.
In this case the convergence for h = 1/256 speeds up from ρ = 0.54 to ρ = 0.30 for
separate coarsening of the free boundaries.

Another way to improve convergence in the case of free boundaries is to modify
the process of smoothing. Basically, there are two main approaches: In the first
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Figure 4.10. The sphere of Example 5 with the underlying grid.

Table 4.6

Asymptotic error reduction rates ρ (4.1) and complexities c(A) (4.3) and c(G) (4.2) of Example
5 in two dimensions for different problem sizes n using point interpolation.

ω = 1.0 ω = 1.5
n 1/1 2/1 2/2 1/1 2/1 2/2 c(A) c(G)
2342 0.37 0.33 0.30 0.26 0.16 0.14 2.85 1.70
9978 0.46 0.42 0.40 0.30 0.29 0.24 2.91 1.73
22594 0.44 0.42 0.39 0.35 0.28 0.27 3.12 1.73
90422 0.48 0.45 0.43 0.31 0.33 0.33 3.16 1.73

method, as proposed in [5] for geometric multigrid, one applies separate smoothing
steps to boundary points and neighbors of boundary points. Here, it is possible
to use the same or another smoother for this separate boundary-smoothing step. We
have tested several configurations of boundary-smoothing with (block-)SOR-iteration.
Here, we found no significant improvement of the rates. The second idea is to use a
different iteration than the (block-)Gauß-Seidel relaxation as a smoother in the global
multigrid cycle. In Figure 4.9 we give convergence results obtained for the (block-
)SOR-iteration with varying relaxation parameters 1 ≤ ω < 2. The convergence
rates ρ of our solver can be improved substantially by this approach. For example in
the two-dimensional problem with two free sides, our point-block AMG converges for
ω = 1.3 with ρ = 0.16 two times faster than with the (block-)Gauß-Seidel-smoother
(ω = 1.0), where ρ = 0.34 is obtained. Note that the optimal relaxation parameter ω
is reciprocally proportional to the size of the free boundary. For example, we obtain
the best convergence rate ρ = 0.16 for ω = 1.3 if we have two free sides. In the case
of three free sides, however, we get the minimal rate of ρ = 0.33 with ω = 1.5.

Example 5 (Unstructured and Complicated Grids). In our last numerical
experiments, we consider problems in complicated geometries discretized on unstruc-
tured grids, one of the cases AMG was developed for. Here, we discretize (3.4) on
a circle with bilinear elements in two dimensions. The respective three dimensional
problem is discretized on the sphere with linear elements as shown in Figure 4.10.
Here, we consider Dirichlet boundary conditions only to focus on the effects unstruc-
tured grids have on the convergence behavior of our point-block AMG. We have seen
in the previous example that the use of a (block-)SOR smoother can improve the con-
vergence rate substantially. Therefore we give the results attained with our method
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Figure 4.11. Different grid hierarchies of example 5 in two dimensions. Upper: complete
hierarchy of coarse grids (left) and first and second coarse grid (right) (larger points indicate coarser
levels). Center: Fine grid (left) and first coarse grid (right) with strong couplings. Lower: Third
and fourth coarse grid with strong couplings
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Table 4.7

Asymptotic error reduction rates ρ (4.1) and complexities c(A) (4.3) and c(G) (4.2) of Example
5 in three dimensions for different problem sizes n using point interpolation.

ω = 1.0 ω = 1.5
n 1/1 2/1 2/2 1/1 2/1 2/2 c(A) c(G)
8187 0.27 0.19 0.14 0.26 0.13 0.07 3.44 1.52
20697 0.27 0.20 0.15 0.26 0.13 0.07 3.70 1.50
29823 0.32 0.21 0.18 0.26 0.14 0.07 3.77 1.50

Figure 4.12. Locally refined grids (left:two dimensions, right: three dimensions) used in Ex-
ample 6.

when we use (block-)SOR smoothing with ω = 1.5 and (block-)Gauß-Seidel smooth-
ing (ω = 1.0) and a varying number of pre- and post-smoothing steps, where ν1/ν2
means a V-cycle with ν1−pre and ν2−post-smoothing steps. Table 4.6 summarizes
the results for the two-dimensional problem. The choice of ω = 1.5 provides bet-
ter results than the (block-)Gauß-Seidel method (ω = 1.0). For example we obtain
ρ = 0.31 instead of ρ = 0.48 with one pre- and post-smoothing step for 90422 un-
knowns. Surprisingly, the number of pre- and post-smoothing steps does not influence
the convergence behavior significantly for the two-dimensional problem. This may be
due to the fact that we use a non-point-symmetric grid (compare 3.3) where we do not
have the exact reproduction of the rigid body modes. Hence, the quality of the coarse
grid correction is limited by the interpolation error which cannot be improved via
multiple smoothing steps. Nonetheless, the structure of the coarse grid constructed
in this example (see Figure 4.11) is very similar to that obtained on the unit square
(compare Figure 4.8).

However, we find a different behavior of our solver for the three-dimensional
problem with linear elements since we use an almost point-symmetric grid in this
example (see Figure 4.10). The results given in Table 4.7 show that the chosen
smoother as well as the number of smoothing steps both play an essential role for the
quality of our point-block AMG. For instance, we find ρ = 0.26 for ω = 1.5 instead of
ρ = 0.32 for ω = 1.0 in the case of one pre- and post-smoothing step and n = 29823.
For two pre- and post-smoothing steps, we even obtain ρ = 0.07 for ω = 1.5 and
ρ = 0.18 for ω = 1.0.

Example 6 (Adaptive Grids). For many problems it is necessary to use a dis-
cretization on adaptive grids, where the mesh-width can vary substantially over the

19



Table 4.8

Asymptotic error reduction rates ρ (4.1) and complexities c(A) (4.3) and c(G) (4.2) for Example
6 in two dimensions and different problem sizes n.

ω = 1.0 ω = 1.5
n 1/1 2/1 2/2 1/1 2/1 2/2 c(A) c(G)
10742 0.41 0.36 0.34 0.30 0.23 0.21 2.94 1.73
41234 0.47 0.43 0.41 0.30 0.31 0.31 2.93 1.69
152554 0.51 0.48 0.47 0.42 0.38 0.38 2.94 1.70

Table 4.9

Asymptotic error reduction rates ρ (4.1) and complexities c(A) (4.3) and c(G) (4.2) for Example
6 in three dimensions.

ω = 1.0 ω = 1.5
n 1/1 2/1 2/2 1/1 2/1 2/2 c(A) c(G)
89373 0.29 0.23 0.19 0.31 0.15 0.09 4.83 1.69

domain. One of the main goals of AMG is to provide fast convergence also for such
discretizations. In this example we therefore present two instances of this problem
class. In two dimensions, we look at a discretization on the unit square where the
mesh-width declines toward the edge y = 0. An example of such a grid is given in
Figure 4.12. The results, shown in Table 4.8, are similar to those obtained for the
previous two-dimensional problems. Again, ω has a significant impact on the conver-
gence behavior, whereas the number of smoothing steps has virtually no effect since
the fine grid is non-point-symmetric (see Figure 4.12 (left)). For example, we obtain
the asymptotic error reduction rate ρ = 0.51 with ω = 1.0 and ρ = 0.42 with ω = 1.5
for n = 152554.

The almost point-symmetric grid used for the discretization of (3.4) in three
dimensions with Ω = [0, 1]3 is depicted in the right picture of Figure 4.12. The results
for this problem with n = 89373 are shown in Table 4.9. Both smoothers lead to
solvers with a similar convergence rate of about ρ ≈ 0.3 for a multilevel V-cycle
with one pre- and one post-smoothing step. The best result ρ = 0.09 is obtained
for two pre- and post-smoothing steps with the (block-)SOR-iteration with ω = 1.5.
This supports our assertion that multiple smoothing steps can improve the overall
convergence rate only if the rigid body modes are reproduced exactly, i.e., if we have
a point-symmetric grid.

Example 7 (Complex Geometries). Finally, we present the convergence results for
two “real life” geometries, see Figure 4.13. The discretization with bilinear elements
of the geometry depicted on the left leads to a linear system with 89805 unknowns. A
standard V-cycle with the point interpolation and one pre- and one post (block-)Gauß-
Seidel smoothing step leads to an asymptotic error reduction factor of ρ = 0.31. The
same results are obtained with a (block-)SOR-smoothing scheme with ω = 1.5. An
increment of the number of pre- and post smoothing steps improves the convergence
substantially when we use a (block-)SOR-iteration. For example in the case of two
pre- and post smoothing steps one obtains ρ = 0.11 for ω = 1.5 whereas Gauß-Seidel
smoothing leads only to a convergence rate of ρ = 0.23. The complexities c(A) = 3.66
and c(G) = 1.90 are similar to the ones obtained in Example 1.

The second problem (see Figure 4.13 (right)) discretized with linear elements leads
to a linear system with 60592 unknowns. As in the three-dimensional cases with linear
elements discussed before, a faster convergence is obtained for (block-)SOR-smoothing
(ω = 1.5) than for (block-)Gauß-Seidel smoothing. For a V-cycle with one pre- and
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Figure 4.13. Structural part of an engine (left) and an electrical engine (right).

post-smoothing step our point-block AMG converges with ρ = 0.35 for (block-)Gauß-
Seidel smoothing, whereas (block-)SOR smoothing (ω = 1.5) leads to ρ = 0.26 with
ω = 1.5. Also a larger number of smoothing steps improves the results. The rates
improve to ρ = 0.19 for (block-)Gauß-Seidel relaxation and ρ = 0.10 for (block-)SOR
smoothing (ω = 1.5) with two pre- and post smoothing steps. The operator- and
grid-complexities are in the same range as in the previous example with c(A) = 3.89
and c(G) = 1.76.

5. Concluding Remarks. In this paper we presented a generalization of scalar
AMG methods to the system case by a point-block approach. We gave a detailed
discussion of the resulting point-block AMG based on the classical Ruge and Stüben
AMG [18] in conjunction with the so-called standard interpolation [20]. We were able
to prove the exact interpolation of the kernel elements of the linear elasticity operator
for the block direct interpolation. Since the exact interpolation of the kernel elements
of the continuous operator is important for the speed of convergence of all multigrid
algorithms, this result can be seen as a theoretical justification of our approach.

To show the practical relevance of the method, we presented the results of various
numerical experiments with linear systems stemming from the discretization of linear
elasticity problems. These results clearly show that the convergence is uniformly
bounded away from one independent of the mesh-width. In addition the method is
relatively robust with respect to Poisson ratios in the range of 0 ≤ ν ≤ 0.4, which
are in practice the most relevant cases. Furthermore, the method can also deal with
stretched grids and it was successfully applied to adaptive non-uniform grids and
complicated geometries in this paper.
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für Informatik, Technische Universität München, 1997.
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