
On additive Schwarz preconditioners

for sparse grid discretizations

M. Griebel
Institut für Informatik

TU München
D-W-8000 München 2, FRG

P. Oswald

Institut für Angewandte Mathematik
Friedrich-Schiller-Universität Jena

D-O-6900 Jena , FRG

Summary. Based on the framework of subspace splitting and the additive Schwarz
scheme, we give bounds for the condition number of multilevel preconditioners for sparse
grid discretizations of elliptic model problems. For a BXP-like preconditioner we derive an
estimate of the optimal order O(1) and for a HB-like variant we obtain an estimate of the
order O(k2 · 2k/2), where k denotes the number of levels employed. Furthermore, we confirm
these results by numerically computed condition numbers.

Contents :

1. Introduction
2. Abstract additive Schwarz schemes and subspace splittings
3. Stable splittings for sparse grid discretizations
4. An optimal BPX scheme for the 2D case
5. A HB scheme for the 2D case
6. Concluding remarks

Key words: Elliptic equations, finite elements, preconditioned iterative methods, ap-
proximation spaces, sparse grids, BPX, hierarchical basis.

Subject classification: AMS(MOS): 65F10, 65F35, 65N20, 65N30; CR: G1.3, G1.8.
Running title: Preconditioners for sparse grid discretizations

1



1. Introduction

Recently, sparse grids have been brought into discussion by Zenger [Z] as a new dis-
cretization technique for the approximate solution of elliptic boundary value problems. To
explain the basic idea which has been used previously under different names for other pur-
poses (trigonometric and spline approximation theory, optimal recovery and quadratures,
see e.g. [DS, T1, T2]), let us consider the Poisson equation with homogeneous Dirichlet
boundary conditions

−∆u = f , u ∈ H1
0 (Ω) ,

in the unit square Ω = [0, 1]2. The traditional (full grid) approach to solving this problem
numerically by the finite element method is to equip Ω with a partition into squares of
sidelength h, to ”project” the variational problem onto the corresponding subspace of bilinear
finite element functions in H1

0 (Ω), and to solve the resulting linear system of dimension
O(h−2) (for convenience, from now on we will be restricted to the case h = 2−k , k ≥ 1 , and
write Rk,k and V̂k,0 = Vk,k,0 for the partitions and finite element subspaces). If u ∈ H2(Ω)
then the obtained approximate solution satisfies an O(h) error estimate in the energy norm
and an O(h2) error estimate in the L2-norm, respectively. Thus, high accuracy requires the
solution of very large linear systems. This situation gets still worse in the 3D case.

The observation which leads to the sparse grid approach is that, under additional regu-
larity assumptions on higher order mixed derivatives of u, almost the same approximation
rates can be achieved by a subspace of dimension O(h−1 · log h−1), namely by the sparse grid
space

Ṽk,0 = V1,k−1,0 + V2,k−2,0 + . . . + Vk−1,1,0

where Vk1,k2,0 denotes the subspaces of bilinear finite element functions in H1
0 (Ω) with respect

to the partition Rk1,k2
of Ω into rectangles of size 2−k1 by 2−k2 , k1, k2 ≥ 1, see [Z] for more

details, and [T1] for the trigonometric counterpart. Examples of sparse grids are given in
Figure 1.

Figure 1: Nodal points of the 2D sparse grid and the 3D sparse grid, k = 7.

2



To be more precise, let the solution u be sufficiently smooth to satisfy

|
∂u4

∂x2∂y2
| ≤ C.

Then, it can be shown, that, with respect to the energy norm, the approximation error of
the sparse grid solution is of the order O(h) like in the full grid approach. Regarding the
L2-norm, a slight deterioration from O(h2) to O(h2 · log h−1) can be observed. For details,
see [B]. Though the theoretical justification of the error estimates and the behaviour of the
method when applied to realistic problems in more complicated domains is still incomplete,
the numerical testing reported in [Z, GSZ, G1, G2, B] definitively shows the capabilities of
this dimension reduction. Especially for 3D problems, the sparse grid technique will certainly
prove its practical importance in the near future.

The present paper contributes to the justification of fast iterative solvers for the linear
systems arising from sparse grid discretizations. Until now, for this purpose different strate-
gies have been tested numerically, cf. [GSZ, G1, G2, B]. Note that the starting point was a
sparse hierarchical basis approach [Z]. Since for the hierarchical basis method of Yserentant
[Y] and for the more recent multilevel additive Schwarz preconditioners like the BPX scheme
[BPX, O1, X, Zh] and related methods [H] the good performance for full grid discretizations
has been shown theoretically, it is natural to ask for analogous results in the sparse grid case.

The main result of this paper is a new and easily implementable BPX-like multilevel
preconditioner for sparse grid discretizations of H1 elliptic boundary value problems on
the unit square which possesses O(1) asymptotics for the condition numbers (Section 4).
Moreover, in Section 5 almost final results are obtained for the sparse hierarchical basis
method [Z, L, B]. These theoretical results are supported by numerical tests. Though the
main results are stated for two space dimensions, the proofs given apply to the higher-
dimensional case as well, see Section 6. Our methods are close to those previously developed
in [O1, O2, O3], and use the abstract theory of additive Schwarz schemes as the appropriate
framework, see Sections 2 and 3.

2. Abstract additive Schwarz schemes and subspace splittings

In this Section we give a short summary of results of several authors (see, e.g., [DW, W,
X, Zh, BM, O1]) on the theory of additive Schwarz schemes for the solution of symmetric
variational problems in finite-dimensional Hilbert spaces.

Our aim is to derive estimates of the condition number for the additive Schwarz operator
that is associated to the variational problem

(1) find u ∈ V : a(u, v) = Φ(v) , ∀v ∈ V ,

and to a subspace splitting

(2) V =
N∑

i=1

Vi
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with N > 1 a given natural number.
Our precise assumptions are as follows. Suppose that V is a finite-dimensional Hilbert

space with inner product (·, ·)V and norm ‖ · ‖V . Suppose further that the subspaces Vi ⊂ V
that form the additive splitting (2) are also Hilbert spaces with their own inner products
(·, ·)Vi

and corresponding norms ‖ · ‖Vi
, i = 1, . . . , N.. Let a(·, ·) be a symmetric V -elliptic

bilinear form on V that satisfies the two-sided inequality

(3) ca · ‖u‖
2
V ≤ ‖u‖2

E ≡ a(u, u) ≤ Ca · ‖u‖
2
V , ∀u ∈ V ,

with positive constants 0 < ca ≤ Ca < ∞. Moreover, let Φ be a bounded linear functional
on V .

We introduce auxiliary symmetric Vi-elliptic bilinear forms bi(·, ·) on Vi where

(4) cb · ‖ui‖
2
Vi
≤ bi(ui, ui) ≤ Cb · ‖ui‖

2
Vi

, ∀ui ∈ Vi ,

holds uniformly in i = 1, . . . , N with two positive constants 0 < cb ≤ Cb < ∞.
Now, we introduce

(5) ‖|u‖|V = inf







(
N∑

i=1

‖ui‖
2
Vi

)1/2

: u =
N∑

i=1

ui , ui ∈ Vi , i = 1, . . . , N






,

that defines an equivalent norm on V , i.e. it holds

(6) c · ‖u‖2
V ≤ ‖|u‖|2V ≤ C · ‖u‖2

V , ∀u ∈ V ,

with constants 0 < c ≤ C < ∞.
We call κ(V, {Vi}) = inf C/c (where the infimum is taken in (6) with respect to all possible

constants c, C) the stability constant of the splitting (2). Note that κ(V, {Vj}) depends
strongly on the inner products (., .)V and (., .)Vi

associated to V and Vi, respectively. In the
special case of (·, ·)V ≡ a(·, ·) and (·, ·)Vi

≡ bi(·, ·) , i = 1, . . . , N, we write κ(a, {bi}) for this
quantity. As a trivial result we have

Lemma 1. With the above notation, we obtain the estimate

(7) κ(a, {bi}) ≤ Ca/ca · Cb/cb · κ(V, {Vi}) .

Now, let the operator PVi
: V → Vi be defined by the variational problem

(8) bi(PVi
u, vi) = a(u, vi) , ∀vi ∈ Vi .

Furthermore, let φi ∈ Vi be defined by

(8′) bi(φi, vi) = Φ(vi) , ∀vi ∈ Vi ,

where i = 1, . . . , N . Then, the additive Schwarz operator PV is given by

(9) PV =
N∑

i=1

PVi
: V → V
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and the associated right hand side φ is given by

(9′) φ =
N∑

i=1

φi ∈ V ,

Altogether, we have

Lemma 2. (i) The variational problem (1) is equivalent to solving the operator equation

(10) PV u = φ , u ∈ V .

(ii) The operator PV is symmetric positive definite (with respect to the inner product a(·, ·))
and its spectral condition number is given by

(11) κ(PV ) ≡
λmax(PV )

λmin(PV )
= κ(a, {bi}) .

Proof. This lemma is implicitly stated in [W], [Z] and has many contributors. We give
the elementary proof for the sake of completeness, only.

We start with (ii). For arbitrary u, v ∈ V , we have

a(PV u, v) =
N∑

i=1

a(PVi
u, v) =

N∑

i=1

a(v, PVi
u)

=
N∑

i=1

bi(PVi
v, PVi

v) =
N∑

i=1

bi(PVi
u, PVi

v)

=
N∑

i=1

ai(u, PVi
v) = a(u, PV v) .

Moreover, we obtain

a(PV u, u) =
N∑

i=1

bi(PVi
u, PVi

u) ≥ 0 , u ∈ V .

Equality is reached if and only if PVi
u = 0 or, equivalently, if u is a-orthogonal to each

Vi , i = 1, . . . , N, which gives u = 0.
Thus, PV is symmetric positive definite and invertible. Assertion (i) is now obvious

(see (8)-(8’) and (9)-(9’)). The formula for the spectral condition number follows from the
identity

a(P−1
V u, u) = inf

ui∈Vi :u=
∑

i
ui

N∑

i=1

bi(ui, ui) , u ∈ V .

Indeed, let u =
∑N

i=1 ui , ui ∈ Vi , i = 1, . . . , N , be an arbitrary decomposition of u ∈ V.
Then,

a(P−1
V u, u) =

N∑

i=1

a(P−1
V u, ui) =

N∑

i=1

bi(PVi
P−1

V u
︸ ︷︷ ︸

=wi

, ui)

≤

(
N∑

i=1

bi(wi, wi)

)1/2

·

(
N∑

i=1

bi(ui, ui)

)1/2
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where
N∑

i=1

bi(wi, wi) =
N∑

i=1

a(P−1
V u, wi) = a(P−1

V u, u) .

Thus, we have

a(P−1
V u, u) ≤

N∑

i=1

bi(ui, ui)

for any decomposition of u ∈ V . Equality is obtained for u =
∑

i wi .

Lemmas 1 and 2 imply the following strategy for the design of a solver for (1) using the
additive Schwarz formulation (10) :

Step 1. Given the variational problem (1), choose (·, ·)V such that Ca/ca is moderate (cf.
(3)).

Step 2. Choose Vi and (·, ·)Vi
, i = 1, . . . , N, such that the stability constant κ(V, {Vi}) of

the corresponding splitting (2) is moderate.

Step 3. Choose the auxiliary symmetric forms bi on Vi , i = 1, . . . , N, such that Cb/cb is
moderate (cf. (4)), and that the variational problems (8)-(8’) can be solved with substan-
tially less effort than (1).

Step 4. Solve (10) by the conjugate gradient method (or by any other simple iteration
method which converges rapidly for well–conditioned operator equations).

The crucial point of the theoretical analysis of almost any existing additive Schwarz
scheme (domain decomposition methods and multilevel additive Schwarz methods) is an
appropriate result in Step 2 of the above strategy. With respect to multilevel additive
Schwarz methods, the norm equivalencies (6) that are necessary for discretized variational
problems (1) in Sobolev spaces have a nice background in approximation theory. This
background will be used below in order to develop optimal (or suboptimal) additive Schwarz
preconditioners for sparse grid discretizations of elliptic boundary value problems.

3. Stable splittings for sparse grid discretizations.

Throughout this paper, let Ω ≡ [0, 1]d be the d-dimensional cube (d ≥ 2). For given
k ∈ Zd

+ , k ≡ (k1, . . . , kd) , let Rk be the tensor-product partition with uniform stepsize 2−kj

into the j-th coordinate direction, j = 1, . . . , d. By Vk we denote the spaces of multilinear
finite element functions with respect to Rk, k ∈ Zd

+; if homogeneous boundary conditions are
required, we also consider Vk,0 = Vk∩H1

0 (Ω) (here, k ≥ 1 ≡ (1, . . . , 1) is natural). Note that
higher order C0-elements, C1-element spaces for treating fourth order problems, and slightly
more complicated boundary conditions may be considered as well. However, we restrict our
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attention to the most simple case. These spaces satisfy the monotonicity property

(12) Vk ⊂ Vm , Vk,0 ⊂ Vm,0 , k ≤ m.

Now we introduce, for k ∈ Z+, the full grid spaces

V̂k = V(k,...,k) resp. V̂k,0 = V(k,...,k),0 (k > 0)

and the sparse grid spaces

Ṽk =
∑

|k|1≤k

Vk resp. Ṽk,0 =
∑

|k|1≤k

Vk,0 (k ≥ d) .

(here and in the following we denote |k|1 =
∑

j kj and |k|∞ = maxj kj whenever k ∈ Zd
+).

The properties of sequences of full grid spaces are well understood. We will make use
of the following basic stability result which is applicable to symmetric second order elliptic
boundary value problems . Let

(u, v)H1 = (u, v)L2
+ (∇u,∇v)L2

, u, v ∈ H1(Ω) ,

where (·, ·)L2
denotes the usual inner product in L2(Ω). On H1

0 (Ω), an equivalent inner
product is introduced by (u, v)H1

0
= (∇u,∇v)L2

.

Lemma 3. For arbitrarily fixed k ∈ Z+, let V = V̂k resp. V = V̂k,0 (k ≥ 1) be equipped
with the H1 resp. H1

0 inner product introduced above. Consider the additive splitting of V
into its subspaces Vi = V̂i , i = 0, . . . , k, resp. Vi = V̂i,0 , i = 1, . . . , k where in both cases
the inner product on Vi is given by the scaled L2 scalar product 22i(·, ·)L2

. Then, the stability
constants of these splittings remain bounded independently of k :

(13) κ(V, {Vi}) ≤ κ∞ < ∞ ∀ k .

As shown in [O1, O2], Lemma 3 immediately follows from a result of [O3] on infinite
splittings of H1(Ω) resp. H1

0 (Ω) with respect to the corresponding sequences of finite element
subspaces. The latter result is a consequence of the norm equivalence

(14) ‖u‖2
H1 ≈ ‖u‖2

L2
+

∞∑

i=0

22i · Ei(u)2
L2

(Ei(u)L2
= inf

vi∈V̂i

‖u − vi‖L2
)

for u ∈ H1(Ω) that is proved, as a very particular case, in e.g. [O3, O4, DP] (see also [BY]).
Lemma 3 is the starting point for the main result of this Section. We will give the details

for the H1 situation only, the modifications for the H1
0 case are quite obvious. Fix some

k ∈ Z+, consider (as V ) the space Ṽk equipped with the H1 inner product, and denote for
l = 0, . . . , k

Ṽk,l = Ṽk ∩ V̂l , (·, ·)Ṽk,l
= 22l · (·, ·)L2

as well as
V ∗

k,l =
⋃

m:|m|1≤k,|m|∞=l

Vm , (·, ·)V ∗

k,l
= 22l · (·, ·)L2

.

7



Obviously,

(15) V ∗
k,l ⊂ Ṽk,l ⊂ V̂l (l ≤ k)

and

(15′) V ∗
k,l = Ṽk,l = V̂l (l · d ≤ k) .

Theorem 1. The splittings

(16) Ṽk =
k∑

l=0

Ṽk,l resp. Ṽk =
k∑

l=0

V ∗
k,l

possess stability constants that are bounded uniformly in k, i.e.

(17) κ(Ṽk, {Ṽk,l}) ≤ κ̃∞ < ∞ resp. κ(Ṽk, {V
∗
k,l}) ≤ κ∗

∞ < ∞ ∀ k .

Proof. Let {fr , r ≥ 0 }, denote the L2-orthonormal Franklin system with respect to
[0, 1], i.e. the system obtained from the Faber-Schauder system by the Schmidt orthogo-
nalization procedure (note that the Franklin system was the first historical example of an
orthonormal Schauder basis in C[0, 1] while the Faber-Schauder system was the first example
of a Schauder basis in this space, see [KS] for more details). Define

fr(x) = fr1
(x1) · . . . · frd

(xd) , x ≡ (x1, . . . , xd) , r ∈ Zd
+

and

Wm = span{fr : 2mj−1 < rj ≤ 2mj , j = 1, . . . , d} , m ∈ Zd
+ (2−1 ≡ −1) .

We list some obvious properties of these objects which exclusively follow from the L2(0, 1)-
orthogonality of the Franklin functions and the fact that span {fr : r ≤ 2m} coincides with
the space of linear splines with respect to the uniform partition of [0, 1] into 2m intervals :

{fr : r ∈ Zd
+} is an orthonormal system in L2(Ω),

(18) Vk =
⊕

m≤k

Wm , ∀k ∈ Zd
+ ,

and, as a consequence of (18), also

(19) Ṽk,l =
⊕

|m|1≤k,|m|∞≤l

Wm , l = 0, . . . , k .

Now we turn to the proof of the required two-sided norm estimates (cf. (6)). Due to (15),
the lower estimates (6) follow for both splittings from the corresponding lower estimate for
the splitting considered in Lemma 1 in the full grid case. To establish the upper estimate
in (6), we have to construct a ”good” decomposition with respect to the given subspace
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splitting. To this end, we use the orthogonal decomposition of u ∈ Ṽk with respect to the
multivariate Franklin system, and denote the block corresponding to Wm by wm . Then

u =
∑

|m|1≤k

wm =
k∑

l=0

∑

|m|1≤k,|m|∞=l

wm ≡
k∑

l=0

u∗
k,l

is a ”good” decomposition of u into u∗
k,l ∈ V ∗

k,l ⊂ Ṽk,l. Indeed, by the L2 orthogonality
properties, (18), and the definition of the best approximations given in (14), we have

‖u∗
k,l‖

2
L2

=
∑

|m|1≤k,|m|∞=l

‖wm‖2
L2

≤
∑

|m|1≤k,|m|∞≥l

‖wm‖2
L2

= El−1(u)2
L2

,

with E−1(u)L2
≡ ‖u‖L2

if l = 0. It remains to sum up with the forefactors 22l, and to apply
(14). This proves the Theorem.

Remark 1. It can be seen easily that the above proof works for any V of the form

V ≡ VΓ =
∑

m∈Γ

Vm ,

where Γ ⊂ Zd
+ is an arbitrarily fixed finite set (without loss of generality, we may assume

that m ∈ Γ implies m′ ∈ Γ for all m′ ≤ m). Instead of V ∗
k,l, one has to use

V ∗
Γ,l =

∑

m∈Γ:|m|∞=l

Vm,

with the scaled L2 scalar products as above. The stability constant is bounded from above
uniformly in Γ.

In particular, this observation yields splittings for any V = Vk into smaller spaces of the
same type, with stability constants independent of k ∈ Zd

+. See [O1] for a different derivation
for d = 2. Another application is the construction of stable splittings for the modified sparse
grid spaces considered in [B].

Remark 2. The above results carry over to analogous constructions for H 1
0 problems.

The only difference is that Vk,0 deteriorates if kj = 0 for some j (which leads to a more
complicated notation), and that a modified Franklin system (Schmidt orthogonalization
applied to the Faber-Schauder system with the first two functions dropped) has to be used
instead.
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4. An optimal BPX scheme in the 2D case

To obtain more explicit computational schemes, denote by Nk ≡ {Nk;i} the set of nodal
basis functions corresponding to Vk for k ∈ Zd

+. Denote by Vk;i = span {Nk;i} the one-
dimensional subspaces of Vk corresponding to the nodal basis functions.

The well-known L2-stability of the nodal basis can be reformulated as

Lemma 4. If Vk and all Vk;i are equipped with the L2 inner product, scaled by the same
factor, then to the splittings (into direct sums of subspaces)

Vk =
∑

i

Vk;i

there correspond two-sided norm estimates (6) with constants c and C that may be chosen
independently of k ∈ Zd

+.

In other words, we may ”refine” a given splitting (involving subspaces Vk ,equipped
with scaled L2 structures) by using the result of Lemma 4, without destroying the stability
constants.

Now, we consider the two-dimensional case in more detail. Lemma 4 and Theorem 1
immediately yield the following splittings that possess stability constants that are uniformly
bounded in k :

Ṽk =
k∑

l=0

V ∗
k,l =

[k/2]
∑

l=0

Vl,l +
k∑

l=[k/2]+1

(Vl,k−l + Vk−l,l)

(20) =
[(k−1)/2]
∑

l=0

Vl,l +
k∑

l=0

Vl,k−l =
[(k−1)/2]
∑

l=0

∑

i

Vl,l;i +
k∑

l=0

∑

i

Vl,k−l;i .

Here, the space Ṽk is equipped with the H1 inner product while on all other subspaces the
L2 scalar product scaled by the factor 22l resp. 22 max(l,k−l) is used. Finally, since

(21) ‖Nk;i‖
2
H1

≈ 22|k|∞ · 2|k|1 ≈ 22|k|∞ · ‖Nk;i‖
2
L2

uniformly in k, and i, we may change back to the H1 scalar product in the last splitting.
Thus, we arrive at

Theorem 2. Let (1) be a symmetric H1 elliptic variational problem on Ṽk, i.e. a sparse
grid discretization of a symmetric second-order elliptic boundary value problem with natural
boundary conditions on the unit square of R2. Then (1) can be transformed into an additive
Schwarz equation (10) where

(22) PV u =
[(k−1)/2]
∑

l=0

∑

i

a(u, Nl,l;i)

dl,l;i

· Nl,l;i +
k∑

l=0

∑

i

a(u, Nl,k−l;i)

dl,k−l;i

· Nl,k−l;i
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and, in analogy,

(22′) φV u =
[(k−1)/2]
∑

l=0

∑

i

Φ(Nl,l;i)

dl,l;i
· Nl,l;i +

k∑

l=0

∑

i

Φ(Nl,k−l;i)

dl,k−l;i
· Nl,k−l;i

with scaling factors dk;i given by

(23) dk;i = 22|k|∞ · ‖Nk;i‖
2
L2

or by

(23′) dk;i = a(Nk;i, Nk;i) .

In both cases, the spectral condition number of the Schwarz operator PV is bounded by a
constant which is independent of k ≥ 0.

With obvious modifications, the results remain valid for H 1
0 variational problems.

We do not go into the details of this exercise (put all norm equivalencies (3), (4), and
(6) together, and compute the explicit formulae for the projections PVk;i

u etc.). Theorem 2
shows that the above technique of preconditioning the original sparse grid problem (1) by
switching to an appropriate Schwarz equation (10), (22)-(22’), (23) (or 23’)) is as successful
as the corresponding schemes for full grid discretizations (cf. [BPX, Y, Zh]).

To compare this result with our practical experience, we considered the case of the
Poisson equation with Dirichlet boundary conditions as a model problem. We computed the
eigenvalues λmin(PV ), λmax(PV ) and the condition number κ(PV ) numerically for different
values k. We used bilinear basis functions Nk;i for the discretization. The results are shown
in Table 1.

k 4 5 6 7 8 9 10 11 12 13 14

λmin 0.962 0.862 0.709 0.667 0.621 0.559 0.543 0.535 0.518 0.513 0.510

λmax 2.58 3.71 3.89 4.71 4.92 5.59 5.75 6.28 6.39 6.84 6.93

κ 2.68 4.30 5.48 7.07 7.92 10.0 10.6 11.7 12.3 13.3 13.6

Table 1: Condition numbers of PV defined by (22) and (23’).

From our theoretical results, we know that the condition numbers are bounded by a
constant. For practical grid sizes, however, we see still slightly growing condition numbers.

Now, we consider the case of the anisotropic operator ε2 · uxx + uyy. Table 2 shows the
resulting eigenvalues and condition numbers of PV with (22) and (23’) for fixed k = 9 and
varying values of ε. We see, that the condition number deteriorates somewhat for ε → ∞,
but is still bounded. The same behaviour was obtained for ε → 0. In this sense, our
preconditioner is robust. The condition number seems to have an upper bound independent
of k and ε, at least for a wide range of values of ε. In numerical experiments, we found the
condition number to deteriorate only near ε ≈ k. Note furthermore, that the standard BPX
preconditioner for the full grid discretization of the anisotropic operator does not possess this
robustness property. There, the condition number is independent of k but strongly dependent
on ε. For example, in the case k = 6 and ε = 1000, the full grid BPX preconditioner results
in a condition number of 2336. For further details, see [GZZ].
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ε 1 1.4 2 10 100 1000 10000

λmin 0.560 0.549 0.532 0.264 0.503 0.501 0.500

λmax 5.60 6.31 7.14 9.42 11.2 11.5 11.5

κ 10.0 11.5 13.4 35.7 22.3 23.0 23.0

Table 2: Condition numbers of PV defined by (22) and (23’) for anisotropic operator, k = 9.

5. A HB scheme for the 2D case

Originally, the sparse grid technique was introduced in a hierarchical basis fashion (see
[Z]). To be precise, let

Ik = Ik1,x1
◦ . . . ◦ Ikd,xd

: C(Ω̄) → Vk , k ∈ Zd
+ ,

denote the usual nodal interpolation projections which can be represented as superposition of
one-dimensional interpolation projections onto the corresponding parametrized spline spaces.
In other words, Iku is the unique element of Vk interpolating a continuous function u at the
set of nodal grid points {Pk,i associated to the partition Rk. In the present case of linear
splines, the order of superposition does not matter. Furthermore, let

∆Ik = ∆Ik1,x1
◦ . . . ◦ ∆Ikd,xd

, k ∈ Zd
+ ,

where ∆Ik,x = Ik,x − Ik−1,x , k > 0 , and ∆I0,x = I0,x. Then any u ∈ V = Ṽk possesses a
unique decomposition

(24) u =
∑

|m|1≤k

∆Im(u) ≡
∑

|m|1≤k

∆vm

which will be called sparse hierarchical splitting of u. The image of the projection ∆Im

will be denoted by ∆Vm. There is a simple basis for ∆Vm consisting of tensor products of
the corresponding hierarchical basis functions (i.e. Faber-Schauder functions) on the interval
(see [Z, GSZ, B]). Decomposing the ∆vm in (24) further with respect to this basis, we obtain
the sparse hierarchical basis representation of u ∈ Ṽk.

Discretizations with respect to such hierarchical bases are, as a rule, better conditioned
than nodal basis discretizations. For full grid discretizations in two dimensions this was
shown by Yserentant. Unfortunately, in the sparse grid case, even for the two-dimensional
Poisson problem, the condition numbers of the hierarchical discretization grow exponen-
tially. In [L], for the sparse hierarchical basis discretization matrix ÃHB (which was already
diagonally scaled, i.e. diag (ÃHB) = I) the estimates

(25) c · 2k/2 ≤ κ(ÃHB) ≤ C · k2 · 2k , k → ∞ (d = 2)

have been shown. Some improvement of the upper bound is contained in [O5], moreover, it
was shown by examples, that the lower bound remains valid for any scaling of the hierarchical
basis functions. Here, we give a bound which seems to be close to the optimum, and is in
agreement with the numerical tests. The proof strongly relies on the technique used in the
above Sections, i.e. we use the fact (cf. [Y] for the analogous deduction in the full grid
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case) that the estimate for κ(ÃHB) follows from the estimate for the stability constant of the
splitting

(26) Ṽk =
∑

|m|1≤k

∆Vm , k ≥ 0

where Ṽk is equipped with the H1 inner product, and ∆Vm with the L2 inner product scaled
by the factor 22|m|∞.

Theorem 3. For the diagonally scaled sparse hierarchical basis discretization matrix
ÃHB for a symmetric H1 elliptic variational problem (1) on Ṽk one has

(27) κ(ÃHB) ≤ C · k2 · 2k/2 , k → ∞ (d = 2) .

For H1
0 problems, an analogous estimate holds true.

Proof. We will prove the equivalent assertion

(27′) κ(Ṽk, {∆Vm : |m|1 ≤ k}) ≤ C · k2 · 2k/2 , k → ∞ (d = 2)

for the stability constant of the splitting (26) by relying on the results of Theorem 1 resp. 2
for d = 2. Let u ∈ Ṽk be given and consider its hierarchical splitting (24):

u =
∑

|m|1≤k

∆vm =
k∑

l=0

u∗

l
︷ ︸︸ ︷

∑

|m|1≤k,|m|∞=l

∆vm

Since u∗
l ∈ V ∗

k,l, we can use Theorem 1 :

‖u‖2
H1 ≤ 1/c∗

k∑

l=0

22l · ‖u∗
l ‖

2
L2

≤ 1/c∗
k∑

l=0

22l · ĉ · k
∑

|m|1≤k,|m|∞=l

‖∆vm‖2
L2

= 1/c∗ · ĉ · k
∑

|m|1≤k

22|m|∞ · ‖∆vm‖2
L2

(from here on, c∗, C∗ denote the constants in the norm equivalence (6) corresponding to the
splittings of Theorem 1 resp. 2 while ĉ is a generic constant). This is the desired lower
estimate in (6) for the hierarchical splitting (26).

For the upper estimate, let

u =
[(k−1)/2]
∑

l=0

ul,l +
k∑

l=0

ul,k−l ≡
∑

m∈Γ̃

um

be an arbitrary decomposition with respect to the splitting (20). Note that

Γ̃ = {(l, l) : l ≤ [(k − 1)/2]} ∪ {(l, k − l) : l = 0, . . . , k}

has k+1+[(k+1)/2] ≤ 2k+1 elements. Since, by definition of the interpolation projections
and the hierarchical splitting,

∆vk = ∆Ik(u) =
∑

k−1≤r≤k

±Ir(uk,Γ̃) with u
k,Γ̃ =

∑

m∈Γ̃,k≤m

um ,

13



we have
‖∆vk‖

2
L2

≤ 4 ·
∑

k−1≤r≤k

‖Ir(uk,Γ̃)‖2
L2

.

But by the L2 stability of the nodal bases in Vm (cf. Lemma 4)

‖Ir(uk,Γ̃)‖2
L2

≤ ĉ · 2−|r|1 ·
∑

i

|u
k,Γ̃(Pr;i)|

2

≤ ĉ · k · 2−|r|1 ·
∑

m∈Γ̃,k≤m

∑

i

|um(Pr;i)|
2

≤ ĉ · k · 2−|k|1 ·
∑

m∈Γ̃,k≤m

2|m|1‖um‖2
L2

for k − 1 ≤ r ≤ k .

After substituting we can complete the reasoning :

∑

|k|1≤k

22|k|∞ · ‖∆vk‖
2
L2

≤ ĉ · k
∑

|k|1≤k

22|k|∞−|k|1 ·
∑

m∈Γ̃,k≤m

2|m|1‖um‖2
L2

≤ ĉ · k ·
∑

m∈Γ̃






2|m|1‖um‖2

L2
·
∑

k≤m

22|k|∞−|k|1







≤ ĉ · k ·
∑

m∈Γ̃

2|m|1+|m|∞‖um‖2
L2

≤ ĉ · k · 2k/2 ·
∑

m∈Γ̃

22|m|∞‖um‖2
L2

.

It remains to take the infimum with respect to all allowed decompositions, and to refer to
Theorem 2. This gives the upper bound

∑

|k|1≤k

22|k|∞ · ‖∆vk‖
2
L2

≤ C∗ · ĉ · k · 2k/2 · ‖u‖2
H1 ,

and together with the lower bound we have (27’) as well as the assertion of Theorem 3.

Remark 4. The proof of Theorem 3 shows that

c · k−1 ≤ λmin(ÃHB) ≤ λmax(ÃHB) ≤ C · k · 2k/2 , k → ∞ (d = 2).

To compare this bound with our practical experiences, once more, we considered the
case of the Poisson equation with Dirichlet boundary conditions as a model problem. We
computed the eigenvalues of the hierarchical basis system matrix in the unscaled (AHB) and
scaled case (ÃHB) for different values k numerically . The results are shown in Table 3.

k 4 5 6 7 8 9 10 11

λmin 0.736 0.595 0.490 0.400 0.314 0.258 0.215 0.181

AHB λmax 6.1 10.9 21.4 42.7 85.4 170.6 341.3 682.7

κ 8.3 18.3 43.7 106.9 271.5 661.2 1587 3771

λmin 0.249 0.186 0.135 0.098 0.0665 0.0484 0.0331 0.0241

ÃHB λmax 1.77 2.12 2.55 2.90 3.34 3.69 4.12 4.47

κ 7.1 11.4 18.9 29.5 50.2 76.2 124.5 185.5

Table 3: Eigenvalues and condition numbers for AHB and ÃHB.

We clearly see the improvement achieved by diagonal scaling. The condition number
of ÃHB behaves like k · 2k/2 which is a factor k better than the bound given in Theorem
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3. Thus, we guess that in the upper bound (for λmax(ÃHB)) the factor k can be removed.
However, this is not important for practical applications, anyway. The exponential growth,
expressed by the factor 2k/2 ≈ h

−1/2
k , shows the superiority of sparse BPX over sparse HB in

this respect.

6. Concluding remarks

For the higher dimensional case, the proofs of the statements in Section 4 and 5 may be
repeated almost line by line. In the BPX case we arrive at the splitting

Ṽk =
∑

m=(m,...,m) : dm<k

Vm +
∑

m : |m|1=k

Vm ≡
∑

m∈Γ̃d

Vm , with (·, ·)Vm
= 22|m|∞ · (·, ·)L2

for which one obtains the stability estimate

(28) κ(Ṽk, {Vm : m ∈ Γ̃d}) ≤ C · kd−2 , k → ∞ .

Thus, in the 3D case our theoretical approach leads to one additional logarithmic factor
which appears in the last but one step of the decomposition procedure described in (20).
We do not know whether this factor can be removed by some other splitting that is better
suited for the 3D case.

For the sake of completeness, note that our methods also imply condition number es-
timates of the corresponding diagonally scaled 3D sparse hierarchical basis discretization
which deteriorate to a O(k5 · 22k/3) bound. Surprisingly, this is asymptotically better than
in the 3D full grid situation.

Acknowledgement: We like to thank S. Zimmer for his programming assistance and
we are indebted to C. Zenger for his encouragement and many fruitful discussions.
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