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ON WEIGHTED HILBERT SPACES AND INTEGRATION OF

FUNCTIONS OF INFINITELY MANY VARIABLES

MICHAEL GNEWUCH, SEBASTIAN MAYER, AND KLAUS RITTER

Abstract. We study aspects of the analytic foundations of integration and closely

related problems for functions of infinite many variables x1, x2, . . . ∈ D. The setting is

based on a reproducing kernel k for functions on D, a family of non-negative weights

γu, where u varies over all finite subsets of N, and a probability measure ρ on D. We

consider the weighted superposition K =
∑

u
γuku of finite tensor products ku of k.

Under mild assumptions we show that K is a reproducing kernel on a properly chosen

domain in the sequence space DN, and that the reproducing kernel Hilbert space H(K)

is the orthogonal sum of the spaces H(γuku). Integration on H(K) can be defined in

two ways, via a canonical representer or with respect to the product measure ρN on DN.

We relate both approaches and provide sufficient conditions for the two approaches to

coincide.

Dedicated to J. F. Traub and G. W. Wasilkowski

on the occasion of their 80th and 60th birthdays

1. Introduction

For functions of infinitely many variables x1, x2, . . . ∈ D with D denoting a non-empty
set, the study of quadrature problems and their complexity was initiated in [10], and it has
intensively been studied recently, see [2, 7, 8, 9, 15, 16, 17, 20] and the preprints [3, 4, 6].
In the same setting function approximation is studied in [24, 25, 26], linear tensor product
problems are studied in [22], and a non-linear problem associated with elliptic PDEs with
random coefficients is studied in [14, 13]. See [23] for a survey.
The present paper is devoted to some aspects of the analytic foundations of computa-

tional problems of this kind.
Let us outline the setting in the references mentioned above together with a discussion

of our results. At first we consider the underlying function spaces, and then we turn to
the integration functional, which is to be approximated.
The construction of spaces of functions with an infinite number of variables is based

on a reproducing kernel k for functions of a single variable x ∈ D and on a family of
weights γu ≥ 0, which indicate the importance of the group (xj)j∈u of variables for finite
sets u ⊆ N. Formally, this leads to

K =
∑

u

γuku,

where u varies over all finite subsets of N and where ku is the |u|-fold tensor product of
k such that the functions in the associated reproducing kernel Hilbert space H(ku) only
depend on (xj)j∈u.

Date: December 19, 2012.
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In this paper we study a domain X ⊆ DN such that K is actually a reproducing kernel
on X×X and that the spaces H(γuku) form an orthogonal decomposition of H(K) under
mild assumptions. The latter fact has been used in [9, 10], e.g., without providing a
rigorous proof. Moreover, we show that the space H(K) is isometrically isomorphic in
a natural way to the quasi-reproducing kernel Hilbert space introduced and studied in
[15, 20, 25, 26] for integration and function approximation.
Two different ways are used to define the integration functional for f ∈ H(K). Both of

these constructions are based on a probability measure ρ on D such that H(k) ⊆ L1(ρ),
which implies ∫

D

g dρ = 〈g, h〉k
for every g ∈ H(k) with a representer h ∈ H(k).
Either, one studies the Lebesgue integral with respect to the product measure µ = ρN on

DN. Taking into account that µ(X) ∈ {0, 1}, the functions f ∈ H(K) have to be properly
extended from X to DN, in particular if µ(X) = 0. At this point we are free to think of
the kernels ku as being defined on X×X or Du ×Du. This distinction is indeed only of a
technical nature, which will become clear when we introduce the kernels rigorously. The
extension Tf is given as the L1-limit of the orthogonal projections of f onto the spaces
H(
∑

u⊆{1,...,s} γuku), and it leads to the integral

I1(f) =

∫

DN

Tf dµ.

Clearly

I1(f) =

∫

X

f dµ

if µ(X) = 1. Cf. [2, 3, 4, 7, 8, 6, 9, 10, 17].
Alternatively, one studies the bounded linear functional

I2(f) = 〈f,
∑

u

γuhu〉K

on H(K), where

hu(x) =
∏

j∈u

h(xj), x ∈ X.

Here, as previously, u varies over all finite subsets of N. We are free to think of hu as being
defined on X or Du, so that this function is the representer of integration with respect to
the product measure ρu on Du. Cf. [15, 20].
We provide necessary and sufficient conditions for I1 and I2 to be well-defined and for

I1 = I2 to hold true. In particular, we show that

I1 = I2

if ∑

u

γu‖Ju‖2 <∞,

where Ju denotes the embedding from H(ku) to L1(ρ
u).

The paper is organized as follows. In Section 2 we present the basic assumptions on the
kernel k and the weights γu, and we introduce the domain X for functions of infinitely
many variables. The associated spaces of functions of finitely many and infinitely many
variables are studied in Section 3, with Proposition 2 being the main result. In Section 4
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we present further assumptions on k and ρ, which are then used to study the associated
finite and infinite dimensional integration problems. Here the main result is Proposition 3.
An appendix contains some basic results on reproducing kernel Hilbert spaces.

2. Preliminaries

Throughout this paper we use the following notation. For x = (xj)j∈N ∈ DN and
∅ 6= u ⊆ N we put xu = (xj)j∈u ∈ Du, and uc denotes the complement of any set u ⊆ N.
Unless stated otherwise we use u, v, and w to denote finite subsets of N in the sequel. For
s ∈ N we let 1 : s denote the set {1, . . . , s}.
We use basic results from [1] about reproducing kernels and the corresponding Hilbert

spaces frequently without giving further references.

2.1. Assumptions. We assume that

(A1) k 6= 0 is a reproducing kernel on D ×D with D 6= ∅,
which satisfies

(A2) H(k) ∩H(1) = {0}.
With

m = inf
x∈D

k(x, x)

we furthermore assume that

(A3) (γu)u is a family of non-negative weights such that
∑

u

γum
|u| <∞.

Put

D0 = {x ∈ D : k(x, x) = 0}.
If D0 6= ∅ then any point in D0 is called an anchor for the kernel k. Accordingly, we often
distinguish between the anchored case D0 6= ∅ and the unanchored case D0 = ∅.
Remark 1. Assumption (A3) trivially holds in the anchored case and, more generally, if
m = 0. In the sequel, let m > 0. For product weights

γu =
∏

j∈u

γj

with any sequence of real numbers γj ≥ 0, which were introduced in [21], assumption
(A3) is equivalent to

(1)
∞∑

j=1

γj <∞.

For product and order dependent (POD) weights of the form

γu = |u|! ·
∏

j∈u

γj,

see [14], condition (1) is a necessary condition for (A3), while sufficient conditions are,
e.g.,

∞∑

j=1

γj < 1/m,



4 GNEWUCH, MAYER, AND RITTER

see [14, Lemma 6.2], or
∞∑

j=1

γ1−ε
j <∞

for some ε > 0, see [4, Cor. 1]. For finite order weights, i.e., γu = 0 if |u| > r for some
constant r, see [5], we have (A3) if and only if

∑

u

γu <∞.

2.2. The Domain. In the present setting

X =
{
x ∈ DN :

∑

u

γu
∏

j∈u

k(xj, xj) <∞
}

turns out to be the natural domain for functions of infinitely many variables.

Lemma 1. Given (A1), the assumption (A3) is equivalent to X 6= ∅. Moreover, if there

exists a minimizing sequence (xj)j∈N for k such that k(xj, xj) > m, then X contains

elements with pairwise different components.

Proof. Obviously X 6= ∅ implies (A3). To prove the reverse implication choose εj > 0 such
that

∑∞
j=1 εj <∞. In the case m > 0 we may take xj ∈ D such that k(xj, xj) ≤ (1+εj)m

to obtain
∑

u

γu
∏

j∈u

k(xj, xj) ≤
∑

u

γum
|u| ·

∞∏

j=1

(1 + εj) <∞

from (A3). In the case m = 0 we choose xj ∈ D such that k(xj, xj) ≤ 1 and

2j−1 ·max
u⊆1:j

γu · k(xj, xj) ≤ εj.

This yields
∏

ℓ∈u k(xℓ, xℓ) ≤ k(xj, xj) with any j ∈ u as well as

∑

u 6=∅

γu
∏

j∈u

k(xj, xj) ≤
∞∑

j=1

2j−1 ·max
u⊆1:j

γu · k(xj, xj) <∞.

The second statement of the lemma is obvious now. �

For s ∈ N put

Rs =
⋂

u⊆1:s

{
x ∈ D(1:s)c :

∑

w⊆(1:s)c

γu∪w
∏

j∈w

k(xj, xj) <∞
}

and
Xs = D1:s ×Rs

as well as
Ns =

⋃

j∈1:s

{x ∈ DN : xj ∈ D0}.

Lemma 2. For every s ∈ N we have

X = Xs

in the unanchored case, and

D1:s ×D
(1:s)c

0 ⊆ Xs ⊆ X ⊆ Xs ∪Ns

in the anchored case. In particular, Xs 6= ∅ in both cases.
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Proof. The lemma follows easily from

∑

u

γu
∏

j∈u

k(xj, xj) =
∑

u⊆1:s

(∏

j∈u

k(xj, xj) ·
∑

w⊆(1:s)c

γu∪w
∏

j∈w

k(xj, xj)

)

and the fact that X 6= ∅, see Lemma 1. �

Example 1. Let D = {0, 1}, and let k(1, 1) = 1, while k(x, y) = 0 otherwise. Moreover,
let γu = 1 if 1 ∈ u or u = ∅, while γu = 0 otherwise. Then x ∈ DN belongs to X if and only
if x1 = 0 or xj = 1 for at most finitely many j ∈ N. In particular, X is not a Cartesian
product E1 × E2 with any sets E1 ⊆ D1:s and E2 ⊆ D(1:s)c for any s ∈ N. See, however,
Lemma 8 below.

3. The Function Space

In this section we study the superposition of weighted tensor products of the kernel k
and the associated reproducing kernel Hilbert space.

3.1. Functions of Finitely Many Variables. At first we consider the reproducing
kernels

ku(x,y) =
∏

j∈u

k(xj, yj), x,y ∈ X,

as well as the associated reproducing kernel Hilbert spaces H(ku). By definition, k∅ = 1
so that H(k∅) consists of all constant functions on X.
The following fact is an immediate consequence of the reproducing property, and it

shows in particular that the functions in H(ku) only depend on finitely many variables.

Lemma 3. For x,y ∈ X and f ∈ H(ku) we have

xu = yu ⇒ f(x) = f(y).

In a second step we define for any v the weighted sums

Kv(x,y) =
∑

u⊆v

γuku(x,y), x,y ∈ X,

of reproducing kernels ku. Clearly Kv is a reproducing kernel, too, and

H(Kv) =
{∑

u⊆v

fu : fu ∈ H(γuku)
}
.

If γu > 0 then H(γuku) = H(ku) and

‖fu‖γuku = γ−1/2
u ‖fu‖ku , f ∈ H(ku).

The tensor product form of the kernels ku allows to deduce that H(ku) ∩H(kv) = {0}
if u 6= v. Inductively, it follows that

∑
u⊆1:s fu = 0 with fu ∈ H(ku) implies fu = 0 for all

u ⊆ 1 : s. See, e.g., [9, p. 233] for a proof in the case D ⊆ R, which literally carries over
to the case of arbitrary sets D. We refer to Lemma 11 for further equivalent formulations.
In particular, this yields the following well-known fact.

Proposition 1. The spaces H(γuku) with u ⊆ 1 : s are pairwise orthogonal in H(K1:s).
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Remark 2. In general, Proposition 1 does not hold for arbitrary kernels ku such that
H(ku)∩H(kv) = {0} for u 6= v and that fu ∈ H(ku) only depends on the variables xj with
j ∈ u, cf. Lemma 3. As a counterexample, let γu = 1 for every u, and consider D = R as
well as

k∅(x,y) = 1,

k{1}(x,y) = x1 · y1,
k{2}(x,y) = x2 · y2,
k{1,2}(x,y) = (x1 + x2) · (y1 + y2).

Then H(k∅) = span{1}, H(k{1}) = span{x1}, H(k{2}) = span{x2}, and H(k{1,2}) =
span{x1 + x2}.
For the sake of completeness we show that every function f ∈ H(K1:s) may indeed be

identified with a function on D1:s or DN, and K1:s may be identified with a kernel on
D1:s × D1:s or DN × DN, as well. It will be an immediate consequence of Proposition 1,
Lemma 3, and Lemma 4 below. Put

lu(x,y) =
∏

j∈u

k(xj, yj), x,y ∈ Du,

which formally differs from ku, since the underlying domain is Du instead of X. For
f ∈ H(lu) we define the mapping ψuf : X → R by

ψuf(x) = f(xu), x ∈ X.

Lemma 4. The mapping ψu defines an isometric isomorphism between H(lu) and H(ku).

Proof. Let a(i) ∈ R and y(i) ∈ Du for i = 1, . . . , n. Due to Lemma 2 there exist x(i) ∈ X

such that x
(i)
u = y(i). Put

f =
n∑

i=1

a(i) lu(·,y(i))

to obtain

ψuf =
n∑

i=1

a(i) ku(·,x(i)),

which in particular yields ‖f‖lu = ‖ψuf‖ku . We conclude that ψu defines a linear isometry
between span{lu(·,x) : x ∈ Du} and H(ku) with a dense range. Use the reproducing
property to complete the proof. �

Clearly, we have ψ−1
u f(y) = f(x) for every f ∈ H(ku) and all y ∈ Du and x ∈ X with

xu = y.

3.2. Functions of Infinitely Many Variables. Finally, we consider the limit

K(x,y) =
∑

u

γuku(x,y), x,y ∈ X,

of the sequence of kernelsK1:s. Note that X is the set of points x ∈ DN such thatK1:s(x,x)
converges as s tends to infinity. Hence

∑
u γu|ku(x,y)| < ∞ for all x,y ∈ X, and K is

a reproducing kernel on X × X. Since K − Kv is a reproducing kernel, too, we have
H(Kv) ⊆ H(K) and ‖f‖Kv

≥ ‖f‖K for all f ∈ H(Kv). As a consequence of Proposition
1 and Proposition 2 below we actually have equality of the norms.
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Consider the direct sum

H = {(fu)u : fu ∈ H(γuku),
∑

u

‖fu‖2γuku <∞}

of the spaces H(γuku), equipped with the scalar product

〈(fu)u, (gu)u〉 =
∑

u

〈fu, gu〉γuku .

For (fu)u ∈ H and x ∈ X we have
∑

u

|fu(x)| ≤
∑

u

‖fu‖γuku · (γuku)1/2(x,x) ≤ ‖(fu)u‖ ·K1/2(x,x) <∞.

Hence the mapping

φ : H → RX, (fu)u 7→
∑

u

fu,

where we have absolute convergence of the series at every point in X, is well-defined.

Proposition 2. The direct sum H is isometrically isomorphic to H(K) via φ. This means

that the spaces H(γuku) with finite sets u ⊂ N are pairwise orthogonal in H(K).

Note that Proposition 1 is a particular case of Proposition 2, namely, if γu = 0 for
u 6⊆ 1 : s, see Lemma 11. Proposition 2 is used in [9, 10] in the anchored and unanchored
case without providing a rigorous proof.
To cover the unanchored case in the proof of Proposition 2, we need some additional

lemmas. Hence we restrict considerations temporarily to the unanchored case D0 = ∅. For
s ∈ N and u ⊆ 1 : s we consider the reproducing kernel

J (s)
u (x,y) = ku(x,y) ·

∑

w⊆(1:s)c

γu∪w kw(x,y) =
∑

w⊆(1:s)c

γu∪w ku∪w(x,y)

on X× X, which is well-defined due to Lemma 2. Clearly

(2) K =
∑

u⊆1:s

J (s)
u

and H(γuku) ⊆ H(J
(s)
u ).

Lemma 5. In the unanchored case the spaces H(J
(s)
u ) with u ⊆ 1 : s are pairwise or-

thogonal in H(K) for every s ∈ N.

Proof. Apply Proposition 1 with equal weights γu = 1 and for the domain D1:s to conclude
that the spaces H(ku) with u ⊆ 1 : s are pairwise orthogonal in the Hilbert space with
reproducing kernel

∑
u⊆1:s ku. By Lemma 13 and (2) the same property holds for the

spaces H(J
(s)
u ) in H(K). �

Lemma 6. Consider the unanchored case. For every u there exists a constant cu ≥ 1
such that

‖f‖γuku = cu · ‖f‖K
for every f ∈ H(γuku).
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Proof. If γu = 0 then H(γuku) = {0}, and we choose cu = 1. In the sequel we assume
that γu > 0. Put s = max(u ∪ {1}), which yields u ⊆ 1 : s. Moreover, put E1 = D1:s and

E2 = Rs. We have X = E1 × E2 according to Lemma 2. Note that J
(s)
u = L ⊗M with

reproducing kernels

L(x,y) = lu(xu,yu), x,y ∈ E1,

and

M(x,y) =
∑

w⊆(1:s)c

γu∪w lw(xw,yw), x,y ∈ E2.

Let f ∈ H(ku). For the section

g(x) = f(x, xs+1, . . . ), x ∈ E1,

with any (xs+1, . . . ) ∈ E2 we have g ∈ H(L) and ‖g‖L = ‖f‖ku , see, e.g., [9, Lemma 16]
and its proof. Note that 1 ∈ H(M), since γu > 0. Put e0 = 1/‖1‖M and extend this element
to an orthonormal base (em)m of H(M). Furthermore, let (dℓ)ℓ be an orthonormal base
of H(L). For

h =
∑

ℓ

〈g, dℓ〉L · dℓ ⊗ e0

we have h ∈ H(J
(s)
u ) and

h(x) = g(x1, . . . , xs) · e0 = f(x) · e0, x ∈ X,

due to Lemma 3. Furthermore, we have ‖g‖L = ‖h‖
J
(s)
u

= ‖h‖K , where the last identity

is due to Lemma 5. Consequently,

‖f‖2γuku = γ−1
u · ‖f‖2ku = γ−1

u · ‖g‖2L = γ−1
u · ‖h‖2K = c2u · ‖f‖2K

with

c2u = e20/γu = 1/
(
‖1‖2M · γu

)
.

Since M − γu is a reproducing kernel, we get ‖1‖M ≤ ‖1‖γu = γ
−1/2
u , which implies

cu ≥ 1. �

Proof of Proposition 2. We commence by showing that φ is injective.
First we consider the unanchored case. Let H0 be the subspace of H that consists of

all sequences (fu)u such that fu = 0 for all but finitely many u. Then the mapping

χ : H0 → H(K), (fu)u 7→
∑

u

cufu,

where the constants cu are as in Lemma 6, is well-defined. Moreover, if s ∈ N and fu = 0
for all u * 1 : s, then

‖χ(fu)u‖2K =
∑

u⊆1:s

‖cufu‖2K =
∑

u⊆1:s

‖fu‖2γuku = ‖(fu)u‖2,

see Lemma 5 and 6. Thus χ can be uniquely extended to a linear isometry χ : H → H(K).
Notice that for (fu)u ∈ H we have necessarily χ(fu)u = lims→∞

∑
u⊆1:s fu, where the
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sequence converges in H(K) and therefore also pointwise. Fix x ∈ X and consider the
special choice fu = γuku(·,x) for all u. Then

∑

u

cuγuku(x,x) = |χ(fu)u(x)| ≤ ‖χ(fu)u‖K ·K1/2(x,x)

= ‖(fu)u‖ ·K1/2(x,x) =
∑

u

γuku(x,x).

Since ku(x,x) > 0 and cu ≥ 1, it follows that cu = 1 for each u with γu > 0. This means
χ = φ so that, in particular, φ is injective.
Let us now consider the anchored case. Assume that φ(fu)u = 0 for some (fu)u ∈ H.

For x ∈ X and a given u we define y ∈ DN by yj = xj if j ∈ u and yj = a for j 6∈ u, where
a ∈ D0. Note that y ∈ X due to Lemma 2, and fv(y) = 〈fv, kv(·,y)〉kv = 0 if v 6⊆ u. Thus

0 =
∑

v

fv(y) =
∑

v⊆u

fv(y) =
∑

v⊆u

fv(x),

see Lemma 3. Via induction over the cardinality of u we obtain (fu)u = 0, so that φ is
injective.
In both cases we consider the Hilbert space φ(H), endowed with the scalar product

〈f, g〉φ = 〈φ−1(f), φ−1(g)〉, f, g ∈ φ(H).

Choosing fu = γuku(·,x) for all u, we see that φ(fu)u = K(·,x) ∈ φ(H) for every x ∈ X.
For (gu)u ∈ H we get

〈φ((gu)u), K(·,x)〉φ =
∑

u

〈gu, γuku(·,x)〉γuku =
∑

u

gu(x) = φ(gu)u(x).

Hence φ(H) = H(K) and φ is an isometric isomorphism between H and H(K). �

Remark 3. The direct sum H, which is a completion of H̃ = span
⋃

uH(γuku), is studied
in [15, 20, 24, 25, 26], and it is called a quasi-reproducing kernel Hilbert space. In the
sense of Proposition 2, H actually is a reproducing kernel Hilbert space. However, while

the elements in H̃ may be considered as functions on DN this is no longer true, in general,
for the elements in H in the sense that

∀ (fu)u ∈ H :
∑

u

|ψ−1
u fu(yu)| <∞

does not necessarily hold for every y ∈ DN, see, e.g., Example 2 below. This is avoided,
if X is considered as the underlying domain instead of DN.

Remark 4. Let us impose (A1) and (A2) only. Furthermore, we denote by G the direct
sum of the spaces H(γulu). Now condition (A3) is equivalent to the following: There
exists a point y ∈ DN such that the series

∑
u |gu(yu)| converges for every (gu)u ∈ G and

(gu)u 7→ ∑
u gu(yu) yields a bounded linear functional on G. For the proof observe that

for the latter functional the representer is then given by (γulu(·,yu))u, and therefore
∑

u

γulu(yu,yu) <∞.

Consequently, we have X 6= ∅, and Lemma 1 yields (A3). See Proposition 2 for the reverse
implication.
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4. The Integration Problem

In this section we study the integration problem for the functions from H(K), when a
probability measure ρ on D with H(k) ⊆ L1(ρ) is given. We analyze and compare two
different approaches, namely integration with respect to the product measure ρN on DN

and the definition of an integration functional by means of a representer h∗ ∈ H(K).

4.1. Assumptions. Let D be equipped with a σ-algebra, and let Cartesian products of
D be equipped with the respective product σ-algebras.
In addition to (A1)–(A3) we assume that

(A4) ρ is a probability measure on D,
(A5) k is measurable and ρ(D0) = 0,

and

(A6) H(k) ⊆ L1(ρ).

Notice that ρ(D0) = 0 holds if and only if there does not exist a measurable subset of D
with positive measure such that all functions in H(k) vanish on this subset. Furthermore,
by (A5), the sets X, Xs, Ns, and Rs, which are introduced in Section 2.2, are measurable
subsets of DN or D(1:s)c , respectively.
A sufficient condition to ensure (A6) is

(3)

∫

D

k1/2(x, x) dρ(x) <∞,

since

(4)

∫

D

|g(x)| dρ(x) ≤ ‖g‖k
∫

D

k1/2(x, x) dρ(x), g ∈ H(k).

The closed graph theorem implies that if a reproducing kernel Hilbert space is contained
in an L1-space, then the respective embedding is continuous, see, e.g., [12, p. 126]. Thus,
(A6) already yields the continuity of the embedding

J : H(k) → L1(ρ),

so that there exists a function h ∈ H(k) with
∫

D

g dρ = 〈g, h〉k, g ∈ H(k).

Clearly h(x) = 〈h, k(·, x)〉k =
∫
D
k(y, x) dρ(y) for every x ∈ D, and therefore

‖h‖2k =
∫

D

∫

D

k(x, y) dρ(x) dρ(y).

We stress that the right-hand side is well defined as an iterated integral, while we do not
claim that k is integrable with respect to ρ⊗ ρ, in general. We refer to [18, NR 23.4.2] for
further discussion of assumption (A6).

4.2. Finite-Dimensional Integration. For every set ∅ 6= u ⊆ N, not necessarily finite,
we let ρu denote the corresponding product of ρ on Du. Put

hu(x) =
∏

j∈u

h(xj), x ∈ Du.

Clearly hu ∈ H(lu) and

(5) ‖hu‖lu = ‖h‖|u|k .
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On the other hand, lu(·,x) ∈ L1(ρ
u) and
∫

Du

lu(·,x) dρu = hu(x).

We conclude that f ∈ L1(ρ
u) and

(6)

∫

Du

f dρu = 〈f, hu〉lu

for every f ∈ span{lu(·,x) : x ∈ Du}. We are not aware of an elementary proof of the
following result, which only employs the assumptions (A1)–(A6).

Lemma 7. Suppose that u 6= ∅. Then H(lu) ⊆ L1(ρ
u), and the norm of the respective

embedding Ju satisfies

‖h‖|u|k ≤ ‖Ju‖ ≤ (
√
π/2 · ‖J‖)|u|.

Furthermore,
∫

Du

f dρu = 〈f, hu〉lu , f ∈ H(lu).

Proof. We use some argument from [12]. Due to the Little Grothendieck Theorem, see,
e.g., [19, 22.4.2], the dual operator J ′ : L∞(ρ) → H(k) of J is 2-summable with 2-summing
norm

π2(J
′) ≤

√
π/2 · ‖J‖.

This implies that there exists a probability density ϕ : D → ]0,∞[ with respect to ρ such
that H(k) ⊆ L2(1/ϕ dρ) and the norm of the embedding

A : H(k) → L2(1/ϕ dρ)

satisfies

‖A‖ ≤ π2(J
′).

See [12, p. 129]. Take tensor products to obtain

‖Au‖ ≤ (π2(J
′))|u|

for the embedding

Au : H(lu) → L2(⊗j∈u(1/ϕ dρ)).

Due to the Cauchy Schwarz inequality L2(⊗j∈u(1/ϕ dρ)) is embedded into L1(ρ
u) with

norm one. Consequently, H(lu) ⊆ L1(ρ
u) with an embedding of norm at most (π2(J

′))|u|.
This shows in particular that integration with respect to ρu defines a bounded linear

functional on H(lu), and by (6) the function hu necessarily is the representer of this
functional. Together with (5) this yields the lower bound for ‖Ju‖ as claimed. �

Remark 5. Let us discuss the estimate for the norm of Ju from Lemma 7 for different
types of kernels k.
For ANOVA-type kernels k, i.e., if h = 0, the lower bound is sharp only in the trivial

case that all functions from H(k) vanish ρ-a.e.
If k is non-negative then

‖Ju‖ = ‖J‖|u| = ‖h‖|u|k .
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We present a short proof of this fact, see [11]. For the dual operator J ′
u : L∞(ρu) → H(lu)

of Ju and for g ∈ L∞(ρu) and x ∈ Du we have

J ′
ug(x) = 〈J ′

ug, lu(·,x)〉lu =

∫

Du

lu(x,y)g(y) dρ
u(y).

Since lu(x,y) ≥ 0 for all x, y ∈ Du, we obtain

‖Ju‖2 = sup
‖g‖∞=1

‖J ′
ug‖2lu = sup

‖g‖∞=1

∫

Du

∫

Du

lu(x,y)g(x)g(y) dρ
u(x) dρu(y)

=

∫

Du

∫

Du

lu(x,y) dρ
u(x) dρu(y) =

(∫

D

∫

D

k(x, y) dρ(x) dρ(y)

)|u|

= ‖h‖2|u|k .

The equality ‖Ju‖ = ‖J‖|u| may also hold for kernels with a change of sign. For instance,
if k is of product form k(x, y) = κ(x)κ(y) with κ : D → R, then H(k) = span{κ} and
‖κ‖k = 1. It follows that

(7) ‖Ju‖2 =
(∫

D

∫

D

|k(x, y)| dρ(x) dρ(y)
)|u|

= ‖J‖2|u|.

If (3) is satisfied then

(8) ‖Ju‖ ≤
(∫

D

k1/2(x, x) dρ(x)

)|u|

,

which is verified analogously to (4), provides an alternative to the upper bound from
Lemma 7.

4.3. Infinite-Dimensional Integration. In the sequel we study integration with re-
spect to the probability measure

µ = ρN

on DN.

Lemma 8. For every s ∈ N we have

µ(X) = µ(Xs) ∈ {0, 1}.
Proof. From (A5) we get µ(Ns) = 0, so that Lemma 2 implies µ(X) = µ(Xs).
We apply Kolmogorov’s 0-1 law to derive µ(X) ∈ {0, 1}. To this end we put Yj(x) =

k(xj, xj) for j ∈ N to obtain an independent sequence of random variables onDN, equipped
with the probability measure µ. Let A∞ be the terminal σ-algebra associated to (Yj)j∈N,
i.e., A∞ = ∩s∈NAs with As = σ({Yj : j ≥ s}).
In the unanchored case we have X = Xs ∈ As for every s ∈ N due to Lemma 2. Hence

X ∈ A∞, and therefore µ(X) ∈ {0, 1}. To deal with the anchored case, we show that
(Xs)s∈N is decreasing, which is also true in the unanchored case. In fact, for s < t, x ∈ Xt,
and u′ ⊆ 1 : s we obtain
∑

w′⊆(1:s)c

γu′∪w′

∏

j∈w′

k(xj, xj) =
∑

v⊆(1:s)c∩(1:t)

∏

i∈v

k(xi, xi)
∑

w⊆(1:t)c

γ(u′∪v)∪w

∏

j∈w

k(xj, xj) <∞,

implying x ∈ Xs. For X∞ = ∩t∈NXt it follows that X∞ = ∩t≥sXt ∈ As for every s ∈ N,
i.e., X∞ ∈ A∞, and therefore µ(X∞) ∈ {0, 1}. It remains to observe that

µ(X∞) = lim
s→∞

µ(Xs) = µ(X).

�
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Let us introduce the conditions

(C1)
∑

u

γu‖h‖2|u|k <∞,

(C2)
∑

u

γu‖Ju‖2 <∞,

(C3)
∑

u

γu

(∫

D

k(x, x) dρ(x)

)|u|

<∞.

Note that (C2) implies (C1) according to Lemma 7, and (C3) implies (C2), see (8). Both
implications are strict. For the first implication one may take a non-trivial ANOVA-type
kernel and suitable weights, see Remark 5, and for the second implication we refer to
Example 2.

Lemma 9. If (C3) is satisfied, then µ(X) = 1.

Proof. Put Yu(x) = γuku(x,x) for all u to obtain a family of non-negative random variables
on DN, equipped with the probability measure µ. Thus

E

(
∑

u

Yu

)
=
∑

u

γu

∫

DN

ku(x,x) dµ(x) =
∑

u

γu

(∫

D

k(x, x) dρ(x)

)|u|

.

Hence
∑

u Yu is finite µ-almost surely, i.e., µ(X) = 1, if (C3) is satisfied. �

To define the integral of f ∈ H(K) with respect to µ we need a proper extension
of f from X to DN in the case µ(X) = 0. This extension is based on partial sums of the
orthogonal decomposition f =

∑
u fu with fu ∈ H(γuku), see Proposition 2, and obviously

it works as well in the case µ(X) = 1. Recall the definition and properties of the mapping
ψu from Section 3.1. For s ∈ N we define f (s) : DN → R by

f (s)(y) =
∑

u⊆1:s

ψ−1
u fu(yu), y ∈ DN.

For every y ∈ DN there exists a point x ∈ X such that x1:s = y1:s, see Lemma 2, and for
any such x we have

f (s)(y) =
∑

u⊆1:s

fu(x).

Clearly

lim
s→∞

f (s)(x) = f(x), x ∈ X.

Moreover, f (s) ∈ L1(µ), which follows from Lemma 4, Lemma 7, and the fact that ρu is
the image of µ under x 7→ xu.
We are interested in the following property:

(E) For every f ∈ H(K) the sequence (f (s))s converges in L1(µ), and

Tf = lim
s→∞

f (s)

defines a bounded linear mapping

T : H(K) → L1(µ).
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Lemma 10. Suppose that µ(X) = 1 and that the sequence (f (s))s converges in L1(µ) for
every f ∈ H(K). Then property (E) holds true and H(K) ⊆ L1(µ|X), where µ|X denotes

the restriction of µ to measurable subsets of X.

Proof. It remains to show the continuity of T . Let f, fn ∈ H(K) and g ∈ L1(µ) such

that limn→∞ ‖fn − f‖K = 0 as well as limn→∞ ‖Tfn − g‖L1(µ) = 0. Moreover, let f̃ and

f̃n denote the extensions of f and fn by zero to the domain DN. Since µ(X) = 1, we get

Tf = f̃ and Tfn = f̃n µ-a.s. Apply the closed graph theorem. �

Proposition 3. We have

(C2) ⇒ (E) ⇒ (C1).

If (C1) is satisfied, then

h∗ =
∑

u

γuψuhu ∈ H(K)

and

〈f, h∗〉K =
∑

u

∫

Du

ψ−1
u fu dρ

u

for every f =
∑

u fu ∈ H(K) with fu ∈ H(γuku). If (E) holds true, then

〈f, h∗〉K =

∫

DN

Tf dµ

for every f ∈ H(K).

Proof. Recall that H(lu) ⊆ L1(ρ
u) and hu is the representer for integration with respect

to ρu on H(lu), if u 6= ∅, see Lemma 7. In the sequel, let f =
∑

u fu ∈ H(K) with
fu ∈ H(γuku).
Assume that (C1) is satisfied. Then

∑
u γuψuhu ∈ H(K), see Lemma 4 and (5), and we

obtain

〈f, h∗〉K =
∑

u

〈fu, ψuhu〉ku =
∑

u

∫

Du

ψ−1
u fu dρ

u,

see Proposition 2 and Lemma 4.
Assume that (E) holds true. Then there exists a function h∗ ∈ H(K) such that

〈f, h∗〉K =

∫

DN

Tf dµ

for every f ∈ H(K). In particular,

〈fu, h∗〉K =

∫

Du

ψ−1
u fu dρ

u = 〈fu, γuψuhu〉K ,

see Proposition 2 and Lemma 4, so that h∗ =
∑

u γuψuhu. This implies (C1).
Note that

‖f (s)‖L1(µ) ≤
∑

u⊆1:s

‖ψ−1
u fu‖L1(ρu) ≤

(
∑

u⊆1:s

γu‖Ju‖2
)1/2

· ‖f‖K

for every s ∈ N, which follows from Proposition 2 and Lemma 7. Therefore (C2) guarantees
(E) to hold true. �
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Roughly speaking, Proposition 3 shows the following. If (C1) is satisfied, then the
integral of f ∈ H(K) may be understood as a series of finite dimensional integrals of its
components fu with respect to the product measures ρu, and the associated representer
is the function h∗. If (E) holds true, then all functions in H(K), properly extended from
X to DN if µ(X) = 0, are integrable with respect to µ, and h∗ is the representer of the
integration functional.

Example 2. Consider the uniform distribution ρ on D = [0, 1], and let k = min. More-
over, fix α > 0, and let

γu = αs

if u = 1 : s for any s ∈ N, while γu = 0 otherwise. See [26, Exmp. 1]. In this case the
assumptions (A1)–(A6) are satisfied, and h(x) = x · (1− x/2) so that ‖h‖2k = 1/3.
Observe that

(C2) ⇔ (E) ⇔ (C1) ⇔ α < 3,

see Remark 5 and Proposition 3.
We claim that

µ(X) = 1 ⇔ α < exp(1).

To verify this fact we put Yj(x) = − ln(xj) for x ∈ DN with xj > 0 to obtain an
independent sequence of random variables on DN, equipped with the probability measure
µ. Note that Yj is exponentially distributed with parameter one, so that E(Yj) = 1 and
Var(Yj) = 1. The Strong Law of Large Numbers yields

lim
s→∞

1

s

∑

j∈1:s

Yj = 1

almost surely. Furthermore,

lim inf
s→∞

∑
j∈1:s Yj − s
√
s · ln ln s

= −
√
2

holds almost surely due to the Law of the Iterated Logarithm. Since

∑

u

γu
∏

j∈u

k(xj, xj) =
∞∑

s=1

αs exp

(
−
∑

j∈1:s

Yj(x)

)
,

the statement follows.
Moreover,

(C3) ⇔ α < 2,

while X = DN is equivalent to α < 1. For α ∈ [2, 3[ and y = (1, . . . ) 6∈ X we have
(γuψuhu)u ∈ H, but ∑

u

γu|hu(yu)| = ∞,

cf. Remark 3.
In particular, for α ∈ [exp(1), 3[, property (E) holds true, but µ(X) = 0.

Example 3. Consider the uniform distribution ρ on D = [−1, 1], and let k(x, y) = x · y.
Moreover, let γu be given as in Example 2. In this case the assumptions (A1)–(A6) are
satisfied, and h = 0.
Hence (C1) trivially holds for every α > 0. We claim that

α < 4 ⇔ (C2) ⇒ (E) ⇒ α ≤ 4.
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For a proof note that ‖Ju‖ = 2−|u| due to (7). In view of Proposition 3 it remains to show
that (E) implies α ≤ 4. To this let f(y) =

∏
j∈1:s yj for y ∈ D1:s. Use ‖f‖l1:s = 1 and

Tψ1:sf(y) = f(y1:s) for y ∈ DN to derive
∫

DN

|Tψ1:sf | dµ =

∫

D1:s

|f | dρ1:s = 2−s = ‖ψ1:sf‖K · (α/4)s/2.

Continuity of T therefore implies α ≤ 4.
Furthermore, we claim that

µ(X) = 1 ⇔ α < exp(2).

To verify this fact we put Yj(x) = − ln(x2j) for x ∈ DN with xj 6= 0, so that E(Yj) = 2

with respect to the probability measure µ on DN. It remains to apply the argument from
the previous example.
Finally

(C3) ⇔ α < 3,

and X = DN is equivalent to α < 1.
In particular, for α ∈ ]4, exp(2)[, condition (C1) is satisfied and µ(X) = 1, but property

(E) does not hold true.

It is open to us whether the implication (C2) ⇒ (E) is strict.

Appendix A. Basic Facts

Let E 6= ∅, and let K1, . . . , Kn denote reproducing kernels on E×E. Put K =
∑n

i=1Ki.

Lemma 11. The following properties are equivalent:

(i) Each f ∈ H(K) has a unique representation f =
∑n

i=1 fi with fi ∈ H(Ki).
(ii) The spaces H(K1), . . . , H(Kn) are pairwise orthogonal in H(K).
(iii) For all fi ∈ H(Ki) with

∑n
i=1 fi = 0 we have f1 = · · · = fn = 0.

(iv) For all f =
∑n

i=1 fi with fi ∈ H(Ki) we have ‖f‖2K =
∑n

i=1 ‖fi‖2Ki
.

(v) For all orthonormal bases (di,j)j∈Ji of the spaces H(Ki) the family (di,j)i∈1:n,j∈Ji
is an orthonormal base of H(K).

(vi) There exist orthonormal bases (di,j)j∈Ji of the spaces H(Ki) such that (di,j)i∈1:n,j∈Ji
is an orthonormal base of H(K).

Proof. The implication (v) ⇒ (vi) is trivial, and (i) obviously implies (iii) as well as (ii)
obviously implies (v). Let f ∈ H(K) and gi, hi ∈ H(Ki) such that f =

∑n
i=1 gi =

∑n
i=1 hi.

Then it is easy to see that (ii)–(vi) each imply gi = hi. Hence (i) follows.
For (i) ⇒ (iv) ⇒ (ii) recall that by definition of H(K) we have

‖f‖2K = min{
n∑

i=1

‖fi‖2Ki
: f =

n∑

i=1

fi and fi ∈ H(Ki)}

for f ∈ H(K). But then (iv) follows immediately. In particular, ‖f‖K = ‖f‖Ki
for f ∈

H(Ki). Let h ∈ H(Ki) and g ∈ H(Kj) with i 6= j. Now we obtain (ii) from

‖h‖2Ki
+ ‖g‖2Kj

(iv)
= 〈h+ g, h+ g〉K = ‖h‖2K + 2〈h, g〉K + ‖g‖2K
(iv)
= ‖h‖2Ki

+ 2〈h, g〉K + ‖g‖2Kj
.

�
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Suppose that E = E1 ×E2 with E1, E2 6= ∅. Let L be a reproducing kernel on E1 ×E1,
and let M and M ′ be reproducing kernels on E2 × E2.

Lemma 12. If H(M) ⊆ H(M ′) then

H(L⊗M) ⊆ H(L⊗M ′).

Proof. By assumption, cM ′ −M is non-negative definite for some c > 0. Furthermore,
c L⊗M ′ − L⊗M = L⊗ (cM ′ −M). �

Let Li and Mi be reproducing kernels on E1 × E1 and E2 × E2, respectively, for i =
1, . . . , n. Consider the kernels L =

∑n
i=1 Li on E1 ×E1 and K =

∑n
i=1 Li ⊗Mi on E ×E.

Lemma 13. Pairwise orthogonality of the spaces H(Li) in H(L) implies the same property

for the spaces H(Li ⊗Mi) in H(K).

Proof. At first we assume that M1 = · · · = Mn, which implies K = L ⊗ M1. Take
orthonormal bases (dj)j∈Ji of H(Li) and (ej)j∈J(2) of H(M1). Without loss of generality we

assume that J1, . . . , Jn are pairwise disjoint. Put J (1) =
⋃n

i=1 Ji as well as J = J (1) × J (2).
Let x ∈ E1, y ∈ E2, and α ∈ ℓ2(J). Since

L(x,x) =
∑

j1∈J(1)

dj1(x)
2 and M1(y,y) =

∑

j2∈J(2)

ej2(y)
2,

we have for all x ∈ E1 and y ∈ E2 that

(dj1(x))j1∈J(1) ∈ ℓ2(J
(1)) and (ej2(x))j2∈J(2) ∈ ℓ2(J

(2)).

Hence

Φ(α) =
∑

j∈J

αj · dj1 ⊗ ej2

yields a linear mapping Φ : ℓ2(J) → RE. Note that


∑

j2∈J(2)

|αj1,j2 · ej2(y)|




2

≤
∑

j2∈J(2)

α2
j1,j2

·M1(y,y)

and that (dj1)j1∈J(1) is an orthonormal basis of H(L), which follows from Lemma 11. Thus
Φ(α) = 0 implies

∑

j2∈J(2)

αj1,j2 · ej2(y) = 0, j1 ∈ J (1),y ∈ E2,

and hereby α = 0.
Consider the Hilbert space H = Φ(ℓ2(J)), equipped with the scalar product

〈f, g〉 = 〈Φ−1(f),Φ−1(g)〉ℓ2(J), f, g ∈ H.

Choose αj1,j2 = dj1(x) · ej2(y) to obtain K(·, (x,y)) ∈ H, and for β ∈ ℓ2(J) we get

〈Φ(β), K(·, (x,y))〉 =
∑

j∈J

βj · dj1(x) · ej2(y) = Φ(β)(x,y).

Therefore H = H(K), and (dj1 ⊗ ej2)j∈J is an orthonormal basis of this space. By the
same arguments, formally with n = 1, (dj1 ⊗ ej2)j1∈Ji,j2∈J(2) is an orthonormal basis of the
space H(Li ⊗M1). Apply Lemma 11.
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We turn to the general case. Assume that
∑n

i=1 fi = 0 for fi ∈ H(Li ⊗ Mi). Put
Ki = Li ⊗M with M =

∑n
i=1Mi. Use Lemma 12 to conclude that fi ∈ H(Ki). The first

part of the proof, together with Lemma 11, yields f1 = · · · = fn = 0. �
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sions.
Michael Gnewuch was partially supported by the German Research Foundation DFG

under grant GN 91/3-1 and the Australian Research Council ARC. Klaus Ritter was
partially supported by the DFG within the Priority Program 1324. Both are grateful to
the Computational Mathematics group at the University of New South Wales, Sydney,
for their support and for the stimulating research environment during a visit in Febru-
ary/March 2012.

References

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), pp. 337–404.

[2] J. Baldeaux, Scrambled polynomial lattice rules for infinite-dimensional integration, in Monte Carlo

and Quasi-Monte Carlo Methods 2012, L. Plaskota and H. Woźniakowski, eds., Springer, Heidelberg,
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[25] G. W. Wasilkowski and H. Woźniakowski, Liberating the dimension for function approxima-

tion, J. Complexity, 27 (2011), pp. 86–110.

[26] , Liberating the dimension for function approximation: Standard information, J. Complexity,

27 (2011), pp. 417–440.

School of Mathematics and Statistics, University of New South Wales, Sydney, NSW

2052, Australia

E-mail address : m.gnewuch@unsw.edu.au

Institut für Numerische Simulation, Universität Bonn, Endenicher Allee 62, 53115

Bonn, Germany

E-mail address : mayer@ins.uni-bonn.de

Fachbereich Mathematik, Technische Universität Kaiserslautern, Postfach 3049, 67653

Kaiserslautern, Germany

E-mail address : ritter@mathematik.uni-kl.de



Preprint Series DFG-SPP 1324

http://www.dfg-spp1324.de

Reports

[1] R. Ramlau, G. Teschke, and M. Zhariy. A Compressive Landweber Iteration for
Solving Ill-Posed Inverse Problems. Preprint 1, DFG-SPP 1324, September 2008.

[2] G. Plonka. The Easy Path Wavelet Transform: A New Adaptive Wavelet Trans-
form for Sparse Representation of Two-dimensional Data. Preprint 2, DFG-SPP
1324, September 2008.
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