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SUMMARY

We present a method for the parallel numerical simulation of transient three-dimensional fluid-
structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid
domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an
approach based on the classical alternating Schwarz method with non-overlapping subdomains, the
subproblems are solved alternatingly and the coupling conditions are realized via the exchange of
boundary conditions. The elasticity problem is solved by a standard linear finite element method. A
main issue is that the flow solver has to be able to handle time-dependent domains. To this end, we
present a technique to solve the incompressible Navier-Stokes equation in three-dimensional domains
with moving boundaries. This numerical method is a generalization of a finite volume discretization
using curvilinear coordinates to time-dependent coordinate transformations. It corresponds to a
discretization of the Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes equations. Here
the grid velocity is treated in such a way that the so-called Geometric Conservation Law is implicitly
satisfied. Altogether, our approach results in a scheme which is an extension of the well-known MAC-
method to a staggered mesh in moving boundary-fitted coordinates which uses grid-dependent velocity
components as the primary variables.

To validate our method, we present some numerical results which show that second order
convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid-
structure interaction problem. It turns out that already a simple explicit coupling with one iteration
of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem
per time step, yields a convergent, simple, yet efficient overall method for fluid-structure interaction
problems. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many applications of computational fluid dynamics the problem domain is not constant but
changes in time. Also its boundaries are moving. In particular, this is the case when interaction
effects between the flow of a fluid and deformable structures are analyzed. Problems of this
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type include flow through elastic pipes, for example in arteries or other blood vessels, moving
pistons or the sloshing of fluids in elastic containers.

Small deformations of linear-elastic type pose no problems to most finite-element solvers.
However this is not the case for the solution of flow problems. The reason is that structural
mechanics problems are mostly formulated in a Lagrangian setting for which movement
of the mesh together with the body under consideration is automatically obtained. A
Lagrangian formulation of the Navier-Stokes equations is however not suitable for mesh-based
discretization methods because of the complicated structure the “deformations” of a fluid
can exhibit. Here rotations or shearing of the fluid can lead to immediate entangling of grid
cells. Therefore, special techniques for the treatment of flow problems with moving boundaries
have been developed. Most existing methods are based on the Eulerian formulation of the
Navier-Stokes equations and compute the solution on fixed grids. Additional “markers” or
property functions are used to describe the fluid domain. Examples are particle methods [1],
the volume-of-fluid method [2, 3] and level-set-techniques [4, 5]. However with regard to fluid-
structure interaction problems, these methods have some drawbacks. First, special techniques
have to be used to prevent numerical diffusion and thus the smearing out of the interface
where the interaction effects are localized. Second, the accurate prescription of boundary
conditions is rather difficult and depends on a precise reconstruction of the interface which is
only implicitly given in the above mentioned Eulerian methods. But especially for the solution
of fluid-structure interaction problems, a sharp representation of the interface is necessary.
Arbitrary Lagrangian-Eulerian (ALE) methods [6, 7] provide the means to achieve this and
at the same time avoid the disadvantages of a pure Lagrangian method. They introduce a
frame of reference which is independent of both the fixed mesh of an Eulerian method and the
particle-based reference frame of a Lagrangian method. Thus, the inner nodes of the mesh do
not have to move with the local flow speed. There is a certain freedom for the mesh movement,
which can be used to avoid large distortions or an entanglement of grid cells. However, in order
to maintain a conservative numerical scheme, the mesh movement has to satisfy an additional
condition known as the geometric conservation law [8, 9]. Altogether, ALE methods are well
suited for the solution of the fluid subproblem in a coupled fluid-structure interaction analysis.

The fully coupled fluid-structure interaction problem is modeled by first decomposing it
into the two subproblems of incompressible fluid flow and linear elasticity. Both subproblems
are then solved separately in their respective domains. The interaction effects are modeled
by coupling conditions which for each subproblem are incorporated in the solution process
as boundary conditions on the moving interface. In particular, the fluid exerts a force on the
elastic solid which is prescribed as a stress boundary condition for the elasticity problem. In
turn, the influence of the elastic deformations of the solid on the fluid is given by the position
and the velocity of the moving boundary. Thus, in each time step the fully coupled interaction
problem is solved by an iterative method which corresponds to a block-Gauss-Seidel method
applied to the system of the coupled equations [10]. This approach belongs to the family of
the so-called partitioned or staggered algorithms, see [11, 12, 13]. We will see that, for the test
cases presented in this article, already one iteration of the coupled block-system per time step
is sufficient to obtain a convergent, yet efficient method for the global coupled system.

The remainder of this paper is organized as follows. In the next section we formulate the
coupled fluid-structure interaction problem composed of the subproblems for incompressible
flow and linear elasticity. Then we discuss the solution process using the block-iterative
approach. In section 3, our method for the solution of flow problems in moving domains
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is presented. We briefly recall the most important properties of the basic finite-volume
discretization as given in [14]. Then we present a generalization to time-dependent grids.
In section 4 we give numerical results. First we discuss the convergence behaviour of the flow
solver. Then we present simulations of a fluid-structure interaction problem, where we couple
our flow solver with the elasticity problem. The discussion is completed by concluding remarks
and an outlook to further developments.

2. THE FLUID-STRUCTURE INTERACTION PROBLEM

To set up a coupled fluid-structure interaction problem in a domain Ω ⊂ R
3, we first decompose

Ω into the part of the domain which is filled by the fluid and the part which is occupied by
the solid. To this end, we denote the fluid subdomain by ΩF and the solid subdomain by ΩS

where ΩF ∩ΩS = ∅. The interface which separates the subdomains is given by Γ = Ω̄F ∩ Ω̄S . A
schematic view of the problem under consideration is depicted in Figure 1. Both subdomains
and the interface are time-dependent, because the interface changes its position over time due
to the interaction effects. The flow field in the domain ΩF (t) exerts a force onto the interface
Γ(t) which causes a deformation of the elastic structure ΩS(t). This deformation changes the
shape of the fluid domain which in turn influences the flow itself.

Ω ΩΓ

Forces

Displacement

SF

Figure 1. Schematic view of the fluid-structure interaction problem.

In the fluid subdomain ΩF (t) we employ the Navier-Stokes equations in the Arbitrary
Lagrangian-Eulerian formulation given by

d

dt

∫

ΩF (t)

ρF dΩ +

∫

∂ΩF (t)

ρF (v − vg) · n dS = 0 (1)

d

dt

∫

ΩF (t)

ρF v dΩ +

∫

∂ΩF (t)

[ρF v(v − vg) − σF ] · n dS =

∫

ΩF (t)

ρF f dS. (2)

Here ρF and v are the density and the velocity of the fluid, vg is the boundary velocity of the
volume ΩF (t), f are external volume forces acting on the fluid such as gravity and n is the
outward pointing unit normal on the boundary of ΩF (t). The quantity σF is the stress tensor,
which, for a viscous Newtonian fluid, is given by

σF
ij = −pδij + η

[
∂vi

∂xj
+

∂vj

∂xi

]

− 2

3
η

[
∂vk

∂xk

]

δij (3)
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with dynamic viscosity η and hydrostatic pressure p. For incompressible flows, the density ρF

is constant in space and time. Then, the expression for the stress tensor simplifies to

σF
ij = −pδij + η

[
∂vi

∂xj
+

∂vj

∂xi

]

.

In the solid subdomain ΩS(t) the time-dependent Lamé-equations

ρS
∂2u

∂t2
− µ∆u − (λ + µ)∇∇ · u = ρSb in ΩS(t) (4)

serve as the mathematical formulation of the elasticity problem. Here, the quantity u denotes
the displacement of the structure, λ and µ are the material-dependent Lamé constants†, ρS is
the density of the solid material and b are external body forces acting on the structure. The
Cauchy stress tensor of the solid, which is later needed in the coupling conditions, is given by

σS
ij = Eijklεkl.

Here E denotes the fourth-order elasticity tensor which for a linear isotropic and homogeneous
material is specified by the generalized Hooke’s law and depends only on λ and µ. The quantity
ε represents the linearized strains. Note that equation (4) is obtained by employing the relations
for linear stresses, strains and Hooke’s law in the general equations of motion, see e.g. [15].

The interaction of both subproblems is achieved by coupling conditions which state the
continuity of the velocities and stresses at the moving interface Γ(t). They are given by

v =
∂u

∂t
and σF · n = σS · n on Γ(t). (5)

For the prescription of further boundary conditions we proceed as follows: For each
subdomain Ωi we subdivide the boundary ∂Ωi \Γ into Γi,D and Γi,N , i.e. ∂Ωi \Γ = Γi,D∪Γi,N .
Here i denotes by F or S either the fluid or solid phase, respectively. Furthermore, D denotes
the part of the boundary where Dirichlet conditions are applied, e.g. prescribed inflow for the
fluid or fixed boundary parts for the solid, and N denotes the part of the boundary where
Neumann conditions are applied, e.g. an outflow boundary for the fluid or a free boundary
part for the solid.

The algorithm which we use for the solution of the coupled problem treats the subproblems
in an alternating fashion. Here, for each time step, the solution of one subproblem enters the
other subproblem through the boundary conditions. This approach corresponds to an iterative
solution of the global (abstract) coupled block-system by a block-Gauss-Seidel-type method
in each time step.

For the solution of the elasticity subproblems we use the freely available package tochnog [16].
This software employs a standard linear finite element method for the discretization and a
BiCGStab method for the solution of the arising system of linear equations. For further details
on linear finite elements in elasticity theory we refer the reader to e.g. [17] or [18]. The flow
subproblems are solved by a method which we will present in more detail in section 3. For now,

†The Lamé constants can be computed from the more common elastic modulus E and the Poisson ratio ν by
the formulas µ = E

2(1+ν)
and λ = νE

(1+ν)(1−2ν)
.
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4 M. ENGEL AND M. GRIEBEL

we assume that we are able to compute the flow field for time tn+1 from the field and data
at time tn, the grid velocity and the new fluid domain Ωn+1. We denote by V, P, U, Γ, Vg the
vectors containing the discrete values of the fluid velocity v, the pressure p, the displacements
u, the nodes on the interface Γ(t) and the mesh velocity vg, respectively. For V n, P n, Un and
Γn given, our approach in the (n + 1)-th time step of the overall solution algorithm for the
fluid-structure interaction problem reads as follows:

1. set γ = 1 and for ϕ ∈ {V, P, U, Γ, Vg} set ϕn+1,γ−1 = ϕn.
2. compute from V n+1,γ−1 and P n+1,γ−1 the discrete values of the forces fn+1,γ on Γn+1,γ−1

which the fluid exerts on the structure according to the continuity condition for the
stresses in (5).

3. solve the elasticity subproblem (4) in ΩS using the forces fn+1,γ = σF ·n on the common
interface Γn+1,γ−1 as Neumann boundary conditions according to (5).

4. construct the mesh for the fluid domain Ωn+1
F by updating the boundary nodes according

to the solution of the elasticity problem and then move the interior nodes accordingly.
5. compute the grid velocity V n+1,γ

g of the boundary Γn+1,γ and prescribe the corresponding
Dirichlet boundary conditions for the fluid subproblem according to the continuity
condition for the velocities in (5).

6. solve the flow subproblem in Ωn+1,γ
F with the algorithm described in section 3.5.

7. if γ < γmax, increment γ and return to step 2, else set ϕn+1 = ϕn+1,γ for all
ϕ ∈ {V, P, U, Γ, Vg} and proceed with the next time step.

The γ-cycle of this algorithm is depicted in Figure 2. In step three of the algorithm, an arbitrary

U (f)

ΩV,P ( Ω

Coupling Solid problem

CouplingFlow problem

f (V, P)
γ

F (U)F)

t

t

n+1

n

t

Figure 2. Coupling algorithm for one time step.

method to update the inner nodes according to the boundary movement can be chosen. The
simplest way is to use transfinite interpolation to move the mesh. But also more elaborate
methods to maintain the quality of the grid, e.g. smoothing techniques based on elliptic
equations, could be used. A necessary condition here is that the grid velocity is computed
from the mesh movement in order to satisfy the so-called Geometric Conservation Law [8].
This will be explained in detail in section 3.3.
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3. MOVING BOUNDARY-FITTED GRIDS

In this section we present a method to numerically solve the Navier-Stokes equations in time-
dependent domains. It is based on a discretization in curvilinear coordinates proposed in [14]
which we generalize to time-dependent coordinate transformations. The basic idea is that the
actual mesh which covers the deformable physical domain is mapped to a logical Cartesian
grid which is fixed in time. The time derivative of this coordinate transformation enters
the equations as the mesh velocity. Thus, the method corresponds to a discretization of the
Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes-equations as given in (1) and
(2).

3.1. The Coordinate Transformation

Our general approach is based on a block-decomposition of the fluid domain ΩF (t), i.e. the
fluid domain is given by

ΩF (t) =

M⋃

k=1

Ωk(t) (6)

with disjoint subdomains Ωk(t). This allows later for a straightforward parallelization based
on the domain decomposition method. In this section we now describe the discretization for a
single subdomain Ωk(t). The coupling of the subdomains Ωk(t) which form a cover of ΩF (t)
is straightforward and will be later explained in section 3.6.

To discretize the Navier-Stokes-equations in general moving domains we employ a
formulation which uses grid-oriented velocity components. Our approach is based on the
method described in [14]. In the following we present our extension of this method, which
allows to handle time-dependent boundary-fitted grids. To this end, at each point in time
and for each subdomain Ωk

t a coordinate transformation maps the logical subdomain, which is
represented by a Cartesian grid and denoted by Xk, onto the deformed subdomain in physical
space, see Figure 3. For better readability from now on we omit the subdomain index k, i.e.

X x(

x

ξ(t,x)

(

τ

τ )ξ,

,X )k k

Figure 3. Transformation of the mesh for a single subdomain Xk.

Ωt always represents a single subdomain in physical space and X its matching logical domain.

To describe the basics of the discretization we need to introduce some notation. Consider
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6 M. ENGEL AND M. GRIEBEL

the time-dependent coordinate mapping

x(τ, ξ) : [0, T ] × X → [0, T ]× Ωt, ξ ∈ X, T ∈ R
+, (7)

with τ = t. The logical domain is given by X = [0, N1] × [0, N2] × [0, N3] ⊂ R
3. For

0 ≤ nα < Nα, n ∈ N and α = 1, 2, 3, the center of a unit cube Xj , i.e. a control volume
in the logical space, is given by the multi-index

j = (j1, j2, j3) = (n1 +
1

2
, n2 +

1

2
, n3 +

1

2
).

If we denote by

e1 = (
1

2
, 0, 0), e2 = (0,

1

2
, 0), e3 = (0, 0,

1

2
)

then the cell-face centers of Xj are given by j ± eα, the edge centers by j ± eα ± eβ, and
j ± e1 ± e2 ± e3 denotes the vertices. In this section we denote by α, β, γ indices which are
cyclic in 1, 2, 3.

The mapping x(τ, ξ) is now defined for the vertices of the unit cubes which build the logical
domain. It is extended to the whole domain by trilinear interpolation. Figure 4 shows the
mapping of a unit cube Xj onto a general hexahedral cell Ωj , which forms a control volume
in physical space. We further require the mapping x(τ, ξ) to be boundary-fitted, that is,

x6

x
x

x

ξ
ξ

ξ

1 4

32

85

x7

x

x

x

x

x x
x(

7

1 1

2 2
3 3

6

3

4

2

1

5
8

j + e
j

j + e α − e
β

α

τ, ξ )

Figure 4. Notations for a control volume in logical and physical space.

x(∂X) = ∂Ω holds and the relation ξα = const holds everywhere on ∂Ω for an adequate
α ∈ {1, 2, 3}. Furthermore the Jacobian

J = det

(
∂xα

∂ξβ

)

αβ

is assumed to be strictly positive, such that the inverse mapping ξ(t, x) exists and x(τ, ξ)
preserves orientation.

The tangential base vectors are given by

a(α) =
∂x

∂ξα
, α = 1, 2, 3, (8)

and are easily computed from the vertices of a control volume. For example, using the notation
xijkl = xi + xj + xk + xl, where xi, xj , xk, xl denote the coordinates of four corner points of
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the control volume, the tangential base vector a(1) in the center of the cell is computed by

a(1) = 1
4 (x3478−x1256). Note that, since the mapping x is only piecewise defined, the tangential

base vector a(α) is not continuous at cell faces where ξα = const.
The normal base vectors are defined by

a(α) = ∇ξα, α = 1, 2, 3. (9)

Using the formula J = a(1) ·(a(2)×a(3)) and the relation a(α) ·a(β) = δα
β we obtain the so-called

weighted normal base vectors
Ja(α) = a(β) × a(γ). (10)

In contrast to a(α) or J , the weighted normal base vectors Ja(α) are continuous at cell faces
with ξα = const.

The weighted normal base vectors in the cell-face centers are computed by

Ja
(1)
j+e1

= s4378, Ja
(2)
j+e2

= s2673, Ja
(3)
j+e3

= s5876, (11)

where sijkl = 1
2 (xj − xl) × (xk − xi). This expression is the average of the two weighted

normal vectors for the two parallelograms constructed by adjacent sides of the cell face. For
the computation of cell volumes, we use the formula (cf. [14])

|Ωj | =
1

3
(b1 · (s1265 + s4378) + b2 · (s1584 + s2673) + b3 · (s1432 + s8765)) (12)

where the vectors bi are given by

b1 =
1

8
(x3478 − x1256), b2 =

1

8
(x2367 − x1458), b3 =

1

8
(x5678 − x1234).

To avoid the well-known problem of pressure oscillations which can occur for projection
methods on collocated grids, we will use a staggered mesh for the discretization. Then, the
pressure and other scalar unknowns are stored at the cell centers and the velocity components

are stored at the centers of cell faces. The continuity of Ja
(α)
j+eα

motivates the choice of the
weighted contravariant velocity components

V α
j+eα

= Ja
(α)
j+eα

· v (13)

as the primary variables. Furthermore, the quantities V α
j+eα

have a physical meaning as the
volume fluxes through the corresponding cell face centers.

For the transformation of the differential operators into a form which allows a conservative
discretization, we need the basic identity

n∑

α=0

∂

∂ξα
(J

∂ξα

∂xβ
) = 0, β = 0, 1, . . . , n. (14)

Using this identity (14) and the chain rule, the spatial derivative of a function f(x) transforms
in the following way:

∂f

∂xα
=

3∑

β=1

∂ξβ

∂xα

∂f

∂ξβ
+ f

3∑

β=1

1

J

∂

∂ξβ
(J

∂ξβ

∂xα
) (15)

=

3∑

β=1

1

J

∂

∂ξβ
(J

∂ξβ

∂xα
f).
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Note that the application of the chain rule alone does not result in an expression which can
be used as the basis for a conservative discretization, see e.g. [19].

The application of (15) to the divergence operator results in

∇x · u =

3∑

α=1

∂uα

∂xα
=
∑

α,β

∂ξβ

∂xα

∂uα

∂ξβ
=

3∑

β=1

a(β) · ∂u

∂ξβ
(16)

=
∑

α,β

1

J

∂

∂ξβ
(J

∂ξβ

∂xα
uα) =

3∑

β=1

1

J

∂

∂ξβ
V β.

At every point in time we can now apply the transformation rules (15) and (16) with respect
to the spatial coordinates. However, the time derivative has to be transformed in the same
manner. To this end we associate the time variable with ξ0 and x0 in the logical and the
physical domain, respectively. From equation (14) then follows for β = 0 the relation

0 =
∂

∂τ
(J) +

3∑

α=1

∂

∂ξα
(J

∂ξα

∂t
) =

∂

∂τ
(J) −

3∑

α=1

∂

∂ξα
(Ja(α) · vg), (17)

where vg = ∂x
∂τ denotes the grid velocity. The application of (17) to a time derivative results in

∂f

∂t
=

∂f

∂τ
+

3∑

α=1

∂f

∂ξα

∂ξα

∂t
(18)

=
∂f

∂τ
−

3∑

α=1

(a(α) · vg)
∂f

∂ξα
+

1

J
f

[

∂

∂τ
J −

3∑

α=1

∂

ξα
(Ja(α) · vg)

]

=
1

J

(

∂

∂τ
(Jf) −

3∑

α=1

∂

ξα
(Ja(α) · vg)

)

.

In equations (17) and (18) products of the grid velocity and the weighted normal base vector
appear, therefore, analogous to (13), we define the weighted contravariant components of the
grid velocity by

V α
g = Ja(α) · vg for α = 1, 2, 3. (19)

3.2. Discretization of the Momentum Equation

For the discretization based on a finite volume approach in logical coordinates we start out
with the momentum equation in its fixed-grid, i.e. Eulerian, formulation. After application of
(15) and (16) the momentum equation can be written as

∂v

∂t
+

3∑

α=1

1

J

∂

∂ξα
(V αv) + ∇p −

3∑

α,β=1

ν
1

J
a(β)

α e(α)) = f (20)

with the kinematic viscosity ν = η
ρ∞

, ρ∞ the constant density and

e(α) =






∂v1

∂xα
+ ∂vα

∂x1
∂v2

∂xα
+ ∂vα

∂x2
∂v3

∂xα
+ ∂vα

∂x3




 .
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For the spatial discretization of the terms in the momentum equation we use the methods
as described in [14]. Due to the staggered mesh, equation (20) is not integrated over the
control volumes Ωj , but, for each coordinate direction, the integration is carried out over the
control volumes with the cell center given by j + eα, i.e. the original volume Ωj shifted by eα,
respectively. The gradients of both the pressure and the expressions eα in the viscous term are
handled by the so-called integration path method. Here, the gradient of a quantity is integrated
over curves through surrounding nodes and a small associated system of linear equations is
solved to obtain the discretized gradient. For the details, see [20]. The convective term is
handled by a simple hybrid scheme using a combination of first order upwind and second
order central differences. Here, the blending of first and second order terms is controlled by
the local mesh Peclet-number.

Note from (11) and (13) that due to the staggered mesh the velocity components and the
weighted normal base vectors are defined only in the grid points xj+eα

. For the evaluation
of these quantities in other locations we use linear interpolation. This procedure is sufficient
to guarantee that a constant velocity field is invariant under transformation to contravariant
components and vice-versa, see [14].

What remains is the discretization of the time derivative in (20). The application of (18)
yields

∂v

∂t
=

1

J

∂

∂τ
(Jv) −

3∑

α=1

1

J

∂

∂ξα
(V α

g v). (21)

The first term on the right hand side of (21) is integrated over the shifted control volume
Ωj+eα

and then approximated by the midpoint rule. This results in
∫

Ωj+eα

1

J

∂Jv

∂t
dΩ =

d

dt

∫

Ωj+eα

vdΩ ≈ d

dt
|Ωj+eα

|v. (22)

The total time derivative d
dt in (22) is treated automatically by the projection method, which

is described later in section 3.5. The second term of the right hand side in (21) is combined
with the convective term in (20) to

3∑

α=1

1

J

∂

∂ξα
((V α − V α

g )v). (23)

Expression (23) can be interpreted as a new convective velocity, i.e. the flow velocity in relation
to the moving grid. This modified convective term is discretized in the same manner as the
original convective term. We obtain

((V α − V α
g )v)|j+2eα

j + ((V β − V β
g )v)|j+eα+eβ

j+eα−eβ
+ ((V γ − V γ

g )v)|j+eα+eγ

j+eα−eγ
. (24)

The computation of the grid velocity Vg needed in (24) is the subject of the next section.

3.3. Discretization of the Geometric Conservation Law

The system of conservation laws for momentum and mass balance (1) and (2) has to be
completed by the so-called geometric conservation law (GCL) which reads (cf. [8])

d

dt

∫

Ω

dΩ −
∫

∂Ω

vg · n dS = 0. (25)
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10 M. ENGEL AND M. GRIEBEL

In [9] the GCL is derived from the mass conservation equation (1) by setting the flow velocity
to zero. This is motivated by the requirement that the mesh movement is not allowed to have
an effect on the flow field. It is essential that the discretization satisfies the GCL. In e.g. [21]
it is shown that a violation of the GCL results in spurious oscillations due to artificial mass
sources and sinks. Furthermore, if the GCL is fulfilled, then we can easily employ a standard
projection method, because the equation for conservation of mass (1) reduces to the well-
known divergence-free constraint for the velocity field. This can be seen immediately by using
(25) in (1):

d

dt

∫

Ω

dΩ −
∫

∂Ω

vg · ndS

︸ ︷︷ ︸

=0

+

∫

∂Ω

v · ndS = 0 ⇒ ∇ · v = 0. (26)

In [21] and [9] the GCL is used to compute the grid velocities from the grid node positions
at different times. Thus, the GCL is automatically satisfied by the discretization scheme.
Especially in three dimensions, this approach is appealing and will therefore be used in our
method. However, in order to directly recover the weighted contravariant components of the
grid velocity, it is convenient to look at the GCL in the following way: When we transform the
differential operators into the logical coordinates (τ, ξ), we make use of the basic identity (14)
to achieve a conservative discretization. This algebraic identity now has to be fulfilled on the
discrete level as well. To this end, we integrate equation (14) for β = 0 over a logical control
volume Xj . This results in

0 =

∫

Xj

3∑

α=0

∂

∂ξα
(J

∂ξα

∂x0
) dξ (27)

=

∫

Ωj

1

J

∂

∂ξ0
J

∂ξ0

∂x0
dx +

∫

Ωj

1

J

3∑

α=1

∂

∂ξα
(J

∂ξα

∂x0
) dx.

With the relation ∂ξα

∂x0
= −a(α) · vg, x0 = t, ξ0 = τ as in section 3.1 and with (27) we obtain

0 =

∫

Ωj

1

J

∂

∂τ
J dx −

∫

Ωj

1

J

3∑

α=1

∂

∂ξα
(Ja(α) · vg) dx (28)

=
d

dt

∫

Ωj

dx −
∫

Ωj

3∑

α=1

1

J

∂

∂ξα
V α

g dx (29)

=
d

dt

∫

Ωj

dx −
∫

Ωj

∇ · vg dx. (30)

Thus we see that the GCL corresponds to a finite volume discretization of the basic identity
(14). Furthermore, we can use equation (29) as a rule to compute the weighted contravariant
components of the grid velocity as needed for the discretization of the convective terms (24).
To avoid further interpolation of the grid velocity, we discretize the GCL for the shifted control
volumes Ωj+eα

, α = 1, 2, 3. Thus, we can compute the grid velocity directly at the points where
it is needed, namely in the cell face centers of the shifted volumes instead of the centered ones.
To this end, we consider equation (29) for a shifted control volume Ωj+eα

. We obtain
∫

Ωj+eα

3∑

i=1

1

J

∂

∂ξi
V i

g dΩ =

3∑

i=1

∫

Xj+eα

∂

∂ξi
V i

g dξ (31)
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FLOW SIMULATION ON MOVING GRIDS 11

For the case i = α the integral is approximated by

∫ jα+1

jα

∫ jβ+ 1
2

jβ− 1
2

∫ jγ+ 1
2

jγ−
1
2

∂

∂ξα
V α

g dξαdξβdξγ (32)

=

∫ jβ+ 1
2

jβ− 1
2

∫ jγ+ 1
2

jγ−
1
2

V α
g |jα+1

jα
dξβdξγ ≈ V α

g |j+2eα

j , (33)

where continuity of V α
g in xj+eα

is used for the integration in α-direction and the midpoint rule
is used for the two remaining integrals. In a similar way we obtain for i = β (and analogous
for i = γ)

∫ jα+1

jα

∫ jβ+ 1
2

jβ− 1
2

∫ jγ+ 1
2

jγ−
1
2

∂

∂ξβ
V β

g dξαdξβdξγ (34)

=

∫ jα+1

jα

∫ jγ+ 1
2

jγ−
1
2

V β
g |jβ+ 1

2

jβ− 1
2

dξαdξγ ≈ V β
g |j+eα+eβ

j+eα−eβ
. (35)

Altogether, this results in

∫

Ωj+eα

3∑

i=1

1

J

∂

∂ξi
V i

g dΩ ≈
3∑

i=1

V i
g |j+eα+ei

j+eα−ei
. (36)

V

j
j j + 2e

V

+ eα α

2
g

g
1

Figure 5. Calculation of the grid velocity from the node movement (two-dimensional case).

In (36) the index α denotes the coordinate direction in which the control volume is shifted by
eα, the index i denotes the coordinate direction of the cell face location where the grid velocity
is evaluated. This expression can be interpreted as the grid velocity of the cell face center in its
normal direction weighted by the cell face area, which is analogous to the flow velocity. Now
we split the change in volume given by d

dt

∫

Ωj+eα
dΩ, see (29), into the six contributions which

are given by the movements of the individual cell faces and approximate the time derivative
by the first order Euler method, i.e.

1

∆t
(|Ωn+1

j+eα
| − |Ωn

j+eα
|) =

1

∆t

3∑

i=1

[(∆Ω)j+eα+ei
− (∆Ω)j+eα−ei

]. (37)
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12 M. ENGEL AND M. GRIEBEL

Then we compute the grid velocity by

V i
g,j+eα+ei

=
(∆Ω)j+eα+ei

∆t
, α = 1, 2, 3, i = 1, 2, 3. (38)

The right-hand side in equation (38) is evaluated by the formula (12) for the computation of
cell volumes. The corner points of(∆Ω)j+eα+ei

in the case i = α are given by

1
2 (xk

j+eα+eβ+eγ
+ xk

j+3eα+eβ+eγ
), 1

2 (xk
j+eα+eβ−eγ

+ xk
j+3eα+eβ−eγ

),
1
2 (xk

j+eα−eβ+eγ
+ xk

j+3eα−eβ+eγ
), 1

2 (xk
j+eα−eβ−eγ

+ xk
j+3eα−eβ−eγ

),
(39)

where k ∈ {n, n + 1}. In the case of i 6= α, the volume (∆Ω)j+eα+ei
is splitted into the two

subvolumes (∆Ω)j+ei
and (∆Ω)j+2eα+ei

. The corner points of (∆Ω)j+ei
are given by

xk
j+eα+ei+eβ

, 1
2 (xk

j−eα+ei+eβ
+ xk

j+eα+ei+eβ
), β 6= i, α,

xk
j+eα+ei−eβ

, 1
2 (xk

j−eα+ei−eβ
+ xk

j+eα+ei−eβ
), β 6= i, α,

(40)

and the corner points of (∆Ω)j+2eα+ei
are given by

xk
j+eα+ei+eβ

, 1
2 (xk

j+eα+ei+eβ
+ xk

j+3eα+ei+eβ
), β 6= i, α,

xk
j+eα+ei−eβ

, 1
2 (xk

j+eα+ei−eβ
+ xk

j+3eα+ei−eβ
), β 6= i, α,

(41)

again with k ∈ {n, n + 1}.

3.4. Discretization of the Mass Balance Equation

For the discretization of the mass balance equation we integrate the divergence-free constraint
(26) over a control volume Ωj and employ the transformation rule (16) to obtain

0 =

∫

Ωj

∇ · v dx =

∫

Ωj

3∑

α=1

1

J

∂

∂ξα
V α dx =

3∑

α=1

∫

Xj

∂

∂ξα
V α dξ (42)

=

3∑

α=1

∫ j1+ 1
2

j1−
1
2

∫ j2+ 1
2

j2−
1
2

∫ j3+ 1
2

j3−
1
2

∂

∂ξα
V α dξ3 dξ2 dξ1.

≈
3∑

α=1

(V α
j+eα

− V α
j−eα

). (43)

Here, we have used the same approximations as in (36), applied to the case of the control
volume Ωj .

Finally, we arrive at the following set of semi-discretized equations:

DV = 0 (44)

d

dt
(Qv) + M(V α − V α

g , v) + QGp − QF = 0

where D is the discrete divergence operator, G accounts for the discrete gradient, Q represents
multiplication with the volume |Ω|, and M denotes the difference of the discrete convective
and the discrete diffusive terms.
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FLOW SIMULATION ON MOVING GRIDS 13

3.5. The Extended Projection Method

For the solution of the the coupled system of equations (1) and (2) we employ a Chorin-type
projection method [22, 23] which basically consists of the following parts: In a first step, we
compute an auxiliary velocity field from the momentum equations (2), neglecting the pressure
gradient. This auxiliary velocity field will in general not satisfy the divergence-free constraint.
In a second step, we use the condition for the conservation of mass (1) to derive a Poisson-like
equation for the pressure. This equation has to be solved, usually by an iterative method. The
computed pressure is then used in a correction step to project the auxiliary velocity field onto
a divergence-free one. This well-known approach will now be generalized to the case of moving
grids.

To this end, we assume that the shape Ωn+1 of the fluid domain at time tn+1 is known.
Then the grid velocity Vg and the necessary grid-dependent base vectors

√
ga

(α),n+1 can be
computed. In our test cases the domain Ωn+1 is either explicitly prescribed or computed as the
solution of the structural mechanic subproblem. Then, using the notation from the previous
section, the individual steps of the extended projection method for the moving-grid problem
read as follows: First we have to discretize the set of equations (44) in time. In the current
implementation we use the explicit Euler method for the velocities, which is convergent of first
order provided that appropriate CFL-conditions are satisfied. The pressure is always evaluated
at the new time tn+1. The fully discretized system to be solved now reads

DV n+1 = DV n = 0 (45)

Qn+1vn+1 − Qnvn (46)

+∆t[M(V α,n − V α,n
g , vn) + Qn+1Gn+1pn+1 − Qn+1F n+1] = 0

The discrete momentum equation (46) is still vector-valued. By multiplication with the
corresponding weighted contravariant base vector we obtain a scalar equation for each velocity
component. The intermediate velocity field is computed according to

V ∗ =
Qn

Qn+1
V n − ∆t

1

Qn+1
M(V n − V n

g )V n + ∆t
Qn

Qn+1
F n. (47)

Note that in equation (47) the relation V α,∗ =
√

ga
(α),n · ṽn+1 holds with the Cartesian

components ṽn+1 of the intermediate velocity field. To obtain Ṽ =
√

ga
(α),n+1 · ṽn+1 from V ∗

we change the basis by

Ṽ = TBn+1

Bn V ∗ = Cn+1C
−1
n V ∗ (48)

with Ct =
(√

ga
(1),t,

√
ga

(2),t,
√

ga
(3),t

)T
.

Now we apply the discrete divergence operator to the relation

Ṽ − V n+1 = ∆tGpn+1 (49)

and use the equation for mass balance (45) to obtain a linear system of equations for the
pressure

DGpn+1 =
1

∆t
DṼ . (50)

We then solve (50) by a preconditioned BiCGStab method. Here, faster iterative methods such
as algebraic multigrid can be employed as well, see e.g. [24] or [25].
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14 M. ENGEL AND M. GRIEBEL

In the last step of the projection method the pressure is used to compute the divergence-free
velocity field according to

V n+1 = Ṽ − ∆tGpn+1. (51)

To guarantee the convergence of this explicit discretization in time, the time step size must
be limited properly. In the case of non-vanishing grid velocity the CFL-condition for the
convective term reads (cf. [9])

∆t ≤ min
1≤α≤3,Ωj

|Ωj+eα
|

|V α
j+eα

− V α
g,j+eα

| . (52)

3.6. Boundary Conditions and Parallelization Issues

The spatial discretization for each subdomain has to be completed by boundary conditions.
This is necessary for parts of the boundary which coincide with the physical boundary as
well as for artificial inner boundaries between adjacent subdomains which arise due to the
block-decomposition of the physical domain. In both cases the implementation is based on
a ghost cell technique. The computational grid of a single subdomain is extended by one
layer of cells in each coordinate direction which is then used for the implementation of
the appropriate boundary condition. In the case of a physical boundary, normal velocity
components are directly set in the corresponding cell face center whereas tangential components
are extrapolated to the ghost cell layer in such a way that the discretization stencils can
be directly applied. The boundary conditions for the fluid subproblem on the moving fluid-
structure interface are treated as inhomogeneous Dirichlet boundary conditions, where the
boundary values are computed from the movement of the boundary according to the GCL as
described in section 3.3.

Figure 6. Exchange of data at boundaries, here shown for the basis transformation in 2D.

The additional ghost cell layer of each subdomain is also used to set the necessary boundary
values at artificial inner boundaries between subdomains. Here, the ghost cell values are
updated with the computed unknowns in the inner cell layer of the adjacent subdomain.
Since the domain decomposition is used for parallelization, the neighbouring subdomain can
reside on a different processor. In this case a communication step between the corresponding
processors is involved. Copying of variables between subdomains is necessary

• once in each time step to exchange V and Ṽ ,
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FLOW SIMULATION ON MOVING GRIDS 15

• for each matrix-vector product involving the application of the discrete pressure Poisson
operator in the BiCGStab solver,

• for the basis transformation (48), see Figure 6.

All other computations can be performed independently for each single subdomain.

4. NUMERICAL RESULTS

In this section we present some numerical examples. We validate our proposed method for
moving grids on two test cases and show that the convergence for the discretization in space is
of second order. Later we show the properties of our approach when applied to fluid-structure
interaction problems.

4.1. Examples for Flow on Moving Grids

We validate the proposed method and demonstrate that second order convergence in space is
obtained for moving grids. It can also be seen that the discretization scheme fulfills the discrete
GCL.

4.1.1. Movement of Inner Grid Nodes In the first test case we consider the flow in a three-
dimensional channel with the dimensions 3 × 1 × 1 and show that an initially given velocity
profile is not disturbed by a prescribed movement of the inner grid nodes. The exact solution
is given by the parabolic velocity profile

v1(x1, x2, x3, t) = 16 vmax x2(1 − x2)x3(1 − x3), v2 = 0, v3 = 0, (53)

with a constant pressure gradient of ∇p = −1 and applied volume forces specified by

f(x1, x2, x3, t) = 32 vmax ν(x3 − x2
3 + x2 − x2

2) + ∇p. (54)

The problem setting is completed by homogeneous Dirichlet no-slip boundary conditions at
all walls except at the inflow and outflow boundary, where the given parabolic velocity profile
and homogeneous Neumann boundary conditions are used, respectively. The initial data for all
simulations was a fully developed flow profile from a previous computation on a static uniform
grid. The simulations were carried out with the values vmax = 1 and ν = 0.01, which results
in a Reynolds number Re = u∞L

ν of about 44, based on the mean inflow velocity u∞ and the
channel height L.

We performed simulations on three different grids for this example. The main interest was
to study the convergence behaviour of our approach for a moving grid. To this end, the grid is
deformed from its original equidistant Cartesian configuration by the movement of the inner
grid nodes during the simulation over a time interval of length T . Here, the displacement of a
point with position x at time t is prescribed by

disp(x, t) =

{
− 1

2d(t) cos(πx1 − π
2 ) + 1

2 for 1
2 ≤ x1 ≤ 5

2
0 else

(55)

with

d(t) =
1

2
dmax (1 − cos(2π

t − t0
T

)), dmax = (0, 0.15, 0.2). (56)
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16 M. ENGEL AND M. GRIEBEL

Figure 7. View inside the mesh at time T/2 when maximum deformation occurs.

Figure 7 shows a view inside the three dimensional mesh at time T/2; i.e. when the maximum
deformation of the grid occurs. The grid deformation was chosen in such a way that the
predominant deformations are orthogonal to the direction of the main flow and not parallel to
the main flow, since the solution is constant with respect to x1. For comparison, a reference
calculation on the original undeformed Cartesian grid and another reference calculation on the
stationary, but maximally deformed mesh configuration of time T/2 were carried out. For all
three simulations we measured the error of the computed solution with respect to the exact
solution given by (53) in the grid-dependent norm

eL2,h := (
∑

Ωj

|Ωj ||v(xj) − vj |2)1/2. (57)

Figure 8 shows the temporal development of eL2,h for all three grids (on the left) and the
divergence of the velocity field (for the moving grid calculation only, on the right side). As
expected, the uniform Cartesian grid gives the best approximation and thus exhibits the
smallest error. The approximation quality of the deformed fixed mesh of time T/2 is lower
and thus results in the upper error curve. The error of the moving mesh computation is
bounded by those two curves. This is to be expected, since the error cannot be lower than the
error on the undeformed mesh at any given point in time. On the other hand, the error of the
moving grid calculation should not be larger than that of the deformed mesh computation.
The computations show further that essentially the divergence of the velocity field, computed
by (42), and thus the mass balance is independent of the grid movement.

Table I shows the maximum error over the time interval [0, T ] of the moving grid calculation
for different mesh resolutions and the corresponding numerical rate of convergence ρ. From
these results we clearly observe a convergence rate of second order. All simulations for this
test case were carried out with the same time step size to minimize the influence of the
time discretization on the error measurement. The size of the time step was chosen such
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Figure 8. eL2,h of computed solution over time for moving, uniform fixed in time and deformed fixed
in time mesh (left), divergence of V for the moving grid (right).

Table I. Maximum error over time interval [0, T ] and numerical rate of convergence for different norms.

eL1,h ρe
L1,h

e∞,h ρe
∞,h

eL2,h ρe
L2,h

h 1.30−2 — 4.45−2 — 9.96−3 —
h/2 3.36−3 1.95 6.70−3 2.73 2.51−3 1.98
h/4 8.32−4 2.01 1.85−3 1.85 6.25−4 2.01
h/8 2.09−4 1.99 4.81−4 1.94 1.56−4 2.00

that the CFL-condition for the finest mesh in its fully deformed state was fulfilled. This
value was then used for all mesh resolutions. The mesh size for the coarsest mesh was
h = (hx, hy, hz) = (0.15, 0.1, 0.1).

4.1.2. Flow through a channel with a moving indentation As a second test case we consider
the simulation of a flow through a channel with a time-dependent indentation. This test has
first been analyzed experimentally in [26] and was later numerically studied in [27] and [28].
The setting is sketched in Figure 9. The time-dependent indentation at the channel’s bottom
is given by

x2(t, x1) =







β(t) for 0 < x1 < a1

0.5β(t)(1 − tanh(α(x1 − a2))) for a1 < x1 < a2

0 for x1 > a3

(58)

with α = 4.14, a1 = 4H, a3 = 6.5H, a2 = 0.5(a1 + a3) and

β(t) = 0.5βmax(1 − cos(2πt∗)), t∗ = (t − t0)/T.

Here, H is the channel height, T is the length of the time interval, β(t) is the size of the
channel indentation at time t and βmax = 0.38H is the maximum indentation at normalized
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β
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l = 18.02

H

a a a1 2 3x = 01

Figure 9. Channel with time-dependent indentation.

time t∗ = 0.5. The Reynolds number of the fluid based on the mean inflow velocity and
the channel height is 507. The initial condition for the simulation was a fully developed
parabolic flow profile. This profile is also prescribed as Dirichlet boundary condition at the
inflow boundary. In [28] two different mesh resolutions were considered, a coarse mesh with
91 × 20 control volumes and a finer mesh with 221 × 40 control volumes. It was experienced
that severe oscillations occur for the coarse grid computations without upwinding scheme, the
use of first order upwinding however introduces excessive numerical diffusion in the discrete
solution. Therefore we restrict ourself to the case of the fine grid with a resolution of 221× 40
control volumes and employ pure second order central differences for the discretization of the
convective term. The two-dimensionality of this test case is handled in our implementation by
employing periodic boundary conditions in the x3-direction. Figure 10 shows the contours of
the velocity component in the main flow direction for successive time values. Here, only the
region of interest downstream of the indentation is shown. Blue colour represents a velocity of
2.75 m/s, red colour represents a value of -0.75 m/s.

Altogether, the results show a good qualitative agreement with the results published in [28].
The velocity in the main flow direction reaches its peak value of 2.6603m/s at time t∗ = 0.4,
which is roughly a value of 77.3% higher than the constant inflow velocity of 1.5m/s. The
reference value in [28] is given by 2.645m/s, which is 76.3% higher than the inflow value. After
time t∗ = 0.5, when the maximum indentation occurs, the flow rate decreases, until it reaches
approximately the initial state at t∗ = 1.0. Between t∗ = 0.2 and t∗ = 0.3 a first eddy detaches
from the channel wall immediately behind the indentation. This is the beginning of a periodic
evolution of eddies which form alternatingly at the upper and lower channel wall. The distance
between the eddies in the main flow direction approximately equals the height of the channel.
An observation made in [27] is the breaking-up of the first eddy into two eddies at the upper
channel wall. This flow feature can also be seen in our results, cf. Figure 10 for the time values
t∗ from 0.5 up to 0.8. The overall flow behaviour is reflected by the evolution of the wall shear
stress σw = η ∂v1

∂x3
, which is shown in Figure 11 at the top and bottom channel walls for the

dimensionless time values t∗ = 0.5 (on the left) and t∗ = 0.7 (on the right).

4.2. Examples for Fluid-Structure Interaction

In this section we present numerical examples of simulations performed with our algorithm
for the fully coupled fluid-structure interaction problem. To this end, we consider two test
problems. First, we are concerned with the flow through a channel, where the movement of
the elastic top wall is enforced by applying a load vector which varies sinusoidal in time.
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Figure 10. Contour of the v1 velocity component at consecutive times t∗ from 0.2 to 1.0.
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Figure 11. Shear stress σw at the lower and upper channel
wall for times t∗ = 0.5 (left) and t∗ = 0.7 (right).
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In the second example, the interaction behaviour between the elastic top wall without any
external forces and the flow is studied. The common setting for both problems is sketched
in Figure 12. The total length of the channel is Lx = 3.5, the channel height is Lz = 0.75

X0
1

2
3

Y
0

0.5
1

Z

0
0.2
0.4
0.6
0.8

Load
Ω

Ω

S

F

Figure 12. The general setting for the fluid-structure interaction problem.

and the width is Ly = 1.0. The fluid domain is decomposed into three subdomains, compare
Figure 12. The top wall of the middle fluid block (the grey shaded part of the top boundary
in Figure 12 represents the elastic interface where motion due to interaction effects can occur.
All other boundary parts are fixed in time. The thin elastic solid domain has a height of 0.05
and the same width and length as the middle fluid block. At ξ1 = 0 a parabolic flow profile is
prescribed, at ξ1 = ξmax homogeneous Neumann conditions are used. For the elastic part of
the boundary the interface conditions (5) are used. On all other walls no-slip conditions are
applied.

All the results in this section have been obtained with an iteration parameter γ = 0 in the
solution algorithm (cf. section 2). This results in a simple but efficient approach for the solution
of a coupled problem since only one solution of each subproblem per time step is required.

4.2.1. Fluid-Structure Interaction Governed by an External Force We now consider the fluid-
structure interaction problem, where the movement of the upper boundary is enforced by an
external load. The load is given by a force field which is oscillating sinusoidally in time. The
maximum load is applied at the point xload = (1.0, 0.5, 0.75) and is smoothly distributed
over a small region of three grid cells around xload. The material parameters for the solid are
chosen as follows: the elastic modulus is E = 1.0e9, the Poisson ratio is ν = 0.29 and the
density is ρS = 1000. The maximum load value applied was 100. The Reynolds number for
the flow based on the mean inflow velocity, the channel height, the fluid density ρF = 1.0
and the kinematic viscosity of 0.001 is approximately 187.50. The mesh of the fluid domain
consists of (32 + 96 + 64) × 32 × 32 = 196608 control volumes, the elastic solid is discretized
with 96 × 32 × 4 = 11776 eight-node linear finite elements. Figure 13 shows the applied load
versus time, the resulting displacement dcenter = x3(t) − x3(0) measured at the center of the
interface as well as the total volume of the fluid domain ΩF (t) (top row). In the bottom row
of Figure 13 the rate of change of the fluid volume, the corresponding mass flow at the inflow
and outflow boundaries as well as the error of the mass balance equation (1) is shown. The
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Figure 13. Load, displacement of interface center and volume of fluid domain ΩF (t) (top from left to
right), volume change of ΩF (t), mass fluxes and mass balance error (bottom from left to right).

measured data shows the behaviour which is expected from the equation for conservation of
mass (1). When the rate of change of the volume is zero, the inflow and outflow mass fluxes
are balanced. In time intervals where the volume shrinks or expands, the mass flux at the
outflow boundary rises above or falls below the constant flux value at the inflow boundary,
respectively. Figure 14 shows the displacement of the section of the top wall which forms the
elastic interface. Figure 15 shows the vertical velocity component on three slices in the fluid
domain.
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Figure 14. Displacement of the interface, magnified by a factor of 50
(only the middle fluid block is shown).

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:0–0
Prepared using fldauth.cls



22 M. ENGEL AND M. GRIEBEL

X

0.5

1

1.5

2

2.5
Y

0

0.5

1

Z

0

0.2

0.4

0.6

0.8

Figure 15. Vertical velocity v3 in the middle fluid block.

4.2.2. Flow through a Channel with an Elastic Wall Finally we consider the case where only
the forces exerted by the fluid are acting on the elastic structure. The general setting is the
same as in the previous section, however this time no external load is applied. Furthermore
the elastic modulus of the structure is set to a value of E = 1e2. Thus the forces which the
fluid exerts on the interface result in a noticeable displacement.

First we address the issue of convergence with respect to the time step size ∆t. To this end
we fix the mesh size h. All simulations in this section are performed on a spatial grid with a
resolution of 16×16×16 control volumes for the first fluid block, 32×16×16 control volumes
for the last block, 48 × 16 × 16 control volumes in the middle block and 48 × 16 × 2 control
volumes for the solid. The time steps for the different simulations were fixed at five values from
1e − 2 to 6.25e − 4. Figure 16 shows the volume of the fluid domain ΩF (t) over time for the
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Figure 16. Volume of the fluid domain ΩF (t) for simulations with different time step sizes.
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different time step sizes used. It reflects the dynamic response of the system. Since the initial
condition is not an equilibrium of the coupled system, the interaction forces between fluid and
solid lead to an oscillating behaviour with a period of about 19. The oscillations damp out
over time and will eventually lead to an equilibrated state.

Table II. Numerical rate of convergence based on the mass flux at the outflow
boundary, computed at time t = 5.0, t = 15.0 and t = 32.0.

∆t mO|t=5.0 ρh|t=5.0 mO|t=15.0 ρh|t=15.0 mO|t=32.0 ρh|t=32.0

1.00−2 0.1870821521 — 0.1893511121 — 0.1891208682 —
5.00−3 0.1870775564 — 0.1893638886 — 0.1891419918 —
2.50−3 0.1870750512 0.88180 0.1893697910 1.11410 0.1891544123 0.76613
1.25−3 0.1870737138 0.85997 0.1893724036 1.17583 0.1891601207 1.12155
6.25−4 0.1870730088 0.92601 0.1893735093 1.24061 0.1891627225 1.13359

Table III. Numerical rate of convergence based on the domain volume,
computed at times t = 9.8, t = 29.0 and t = 48.0.

∆t |ΩF |t=9.8 ρ∆t|t=9.8 |ΩF |t=29 ρ∆t|t=29 |ΩF |t=48 ρ∆t|t=48

1.00−2 2.632050812 — 2.631610186 — 2.631263961 —
5.00−3 2.632068180 — 2.631652283 — 2.631336935 —
2.50−3 2.632077938 0.83182 2.631671851 1.10520 2.631373272 1.00595
1.25−3 2.632083552 0.79750 2.631680339 1.20501 2.631389684 1.14668
6.25−4 2.632086924 0.73531 2.631685252 0.78877 2.631399299 0.77136

Table II and Table III show numerical rates of convergence for simulation runs with different
time step sizes on the mesh of fixed spatial resolution given above. Because the exact solution
is not known, we compute the numerical rate of convergence ρ∆t by the formula

ρ∆t =
log |φ∆t − φ∆t/2| − log |φ∆t/2 − φ∆t/4|

log 2
. (59)

Here, ∆t is the size of the time step. The rates in Table II were obtained for the quantity φ
chosen as the mass flux at the outflow boundary of the fluid domain which is given by

mO =

∫

Γout

v · ndS ≈
∑

j+eα∈Γout

V α
j+eα

. (60)

The rates in Table III are based on the quantity φ chosen as the volume of the fluid domain,
which is given as the sum of the cell volumes, compare equation (12). In both cases we observe
rates of convergence between 0.73 and 1.2, which roughly reflects a convergence rate of first
order. This is to be expected due to the Euler discretization in time used in both subproblem
solvers. Here the following remark is in order: Because the absolute values of both, the mass
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flow and the domain volume, are underestimated for computations with a larger time step,
the curves intersect in between the peaks due to their oscillating behaviour. In the regions
around these intersections convergence can of course not be measured in a meaningful way. To
this end we chose time instants near the peaks of the curves for our measurements in Table II
and III. For the mass flux case we therefore selected the time instants t = 5, t = 15 and t = 32.
The curve for the domain volume is shifted by a half period with respect to the mass flux.
This can also be seen from the equation of mass balance (1). Therefore we selected the time
instants t = 9.8, t = 29.0 and t = 48.0.

Now we address convergence with respect to the mesh size h. Here, we have performed
simulations with four different grid resolutions, starting from a coarse grid with 8 × 8 × 8
control volumes in the first fluid block, 24 × 8 × 8 control volumes in the middle fluid block,
16× 8× 8 in the third block and 24× 8× 1 elements for the solid. Each successive finer level is
obtained by a uniform refinement with a factor of two. The time step for all four simulations
was fixed at a value of 4.0e−3, which was sufficiently small to satisfy the CFL condition on the
finest mesh. To measure the numerical convergence rate, we again employed the equation (59),
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Figure 17. Mass flux at the outflow boundary, up to time t = 0.25 (left) and up to t = 40 (right).

but using h instead of ∆t. We selected the mass flux at the outflow boundary and the volume
of the fluid domain as the quantity φ. Due to the nonlinear coupling of the subproblems the
spatial discretization error does not only results in an amplitude change for the computed
quantities, but also introduces a phase shift in time. This shift hampers the estimation of a
convergence rate for larger times. Therefore we performed our measurements at a small time
(t = 0.2), where the shift is not yet too significant. The results for the measurements based on
the mass flux and the domain volume are given in Table IV and Table V, respectively.

From Table IV we observe a convergence rate of two. The same order of convergence was
already shown in section 4.1 for the flow solver. Thus, our approach for the solution of the
coupled fluid-structure interaction problem seems to maintain the convergence rates of the
individual subproblem solvers.

Note however that the theoretical understanding of the convergence rates of the overall
method is not completely clear. It is well known that the discrete pressure in Chorin’s
projection method develops boundary layers with reduced convergence order [29, 30, 31]. Since
pressure values near the boundary enter the stress tensor and thus the coupling conditions (5)
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Figure 18. Volume of the fluid domain for simulations with different mesh resolutions (left) and the
displacement in the center of the interface (right).

Table IV. Numerical rate of convergence based on the mass flux at the outflow
boundary, computed at t = 0.2.

h mO mO,h − mO,h/2 Ratio ρh

h 0.190371715 — — —
h/2 0.188151765 2.21994927−3 — —
h/4 0.187598599 5.53165999−4 4.01317 2.00474
h/8 0.187459755 1.38843820−4 3.98408 1.99424

Table V. Numerical rate of convergence based on the volume of the fluid
domain, computed at t = 0.2.

h |ΩF,h| |ΩF,h| - |ΩF,h/2| Ratio ρh

h 2.625005403 — —
h/2 2.625006571 −1.1679−6 —
h/4 2.625007027 −4.5579−7 2.56230 1.35744
h/8 2.625007283 −2.5659−7 1.77630 0.82887

to the solid part, it has to be expected that the convergence order of the overall method is
reduced as well. How this affects the convergence rates especially for larger time instants and
for finer mesh sizes is not yet fully understood and needs further investigation.
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5. CONCLUSIONS AND OUTLOOK

In this paper we presented a numerical approach to the treatment of fluid-structure interaction
problems in three space dimensions. The coupling of the elasticity problem to the fluid flow
problem was done via an alternating Schwarz algorithm. Here we employed a standard finite
element method for the elasticity problem and a novel finite volume discretization on moving
boundary-fitted grids. The proposed finite volume scheme implicitly satisfies the geometric
conservation law and therefore ensures mass conservation.

The algorithm for the solution of the coupled problem requires only one solution of each
subproblem in each time step which results in an explicit and simple, but efficient solution
strategy for fluid-structure interaction problems. In our experiments we observed a convergence
rate slightly lower than first order with respect to time and roughly a convergence rate of the
order one for the domain volume and of the order two for the mass flux for a fully coupled
problem. It is well known that the convergence rate of the pressure deteriorates for a projection
scheme in the boundary layer near the fluid-solid interface. How this influences the convergence
rate of the overall scheme needs further investigation.

Finally, it should be noted that the stability and convergence properties of explicit and
implicit coupling strategies for fluid-structure interaction are not yet fully understood. In [32]
it was reported that the stability of explicit coupled algorithms is also influenced by the
geometry of the domain and the material properties, in particular the involved densities and
their ratios. The study of these dependencies will be further work.
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9. Zhang H, Reggio M, Trépanier J, Camarero R. Discrete form of the GCL for moving meshes and its
implementation in CFD schemes. Comput. Fluids 1993;22(1):9–23.

10. Codina R, Cervera M. Block-iterative algorithms for nonlinear coupled problems. In Advanced
computational methods in structural mechanics, Papadrakakis M, Bugeda G (eds); CIMNE: Barcelona,
1996; chapter 7.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:0–0
Prepared using fldauth.cls



FLOW SIMULATION ON MOVING GRIDS 27

11. Felippa CA, Park KC. Staggered transient analysis procedures for coupled mechanical systems:
formulation. Comput. Methods Appl. Mech. Engrg. 1980;24:61–111.

12. Piperno S, Farhat C, Larrouturou B. Partitioned procedures for the transient solution of coupled
aeroelastic problems. Comput. Methods Appl. Mech. Engrg. 1995;124:79–112.

13. Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems:
three-field formulation, geometric conservation and distributed solution. Int. J. Numer. Methods Fluids;
21:807–835.

14. Wesseling P, Segal A, Kassels CGM. Computing flows on general three-dimensional nonsmooth staggered
grids. J. Comput. Phys. 1999;149(2):333–362.

15. Marsden JE, Hughes TJR. Mathematical Foundations of Elasticity. Dover Publications, Inc.: New York,
1983.

16. Roddeman D. Tochnog - a free explicit/implicit finite element program, 2003. URL:
http://tochnog.sourceforge.net (19.08.2003).

17. Zienkiewicz OC, Taylor OC. The Finite Element Method. Mc Graw-Hill: London-New York, 4th edition,
1994.

18. Braess D. Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge
University Press, 2001.

19. Liseikin VD. Grid Generation Methods. Scientific Computation. Springer: Berlin, Heidelberg, 1999.
20. van Beek P, van Nooyen RRP, Wesseling P. Accurate discretization of gradients on non-uniform curvilinear

staggered grids. J. Comput. Phys. 1995;117:364–367.
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