
On the parallelization of the sparse grid
approach for data mining

Jochen Garcke and Michael Griebel

Institut für Angewandte Mathematik
Abteilung für wissenschaftliches Rechnen und numerische Simulation

Rheinische Friedrich-Wilhelms-Universität Bonn
D-53115 Bonn

{garckej, griebel}@iam.uni-bonn.de

Abstract. Recently we presented a new approach [5, 6] to the classifi-
cation problem arising in data mining. It is based on the regularization
network approach, but in contrast to other methods which employ ansatz
functions associated to data points, we use basis functions coming from
a grid in the usually high-dimensional feature space for the minimiza-
tion process. Here, to cope with the curse of dimensionality, we employ
so-called sparse grids. To be precise we use the sparse grid combination
technique [11] where the classification problem is discretized and solved
on a sequence of conventional grids with uniform mesh sizes in each di-
mension. The sparse grid solution is then obtained by linear combination.
The method scales only linearly with the number of data points and is
well suited for data mining applications where the amount of data is very
large, but where the dimension of the feature space is moderately high.
The computation on each grid of the sequence of grids is independent
of each other and therefore can be done in parallel already on a coarse
grain level. A second level of parallelization on a fine grain level can be
introduced on each grid through the use of threading on shared-memory
multi-processor computers.
We describe the sparse grid combination technique for the classification
problem, we discuss the two ways of parallelisation, and we report on
the results on a 10 dimensional data set.

AMS subject classification. 62H30, 65D10, 68Q22, 68T10

Key words. data mining, classification, approximation, sparse grids, combination

technique, parallelization

1 Introduction

Data mining is the process of finding patterns, relations and trends in large data
sets. Examples range from scientific applications like the post-processing of data
in medicine or the evaluation of satellite pictures to financial and commercial
applications, e.g. the assessment of credit risks or the selection of customers for
advertising campaign letters. For an overview on data mining and its various
tasks and approaches see [2, 4].

In this paper we consider the classification problem arising in data mining.
Given is a set of data points in a d-dimensional feature space together with
a class label. From this data, a classifier must be constructed which allows to
predict the class of any newly given data point for future decision making.

In [5, 6] we presented a new approach to the classification problem. It is based
on the regularization network approach but, in contrast to other classification
methods which employ mostly global ansatz functions associated to data points,
we use an independent grid with associated local ansatz functions in the mini-
mization process. This is similar to the numerical treatment of partial differential
equations.

Here, a uniform grid would result in O(h−dn) grid points, where d denotes the
dimension of the feature space and hn = 2−n gives the mesh size. Therefore the
complexity of the problem would grow exponentially with d and we encounter
the curse of dimensionality. However, there is the so-called sparse grid approach
which allows to cope with the complexity of the problem to some extent. This
method has been originally developed for the solution of partial differential equa-
tions [1, 3, 11, 15]. For a d-dimensional problem, the sparse grid approach employs
only O(h−1

n (log(hn−1))d−1) grid points in the discretization. The accuracy of the
approximation however is nearly as good as for the conventional full grid meth-
ods, provided that certain additional smoothness requirements are fulfilled. Thus
a sparse grid discretization method can be employed also for higher-dimensional
problems.

To be precise, we apply the sparse grid combination technique [11] to the
classification problem. For that the regularization network problem is discretized
and solved on a certain sequence of conventional grids with uniform mesh sizes
in each coordinate direction. The sparse grid solution is then obtained from
the solutions on these different grids by linear combination. Thus the classifier is
build on sparse grid points and not on data points. A discussion of the complexity
of the method gives that the method scales only linearly with the amount of data
to be classified. The method is well suited for data mining applications where the
dimension of the feature space is moderately high after some preprocessing steps
but the amount of data is very large. In [5, 6] we showed that the new method
achieves correctness rates which are competitive to that of the best existing
methods.

In this paper we describe how the combination method is parallelized in
a natural and straightforward way on a coarse grain level. A second level of
parallelization on a fine grain level through the use of threading on shared-
memory multi-processor machines is also discussed.

The remainder of this paper is organised as follows: In Section 2 we describe
the classification problem in the framework of regularization networks as min-
imization of a (quadratic) functional. We then discretize the feature space and
derive the associated linear problem. Here we focus on grid-based discretization
techniques. Then, we introduce the sparse grid combination technique for the
classification problem and discuss its properties. Section 3 presents the results

of numerical experiments conducted with the sparse grid combination method.
Some final remarks conclude the paper.

2 The problem

Classification of data can be interpreted as traditional scattered data approxi-
mation problem with certain additional regularization terms. In contrast to con-
ventional scattered data approximation applications, we now encounter quite
high-dimensional spaces. To this end, the approach of regularization networks
[8] gives a good framework. This approach allows a direct description of the
most important neural networks and it also allows for an equivalent description
of support vector machines and n-term approximation schemes [7].

Consider the given set of already classified data (the training set)

S = {(xi, yi) ∈ Rd × R}Mi=1.

Assume now that these data have been obtained by the sampling of an unknown
function f which belongs to some function space V defined over Rd. The sampling
process was disturbed by noise. The aim is now to recover the function f from the
given data as good as possible. This is clearly an ill-posed problem since there
are infinitely many solutions possible. To get a well-posed, uniquely solvable
problem we have to assume further knowledge on f . To this end, regularization
theory [13, 14] imposes an additional smoothness constraint on the solution of
the approximation problem and the regularization network approach considers
the variational problem

min
f∈V

R(f)

with

R(f) =
1
M

M∑
i=1

C(f(xi), yi) + λΦ(f). (1)

Here, C(., .) denotes an error cost function which measures the interpolation
error and Φ(f) is a smoothness functional which must be well defined for f ∈ V .
The first term enforces closeness of f to the data, the second term enforces
smoothness of f , and the regularization parameter λ balances these two terms.

2.1 Discretization

We now restrict the problem to a finite dimensional subspace VN ∈ V . The
function f is then replaced by

fN =
N∑
j=1

αjϕj(x). (2)

Here the ansatz functions {ψj}Nj=1 should span VN and preferably should form
a basis for VN . The coefficients {αj}Nj=1 denote the degrees of freedom. In the
remainder of this paper, we restrict ourselves to the choice

C(fN (xi), yi) = (fN (xi)− yi)2

and
Φ(fN) = ||PfN ||2L2

(3)

for some given linear operator P . This way we obtain from the minimization
problem a feasible linear system. We thus have to minimize

R(fN) =
1
M

M∑
i=1

(fN (xi)− yi)2 + λ‖PfN‖2L2
, fN ∈ VN (4)

in the finite dimensional space VN . We plug (2) into (4) and obtain after differ-
entiation with respect to αk, k = 1, . . . , N , see [6],

N∑
j=1

αj

[
Mλ(Pϕj , Pϕk)L2 +

M∑
i=1

ϕj(xi) · ϕk(xi)

]
=

M∑
i=1

yiϕk(xi). (5)

In matrix notation we end up with the linear system

(λC +B ·BT)α = By. (6)

Here C is a square N ×N matrix with entries Cj,k = M · (Pϕj , Pϕk)L2 , j, k =
1, . . . N , and B is a rectangular N ×M matrix with entries Bj,i = ϕj(xi), i =
1, . . .M, j = 1, . . . N . The vector y contains the data yi and has length M . The
unknown vector α contains the degrees of freedom αj and has length N .

2.2 Grid based discrete approximation

Up to now we have not yet been specific what finite-dimensional subspace VN and
what type of basis functions {ϕj}Nj=1 we want to use. In contrast to conventional
data mining approaches which work with ansatz functions associated to data
points we now use a certain grid in the attribute space to determine the classifier
with the help of basis functions associated to these grid points. This is similar
to the numerical treatment of partial differential equations.

For reasons of simplicity, here and in the the remainder of this paper, we
restrict our-self to the case xi ∈ Ω = [0, 1]d. This situation can always be
reached by a proper rescaling of the data space. A conventional finite element
discretization would now employ an equidistant grid Ωn with mesh size hn = 2−n

for each coordinate direction. In the following we always use the gradient P = ∇
in the regularization expression (3). Let j denote the multi-index (j1, ..., jd) ∈ Nd.
A finite element method with piecewise d-linear, i.e. linear in each dimension,

test- and trial-functions φn,j(x) on grid Ωn now would give the classifier fN (x) =
fn(x) as

fn(x) =
2n∑
j1=0

...
2n∑
jd=0

αn,jφn,j(x)

and the variational procedure (4) - (5) would result in the discrete linear system

(λCn +Bn ·BTn)αn = Bny (7)

of size (2n + 1)d and matrix entries corresponding to (6). Note that fn lives in
the space

Vn := span{φn,j, jt = 0, .., 2n, t = 1, ..., d}.

However, this direct application of a finite element discretization and the solution
of the resulting linear system by an appropriate solver is clearly not possible for
a d-dimensional problem if d is larger than four. The number of grid points is of
the order O(h−dn) = O(2nd) and, in the best case, the number of operations is
of the same order. Here we encounter the so-called curse of dimensionality: The
complexity of the problem grows exponentially with d. At least for d > 4 and a
reasonable value of n, the arising system can not be stored and solved on even
the largest parallel computers today.

2.3 The sparse grid combination technique

Therefore we proceed as follows: We discretize and solve the problem on a certain
sequence of grids Ωl, l = (l1, ..., ld) ∈ Nd, with uniform mesh sizes ht = 2−lt in
the t-th coordinate direction. These grids may possess different mesh sizes for
different coordinate directions. To this end, we consider all grids Ωl with

l1 + ...+ ld = n+ (d− 1)− q, q = 0, .., d− 1, lt > 0. (8)

For the two-dimensional case, the grids needed in the combination formula of
level 4 are shown in Figure 1. The finite element approach with piecewise d-linear
test- and trial-functions φl,j(x) on grid Ωl now would give

fl(x) =
2l1∑
j1=0

...
2ld∑
jd=0

αl,jφl,j(x)

and the variational procedure (4) - (5) would result in the discrete system

(λCl +Bl ·BTl)αl = Bly (9)

with the matrices

(Cl)j,k = M · (∇φl,j,∇φl,k) and (Bl)j,i = φl,j(xi),

jt, kt = 0, ..., 2lt , t = 1, ..., d, i = 1, ...,M, and the unknown vector (αl)j, jt =
0, ..., 2lt , t = 1, ..., d. We then solve these problems by a feasible method. To

q q q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q q q

Ω4,1

⊕

q q q q q q q q qq q q q q q q q q
q q q q q q q q qq q q q q q q q q
q q q q q q q q q

Ω3,2

⊕

qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q

Ω2,3

⊕

qqqqqqq
qqqqqqq
qqq
qqqqqqq
qqqqqqq
qqq
qqqqqqq
qqqqqqq
qqq

Ω1,4

	

q q q q q q q q q
q q q q q q q q q
q q q q q q q q q

Ω3,1

	

qq
qq
q
qq
qq
q
qq
qq
q
qq
qq
q
qq
qq
q

Ω2,2

	

qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q

Ω1,3

=

q q q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q q q
qqqqqqq
qqqqqqq
qqq
qqqqqqq
qqqqqqq
qqq
qqqqqqq
qqqqqqq
qqq

q q q q q q q q qq q q q q q q q q
q q q q q q q q qq q q q q q q q q
q q q q q q q q q
qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q
qqqq
qqqq
q

Ωc4,4

Fig. 1. Combination technique on level 4, d = 2, q = 4

this end we use here a diagonally preconditioned conjugate gradient algorithm.
But also an appropriate multi-grid method with partial semi-coarsening can be
applied. The discrete solutions fl belong to the spaces

Vl := span{φl,j, jt = 0, ..., 2lt , t = 1, ..., d}, (10)

of piecewise d-linear functions on grid Ωl.
Note that all these problems are substantially reduced in size in comparison

to (7). Instead of one problem with size dim(Vn) = O(h−dn) = O(2nd), we now
have to deal with O(dnd−1) problems of size dim(Vl) = O(h−1

n) = O(2n).
Finally we linearly combine the results fl(x) =

∑
j αl,jφl,j(x) ∈ Vl from the

different grids Ωl as follows:

f (c)
n (x) :=

d−1∑
q=0

(−1)q
(
d− 1
q

) ∑
l1+...+ld=n+(d−1)−q

fl(x). (11)

The resulting function f
(c)
n lives in the grid space

V (s)
n :=

⋃
l1 + ...+ ld = n+ (d− 1)− q

q = 0, ..., d− 1 lt > 0

Vl.

This sparse grid space has dim(V (s)
n) = O(h−1

n (log(h−1
n))d−1). It is spanned by

a piecewise d-linear hierarchical tensor product basis, see [3].

Note that we never explicitly assemble the function f (c)
n but keep instead the

solutions fl on the different grids Ωl which arise in the combination formula.
Now, any linear operation F on f

(c)
n can easily be expressed by means of the

combination formula (11) acting directly on the functions fl, i.e.

F(f (c)
n) =

d−1∑
q=0

(−1)q
(
d− 1
q

) ∑
l1+...+ld=n+(d−1)−q

F(fl). (12)

Therefore, if we now want to evaluate a newly given set of data points {x̃i}M̃i=1

(the test set) by
ỹi := f (c)

n (x̃i), i = 1, ..., M̃

we just form the combination of the associated values for fl according to (11).
The evaluation of the different fl in the test points can be done completely in
parallel, their summation needs basically an all-reduce/gather operation.

So far we only used d-linear basis functions based on a tensor-product ap-
proach, this case was presented in detail in [6]. Note that also linear ansatz
functions based on a simplicial discretization can be applied on the grids of the
combination technique; this variant was introduced in [5]. The complexities of
the simplicial version scale significantly better. This concerns both the costs of
the assembly and the storage of the non-zero entries of the sparsely populated
matrices from (7), see [5]. Note however that both the storage and the run time
complexities still depend exponentially on the dimension d. Presently, due to
the limitations of the memory of modern workstations (512 MByte - 2 GByte),
we therefore can only deal with the case d ≤ 8 for d-linear basis functions and
d ≤ 10 for linear basis functions. A decomposition of the matrix entries over
several computers in a parallel environment would permit more dimensions.

2.4 Parallelization

The combination technique is straightforwardly parallel on a coarse grain level
[9]. The partial classifiers fl, i.e. αl in the discrete system (9), in the sequence of
grids (8) can be computed independently of each other, therefore their computa-
tion can be done completely in parallel. Each process computes the solution on
a certain number of grids. If as many processors are available as there are grids
in the sequence of grids (8) then each processor computes the solution for only
one grid. The control process collects the results and computes the final classifier
f

(c)
n on the sparse grid Ωcn. Just a short setup or gather phase, respectively, is

necessary. Since the cost of computation is roughly known a-priori, a simple but
effective static load balancing strategy is available, see [10].

A second level of parallelization on a fine grain level for each problem (9)
in the sequence of grids (8) can be achieved through the use of threads on
shared-memory multi-processor machines. This concerns the assembly of the
data dependent part of the system matrix, the matrix-vector-multiplication in
the iterative solver, and the evaluation phase.

To compute Bl · BTl in (9) for each data instance computations have to
be made and the results have to be written into the matrix structure. These
computations only depend on the data and therefore can be done independently
for all instances. Therefore the d×M array of the training set can be separated
in p parts, where p is the number of processors available in the shared-memory
environment. Each processor now computes the matrix entries forM/p instances.
Some overhead is introduced to avoid memory conflicts when writing into the
matrix structure. In a similar way the evaluation of the classifier on the data
points can be threaded in the evaluation phase.

After the matrix is built threading can also be used in the solution phase on
a fine grain level. Since we are using an iterative solver most of the computing
time is used for the matrix-vector-multiplication. Here the vector αl in (9) of
size N can be split into p parts and each processor now computes the action of
the matrix on a vector of size N/p.

Both parallelization strategies, i.e. the direct coarse grain parallel treatment
of the problems in (8) and the fine grain approach via threads, can also be
combined and used simultaneously. This leads to a parallel method which is well
suited for a cluster of multi-processor machines.

3 Numerical results

In [5, 6] we showed that our new method achieves correctness rates which are
competitive to that of the best existing methods. Therefore we concentrate here
on the effects of the parallelization approaches on the run time.

To measure the performance we produced with DatGen [12] a 10-dimensional
test case with 5 million training points and 50 000 points for testing. We used the
call datgen -r1 -X0/200,R,O:0/200,R,O:0/200,R,O:0/200,R,O:0/200,R,O:0/200,
R,O:0/200,R,O:0/200,R,O:0/200,R,O:0/200,R,O -R2 -C2/6 -D2/7 -T10/60 -p
-O5050000 -e0.15. The achieved testing correctness rate for λ = 0.01 is 97.4 %
on level 1, 97.9 % on level 2, and 97.7 % on level 3..

More than 50 % of the run time is spent for the assembly of the data depen-
dent part of the system matrix, i.e. Bl ·BTl in (9), and the time needed for this
matrix part scales linearly with the number of instances [5, 6].

First we look at the results using the natural coarse grain parallelism of
the combination technique, i.e. the distribution of the partial problems in the
sequence of grids (8) onto different processors. We used a machine of 24 Ultra-
SPARC-III (750MHz) CPUs. The run times for level 2 are shown in Table 1. With
11 processors a speed-up of 9.7 with a parallel efficiency of 0.88 is achieved. Since
only 11 grids have to be calculated for level 2 no more than 11 nodes are needed.

In Table 2 we present the run times for the fine grain parallelization on a
shared-memory computer with 24 UltraSPARC-III (750MHz) processors. Here
we compute all problems from the sequence of grids on one machine sequentially,
but use the fine grain parallelization with threads. Overall we achieve acceptable
speed-ups from 1.8 for two processors up to 12.3 for 24 processors. As one would
expect the efficiency decreases with the number of processors. This is usual for

processors time (sec.) speed-up efficiency

1 6124 - -
2 3400 1.80 0.90
3 2311 2.65 0.88
4 1752 3.50 0.87
5 1689 3.62 0.72
6 1207 5.07 0.85
7 1191 5.14 0.73
8 1199 5.11 0.64
9 1188 5.15 0.57
10 1126 5.44 0.54
11 630 9.72 0.88

Table 1. Parallel run time results for a 10D synthetic massive data set using the coarse
grain level parallelization of the combination technique

any shared memory system. Note that the speed-up and the efficiency is better
for the computation on level 2 since the non-threadable part of the algorithm
has less impact on the total run time.

In Table 3 we show the results which can be achieved when both paral-
lelization strategies, i.e. on the coarse and the fine grain level, are used simul-
taneously. Here we use a cluster of four shared-memory machines, each with 24
UltraSPARC-III (750MHz) CPUs. We give the run times on level 2 for different
combinations of the number of processes used for the coarse grain parallelization
and of the number of threads used by each of these coarse grain processes. The
resulting speed-ups and efficiencies are almost the products of the respective
entries from Table 1 and 2.

As a last example we give results for level 3, here 66 grids have to be con-
sidered. The computation in the serial version takes 43345 seconds. Using 33
processes for the coarse grain parallelization with two threads each for the fine
grain parallelism the run time is 830 seconds, resulting in a speed-up of 52.2
and an efficiency of 0.79. With 66 processes, only used for the coarse grain par-
allelism, 802 seconds are needed, here the speed-up is 54.1 and the efficiency is
0.82.

4 Conclusions

We presented two parallelization strategies of the sparse grid combination tech-
nique for the classification of data. One parallelizes the combination technique on
a coarse grain level, the other one uses threads on a fine grain level to parallelize
the computation on each grid of the combination technique. A simultaneous use
of both approaches is also possible on suitable parallel computers, i.e. a cluster
of SMP-machines.

Both variants and their combination resulted in significant speed-ups of the
overall algorithm.

Level 1 Level 2

threads time (sec.) speed-up efficiency time (sec.) speed-up efficiency

1 540 - - 6124 - -
2 305 1.77 0.89 3363 1.82 0.91
3 223 2.42 0.81 2452 2.50 0.83
4 176 3.07 0.77 1895 3.23 0.81
5 152 3.55 0.71 1596 3.84 0.77
6 134 4.03 0.67 1369 4.47 0.75
7 121 4.46 0.63 1222 5.01 0.72
8 110 4.91 0.61 1084 5.65 0.71
9 102 5.29 0.59 1012 6.05 0.67
10 94 5.74 0.57 919 6.66 0.67
11 90 6.00 0.55 866 7.07 0.64
12 83 6.51 0.54 796 7.69 0.64
13 80 6.75 0.52 759 8.07 0.62
14 77 7.01 0.50 715 8.57 0.61
15 74 7.30 0.49 688 8.90 0.59
16 71 7.61 0.48 647 9.47 0.59
17 69 7.83 0.46 637 9.61 0.57
18 67 8.06 0.45 600 10.21 0.57
19 65 8.31 0.44 593 10.33 0.54
20 64 8.44 0.42 560 10.93 0.55
21 63 8.57 0.41 543 11.28 0.54
22 60 9.00 0.41 522 11.73 0.53
23 58 9.31 0.40 511 11.98 0.52
24 57 9.47 0.39 499 12.27 0.51

Table 2. Run time results for a 10D synthetic massive data set using threads

processes # threads time (sec.) speed-up efficiency

1 1 6124 - -
2 2 1853 3.26 0.82
2 4 1049 5.84 0.73
4 2 978 6.26 0.78
4 4 567 10.80 0.68
4 6 391 15.55 0.65
6 2 684 8.95 0.75
6 3 483 12.68 0.70
6 4 380 16.12 0.67
6 6 277 22.11 0.61
11 2 349 17.55 0.80
11 3 254 24.11 0.73
11 4 204 30.02 0.68
11 6 154 39.77 0.60

Table 3. Run time results for a 10D data set using both parallelization strategies

5 Acknowledgements

Part of the work was supported by the German Bundesministerium für Bildung
und Forschung (BMB+F) within the project 03GRM6BN. We would like to
thank the Rechenzentrum Ulm for the computing time on their Computeserver
of four SUN-machines with 24 UltraSPARC-III (750MHz) CPUs each.

References

1. R. Balder. Adaptive Verfahren für elliptische und parabolische Differentialgleichun-
gen auf dünnen Gittern. Dissertation, Technische Universität München, 1994.

2. M. J. A. Berry and G. S. Linoff. Mastering Data Mining. Wiley, 2000.
3. H.-J. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung

der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik,
Technische Universität München, 1992.

4. K. Cios, W. Pedrycz, and R. Swiniarski. Data Mining Methods for Knowledge
Discovery. Kluwer, 1998.

5. J. Garcke and M. Griebel. Data mining with sparse grids using simplicial basis
functions. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2001. also as SFB 256 Preprint 713,
Universität Bonn, 2001.

6. J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Computing,
2001. to appear, also as SFB 256 Preprint 675, Institut für Angewandte Mathe-
matik, Universität Bonn, 2000.

7. F. Girosi. An equivalence between sparse approximation and support vector ma-
chines. Neural Computation, 10(6):1455–1480, 1998.

8. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7:219–265, 1995.

9. M. Griebel. The combination technique for the sparse grid solution of PDEs on
multiprocessor machines. Parallel Processing Letters, 2(1):61–70, 1992. also as
SFB Bericht 342/14/91 A, Institut für Informatik, TU München, 1991.

10. M. Griebel, W. Huber, T. Störtkuhl, and C. Zenger. On the parallel solution of
3D PDEs on a network of workstations and on vector computers. In A. Bode and
M. Dal Cin, editors, Parallel Computer Architectures: Theory, Hardware, Software,
Applications, volume 732 of Lecture Notes in Computer Science, pages 276–291.
Springer Verlag, 1993.

11. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution
of sparse grid problems. In P. de Groen and R. Beauwens, editors, Iterative Methods
in Linear Algebra, pages 263–281. IMACS, Elsevier, North Holland, 1992. also as
SFB Bericht, 342/19/90 A, Institut für Informatik, TU München, 1990.

12. G. Melli. Datgen: A program that creates structured data. Website.
http://www.datasetgenerator.com.

13. A. N. Tikhonov and V. A. Arsenin. Solutions of ill-posed problems. W.H. Winston,
Washington D.C., 1977.

14. G. Wahba. Spline models for observational data, volume 59 of Series in Applied
Mathematics. SIAM, Philadelphia, 1990.

15. C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Par-
tial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990,
volume 31 of Notes on Num. Fluid Mech. Vieweg-Verlag, 1991.

