
Journal of Machine Learning Research 23 (2023) 1-8 Submitted 5/23; Revised 12/23; Published 12/23

ptwt - The PyTorch Wavelet Toolbox

Moritz Wolter moritz.wolter@uni-bonn.de
High-Performance Computing and Analytics Lab, University of Bonn, Germany

Felix Blanke felix.blanke@scai.fraunhofer.de
Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany

Jochen Garcke garcke@ins.uni-bonn.de
Institute for Numerical Simulation, University of Bonn
and Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany

Charles Tapley Hoyt cthoyt@gmail.com

Northeastern University, Boston, USA

Editor: Sebastian Schelter

Abstract

The fast wavelet transform is an important workhorse in signal processing. Wavelets are
local in the spatial- or temporal- and the frequency-domain. This property enables fre-
quency domain analysis while preserving spatiotemporal information to some degree. Until
recently, wavelets rarely appeared in the machine learning literature. We provide the
PyTorch Wavelet Toolbox to make wavelet methods more accessible to the deep learning
community. Our PyTorch Wavelet Toolbox is well documented. A pip package is installable
with pip install ptwt.

Keywords: PyTorch, wavelet, wavelet-packets, wavelet-analysis, wavelet-transform

1. Introduction

Wavelets are nowadays used to extract information from many different kinds of data, with
a particular focus on audio signals and images. They are similar to Fourier analysis since
a signal is decomposed, but wavelets are localized in time –or space– and frequency, which
means that they can capture information about a signal at different scales and resolutions.
This is useful for analyzing signals that contain both high-frequency and low-frequency
components, such as speech or images (Torrence and Compo, 1998). The Fast Wavelet
Transform (FWT) is an algorithm to perform the wavelet transform on a digital signal in
an efficient and computationally feasible manner, it has a long and proven track record
as an excellent tool in engineering and science (Mallat, 2008). For further background on
wavelets we refer to the excellent textbooks by Strang and Nguyen (1996) and Jensen and
la Cour-Harbo (2001). While initially introduced for signal processing tasks, the wavelet
transform has started to appear in machine learning contexts. Some notable tasks include
deepfake detection (Huang et al., 2022; Gasenzer and Wolter, 2023) and neural network
compression (Wolter et al., 2020). The intersection of signal processing and neural net-

©2023 Moritz Wolter, Felix Blanke, Jochen Garcke and Charles Hoyt.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/23-0636(1).html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/23-0636(1).html


Moritz Wolter, Felix Blanke, Jochen Garcke, and Charles Hoyt

work design Recoskie (2018) explored wavelet filter learning, while Cotter (2020) studied
the application of complex wavelets in neural networks. Major popular machine learning
frameworks like PyTorch (Paszke et al., 2017, 2019) and JAX (Bradbury et al., 2018) lack
native Fast Wavelet Transform (FWT)-support. In the Python ecosystem, separate frame-
works like PyWavelets (Lee et al., 2019) and “2D Wavelet Transforms in Pytorch” (Cotter,
2022, 2020) exist. Lee et al. (2019) focus on CPU support and provide an extensive library of
precomputed wavelet filters. Cotter (2022) supports the padded separable two-dimensional
wavelet transform and its complex dual-tree variant. Both focus on padded transforms.
To our knowledge, we are proposing the first toolbox with boundary wavelet support. The
presented code adds Graphics Processing Unit (GPU) and gradient support for single- and
three-dimensional transforms and the fully separable wavelet transform. Toolbox and doc-
umentation are available online. 1

2. Library Design

Our library builds on the PyWavelets (pywt) package (Lee et al., 2019). Among other
features, we add boundary-wavelet as well as autograd, and Just In Time Compilation (jit)
support. Our package is available for user-friendly installation via,

pip install ptwt

We reuse the pywt.Wavelet data type for access to an extensive collection of predefined
wavelet filters. We have worked hard to make both Application Programming Interfaces
(APIs) as compatible as possible. In many cases, migrating from pywt to ptwt or the other
way around requires only a transfer of the data into a torch.Tensor or numpy.ndarray

format. The code snipped below illustrates the similarities.

import torch

import pywt, ptwt

# generate an input of even length.

data = torch.tensor([0., 1., 2., 3., 4., 5.])

# compare the forward fwt coefficients

print(pywt.wavedec(data.numpy(), "db2", mode="zero", level=2))

print(ptwt.wavedec(data, "db2", mode="zero", level=2))

# invert the fwt

print(ptwt.waverec(ptwt.wavedec(data, "db2", mode="zero"), "db2"))

In addition to padded transforms, we provide support for boundary wavelet filters
(Strang and Nguyen, 1996). Instead of padding the edges, boundary filter transforms use
orthogonalized analysis and synthesis matrices. Efficient orthogonalization relies on a QR
decomposition, which is available natively in PyTorch.

3. Comparison to Existing Work

Table 1 compares support for Discrete Wavelet Transform (DWT) and Continuous Wavelet
Transform (CWT). We provide support for GPUs and gradient propagation for many

1. https://pypi.org/project/ptwt/, https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/

2

https://pypi.org/project/ptwt/
https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/


ptwt - The PyTorch Wavelet Toolbox

Table 1: Non-exhaustive feature overview of our toolbox, Cotter (2022, 2020), and Lee et al.
(2019). We significantly extend the collection of publicly available differentiable
Discrete Wavelet Transform (DWT)-algorithms with GPU support.

computation ours Cotter (2022) Lee et al. (2019)

CWT-1d CPU,GPU,grad - CPU
pad-DWT-1d CPU,GPU,grad - CPU
pad-DWT-2d CPU,GPU,grad - CPU

pad-DWT-2d-separable CPU,GPU,grad CPU,GPU,grad CPU
pad-DWT-3d CPU,GPU,grad - CPU

boundary-DWT-1d CPU,GPU,grad - -
boundary-DWT-2d CPU,GPU,grad - -
boundary-DWT-3d CPU,GPU,grad - -

packets-1d CPU,GPU,grad - CPU
packets-2d CPU,GPU,grad - CPU

complex-dual-tree-DWT-2d - CPU,GPU,grad -

functions, which used to be available only on Central Processing Units (CPUs) without
backprop-support. Additionally, we support boundary wavelets. See supplementary Fig-
ure 1 for the sparsity patterns of a single-dimensional transform. The documentation lists
all of ptwts features. Extensive unit testing ensures correct and pywt-consistent results.

3.1 Speed-tests

ptwt inherits GPU and jit support from PyTorch. All speed tests were run on a machine
with an Intel Xeon W-2235 CPU @ 3.80GHz and an NVIDIA RTX A4000 Graphics card.
Table 2 compares run times of Discrete Wavelet Transform (DWT) implementations for
up to three dimensions. Adding GPU support yields significant speedups compared to Lee
et al. (2019). Compared to the two-dimensional code presented in Cotter (2022), we observe
state-of-the-art performance on GPU. Table 3 lists our measurements for the CWT-case.
Here, we see consistent computing-time reductions for each step from CPU, GPU, and jit.
On CPUs, the switch to ptwt leads to a speedup of roughly a factor of four. Since we
add the matrix form to the Python ecosystem, supplementary Figure 4 presents runtime
measurements.

4. Conclusion

We presented selected features of the PyTorch Wavelet Toolbox. We extended the set of
available methods on GPU by providing support for single and three-dimensional transforms
in PyTorch. Where our tools overlap with alternative frameworks, we enable GPU and
gradient support. Additionally, we allow Just In Time Compilation (jit). In terms of
runtime, using ptwt leads to improvements in many cases. Last, but not least, our toolbox
supports boundary wavelet computations for the first time in the Python world.

3



Moritz Wolter, Felix Blanke, Jochen Garcke, and Charles Hoyt

Table 2: Run-time comparisons for various implementations of the padded wavelet trans-
formation from one to three dimensions. We compare transformations of 32 · 106
random values. Inputs are shaped as R32×106 , R32×103×103 and R32×102×102×102

transformation run times are reported in seconds. All runs use a Daubechies five-
wavelet. We report mean and standard deviations over 100 repetitions each. We
explore the effect of Just In Time Compilation (jit) additionally to running on
CPU and GPU. The separable (sep.) two-dimensional transform employs two
single-dimensional transforms.

run-time [s]

ours Cotter (2022) Lee et al. (2019)

DWT-1D
CPU 0.40286 ± 0.00638 - 0.25841 ± 0.00907

GPU 0.00887 ± 0.04413 - -

GPU-jit 0.00439 ± 0.00051 - -

DWT-2D
CPU 0.17453 ± 0.01335 - 0.54936 ± 0.00924

GPU 0.01447 ± 0.03995 - -

GPU-jit 0.01110 ± 0.00050 - -

DWT-2D-sep.
CPU 0.52484 ± 0.00790 0.40189 ± 0.00727 0.92772 ± 0.00295

GPU 0.00995 ± 0.00062 0.01474 ± 0.04667 -

GPU-jit 0.00886 ± 0.00171 - -

DWT-3D
CPU 0.39827 ± 0.04912 - 0.81744 ± 0.01047

GPU 0.08047 ± 0.04310 - -

GPU-jit 0.08096 +- 0.00410 - -

Table 3: Run-time comparison for different implementations of the CWT. We report mean
and standard deviations over 100 repetitions each. The input signal has dimensions
of R32×103 . All experiments use a Shannon wavelet.

run-time [s]

ours Cotter (2022) Lee et al. (2019)

CWT
CPU 0.16029 ± 0.00925 - 0.94439 ± 0.01742

GPU 0.01957 ± 0.01081 - -

GPU-jit 0.01566 ± 0.00193 - -

4



ptwt - The PyTorch Wavelet Toolbox

Acknowledgments and Disclosure of Funding

MW thanks Stefan Kesselheim for his feedback. MW acknowledges funding from the Bun-
desministerium für Bildung und Forschung under the BntrAInee and WestAI project grants.
The authors gratefully acknowledge access to the Bender cluster hosted by the University of
Bonn as well as the JUWELS Booster Partition at the Jülich Supercomputing Centre. CTH
was funded under the Defense Advanced Research Projects Agency (DARPA) Automating
Scientific Knowledge Extraction and Modeling program [HR00112220036].

References

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs. http:

//github.com/google/jax, 2018.

Fergal Cotter. Uses of Complex Wavelets in Deep Convolutional Neural Networks. PhD
thesis, University of Cambridge, 2020.

Fergal Cotter. 2d wavelet transforms in Pytorch. https://github.com/fbcotter/

pytorch_wavelets, 2022.

Konstantin Gasenzer and Moritz Wolter. Towards generalizing deep-audio fake detection
networks. arXiv preprint arXiv:2305.13033, 2023.

Wei Huang, Michelangelo Valsecchi, and Michael Multerer. Anisotropic multiresolution
analyses for deep fake detection. arXiv preprint arXiv:2210.14874, 2022.

Arne Jensen and Anders la Cour-Harbo. Ripples in mathematics: the discrete wavelet
transform. Springer Science & Business Media, 2001.

Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron O’Leary. Py-
Wavelets: A Python package for wavelet analysis. Journal of Open Source Software, 4
(36):1237, 2019. URL https://github.com/PyWavelets/pywt.

Stéphane Mallat. A Wavelet Tour of Signal Processing – The Sparse Way. Academic Press,
3rd edition, 2008.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in PyTorch. In 31th International Conference on Artificial Neural Networks, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

Daniel Recoskie. Learning sparse orthogonal wavelet filters. PhD thesis, University of
Waterloo, 2018.

5

http://github.com/google/jax
http://github.com/google/jax
https://github.com/fbcotter/pytorch_wavelets
https://github.com/fbcotter/pytorch_wavelets
https://github.com/PyWavelets/pywt


Moritz Wolter, Felix Blanke, Jochen Garcke, and Charles Hoyt

0 5 10 15 20 25 30

0

10

20

30

Ca

0 5 10 15 20 25 30

0

10

20

30

C3
a

0 5 10 15 20 25 30

0

10

20

30

C2
a

0 5 10 15 20 25 30

0

10

20

30

C1
a

Figure 1: A plot of the analysis matrices’ sparsity patterns (Wolter et al., 2022).

Gilbert Strang and Truong Nguyen. Wavelets and filter banks. SIAM, 1996.

Christopher Torrence and Gilbert P Compo. A practical guide to wavelet analysis. Bulletin
of the American Meteorological society, 79(1):61–78, 1998.

Moritz Wolter, Shaohui Lin, and Angela Yao. Neural network compression via learnable
wavelet transforms. In 29th International Conference on Artificial Neural Networks, 2020.

Moritz Wolter, Felix Blanke, Raoul Heese, and Jochen Garcke. Wavelet-packets for deepfake
image analysis and detection. Machine Learning, Special Issue of the ECML PKDD
2022 Journal Track:1–33, August 2022. ISSN 0885-6125. doi: https://doi.org/10.1007/
s10994-022-06225-5. URL https://rdcu.be/cUIRt.

Acronyms

API Application Programming Interface

CPU Central Processing Unit

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

FWT Fast Wavelet Transform

GPU Graphics Processing Unit

jit Just In Time Compilation

5. Supplementary material

5.1 Code quality

We ensure code quality by running pytest, flake8, and mypy within an GitHub workflow.
Nox ensures dependencies are installed correctly for all our tests. Pytest runs more than
4k test cases to ensure correct toolbox operation.

6

https://rdcu.be/cUIRt


ptwt - The PyTorch Wavelet Toolbox

pyw
t-cp

u
ptw

t-cp
u

ptw
t-cp

u-ji
t
ptw

t-gp
u

ptw
t-gp

u-ji
t

10−2

10−1

ru
n
ti
m
e
[s
]

DWT-1D

pyw
t-cp

u
ptw

t-cp
u

ptw
t-gp

u

ptw
t-gp

u-ji
t

10−2

10−1

ru
n
ti
m
e
[s
]

DWT-2D

Figure 2: Run-time box-plots of our single dimensional (left) and two dimensional (right)
padded DWT speed tests. The first run is typically significantly slower than
subsequent runs. This behavior causes the outliers.

pyw
t-cp

u
ptw

t-cp
u

ptw
t-gp

u

ptw
t-gp

u-ji
t

10−1

10−0.5

ru
n
ti
m
e
[s
]

DWT-3D

pyw
t-cp

u
ptw

t-cp
u

ptw
t-gp

u

ptw
t-gp

u-ji
t

10−1

100

ru
n
ti
m
e
[s
]

CWT-1D

Figure 3: Run-time box-plots of the 3d-speed test (left) and for the continuous transform
(right). The first run is typically significantly slower than subsequent runs. This
behavior causes the outliers.

7



Moritz Wolter, Felix Blanke, Jochen Garcke, and Charles Hoyt

pyw
t-cp

u
ptw

t-cp
u

ptw
t-gp

u

ptw
t-gp

u-b
oun

dary

10−2

10−1

100

101

102

ru
n
ti
m
e
[s
]

DWT-1D-boundary

pyw
t-cp

u
ptw

t-cp
u

ptw
t-gp

u

ptw
t-gp

u-b
oun

dary

10−2

10−1

100

ru
n
ti
m
e
[s
]

DWT-2D-boundary

Figure 4: Run-time box-plots of the boundary wavelet code in one and two dimensions.
The first run is typically significantly slower than subsequent runs. This behavior
causes the outliers.

8


	Introduction
	Library Design
	Comparison to Existing Work
	Speed-tests

	Conclusion
	Supplementary material
	Code quality


