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Abstract

Kolmogorov showed in [14] that any multivariate continuous function can be represented
as a superposition of one–dimensional functions, i.e.

f(x1, . . . , xn) =

2n
∑

q=0

Φq

(

n
∑

p=1

ψq,p(xp)

)

.

The proof of this fact, however, was not constructive and it was not clear how to choose the
outer and inner functions Φq and ψq,p respectively. Sprecher gave in [27, 28] a constructive
proof of Kolmogorov’s superposition theorem in form of a convergent algorithm which defines
the inner functions explicitly via one inner function ψ by ψp,q := λpψ(xp + qa) with appro-
priate values λp, a ∈ R. Basic features of this function as monotonicity and continuity were
supposed to be true, but were not explicitly proved and turned out to be not valid. Köppen
suggested in [16] a corrected definition of the inner function ψ and claimed, without proof,
its continuity and monotonicity. In this paper we now show that these properties indeed
hold for Köppen’s ψ and present a correct constructive proof of Kolmogorov’s superposition
theorem for continuous inner functions ψ similar to Sprecher’s approach.

Keywords: Kolmogorov’s superposition theorem, superposition of functions, representation of
functions

AMS-Classification: 26B40

1 Introduction

The description of multivariate continuous functions as a superposition of a number of continuous
functions [13,24] is closely related to Hilbert’s thirteenth problem [10] from his Paris lecture in
1900. In 1957 the Russian mathematician Kolmogorov showed the remarkable fact that any
continuous function f of many variables can be represented as a composition of addition and
some functions of one variable [14]. The original version of this theorem can be expressed as
follows:

Theorem. Let f : In := [0, 1]n → R be an arbitrary multivariate continuous function. Then it

has the representation

f(x1, . . . , xn) =
2n
∑

q=0

Φq





n
∑

p=1

ψq,p(xp)



 , (1.1)

with continuous one–dimensional outer and inner functions Φq and ψq,p. All these functions Φq,

ψq,p are defined on the real line. The inner functions ψq,p are independent of the function f .

Kolmogorov’s student Arnold also made contributions [1–3] in this context that appeared at
nearly the same time. Several improvements of Kolmogorov’s original version were published
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in the following years. Lorentz showed that the outer functions Φq can be chosen to be the
same [19, 20] while Sprecher proved that the inner functions ψq,p can be replaced by λpψq with
appropriate constants λp [25, 26]. A proof of Lorentz’s version with one outer function that is
based on the Baire category theorem was given by Hedberg [9] and Kahane [13]. A further
improvement was made by Friedman [5], who showed that the inner functions can be chosen to
be Lipschitz continuous. A geometric interpretation of the theorem is that the 2n+1 inner sums
∑n

p=1 ψq,p map the unit cube In homeomorphically onto a compact set Γ ⊂ R2n+1. Ostrand [23]
and Tikhomirov [15] extended Kolmogorov’s theorem to arbitrary n–dimensional metric compact
sets. The fact that any compact set K ⊂ Rn can be homeomorphically embedded into R2n+1

was already known from the Menger–Nöbeling theorem [11].

More recently, Kolmogorov’s superposition theorem found attention in neural network compu-
tation by Hecht–Nielsen’s interpretation as a feed-forward network with an input layer, one
hidden layer and an output layer [7, 8, 25]. However, the inner functions in all these versions
of Kolmogorov’s theorem are highly non-smooth. Also, the outer functions depend on the
specific function f and hence are not representable in a parameterized form. Moreover, all one–
dimensional functions are the limits or sums of some infinite series of functions, which cannot be
computed practically. Therefore Girosi and Poggio [6] made the criticism that such an approach
is not applicable in neurocomputing.

The original proof of Kolmogorov’s theorem is not constructive, i.e. one can show the existence of
a representation (1.1) but it cannot be used in an algorithm for numerical calculations. Kurkova
[17,18] partly eliminated these difficulties by substituting the exact representation in (1.1) with
an approximation of the function f . She replaced the one–variable functions with finite linear
combinations of affine transformations of a single arbitrary sigmoidal function ψ. Her direct
approach also enabled an estimation of the number of hidden units (neurons) as a function of the
desired accuracy and the modulus of continuity of f being approximated. In [21] a constructive
algorithm is proposed that approximates a function f to any desired accuracy with one single
design, which means that no additional neurons have to be added. There, also a short overview
of the history of Kolmogorov’s superposition theorem in neural network computing is given.
Other approximative, but constructive approaches to function approximation by generalizations
of Kolmogorov’s superposition theorem can be found in [4, 12,22].

Recently, Sprecher derived in [27, 28] a numerical algorithm for the implementation of both
internal and external univariate functions, which promises to constructively prove Kolmogorov’s
superposition theorem. In these articles, the inner functions ψq are defined as translations of
a single function ψ that is explicitly defined as an extension of a function which is defined on
a dense subset of the real line. There, the r–th iteration step of Sprecher’s algorithm works as
follows: For a chosen appropriate basis γ ∈ N+, the n–dimensional unit cube [0, 1]n is divided
into subcubes which are separated by small gaps whose sizes depend on γ. Also, Sprecher’s
definition of the inner function is based on this γ such that, for fixed q, the corresponding inner
sum maps the subcubes into intervals on the real line. These intervals are then again separated
by gaps. This allows the definition of a continuous outer function Φr

q on the intervals such
that the residual fr between f and the previous iterate is approximated on the subcubes by the
superposition of the q–th outer function and an inner sum. Since the approximation error cannot
be controlled on the gaps, the cubes are additionally translated by a variation of the q’s. This is
done such that for each point x ∈ [0, 1]n the set of q–values for which x is contained in a subcube
is larger than the set for which it lies in a gap. The r–th approximation is then defined as the
sum over all values of q and the previous iterate. Sprecher proved convergence of this algorithm
in [27, 28]. Throughout this proof, he relied on continuity and monotonicity of the resulting
ψ. It can however be shown that his ψ does not possess these important properties. This was
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already observed by Köppen in [16] where a modified inner function ψ was suggested. Köppen
claims, but does not prove the continuity of his ψ and merely comments on the termination of
the recursion which defines his corrected function ψ.

In this article we close these gaps. First, since the recursion is defined on a dense subset of R, it
is necessary to show the existence of an expansion of Köppen’s ψ to the real line. We give this
existence proof. Moreover it is also a priori not clear that Köppen’s ψ possesses continuity and
monotonicity, which are necessary to proof the convergence of Sprecher’s algorithm and therefore
Kolmogorov’s superposition theorem. We provide these properties. Altogether, we thus derive a
complete constructive proof of Kolmogorov’s superposition theorem along the lines of Sprecher
but based on Köppen’s ψ.

The remainder of this article is organized as follows: As starting point, we specify Sprecher’s
version of Kolmogorov’s superposition theorem in section 2. Then, in section 3 we briefly
repeat the definitions of the original inner function ψ and the constructive algorithm that was
developed by Sprecher in [27,28]. The convergence of this algorithm would prove Kolmogorov’s
superposition theorem. First, we observe that Sprecher’s ψ is neither continuous nor monotone
increasing on the whole interval [0, 1]. We then show that Köppen’s ψ indeed exists, i.e. it is
well defined and has the necessary continuity and monotonicity properties. Endowed with this
knowledge, we then follow Sprecher’s lead and prove the convergence of the algorithm, where
the original inner function is replaced by the corrected one. This finally gives a constructive
proof of Kolmogorov’s superposition theorem.

2 Definitions and algorithm

2.1 A version of Kolmogorov’s superposition theorem

Many different variants of Kolmogorov’s superposition theorem (1.1) were developed since the
first publication of this remarkable result in 1957. Some improvements can be found e.g. in
[20,25]. In [5] it was shown that the inner functions ψq,p can be chosen to be Lipschitz continuous
with exponent one. Another variant with only one outer function and 2n + 1 inner functions
was derived in [20]. A version of Kolmogorov’s superposition theorem recently developed by
Sprecher in [25] reads as follows:

Theorem 2.1. Let n ≥ 2, m ≥ 2n and γ ≥ m + 2 be given integers and let x = (x1, . . . , xn)
and xq = (x1 + qa, . . . , xn + qa), where a := [γ(γ − 1)]−1. Then, for any arbitrary continuous

function f : Rn → R, there exist m+1 continuous functions Φq : R → R, q = 0, . . .m, such that

f(x) =
m
∑

q=0

Φq ◦ ξ(xq) , with ξ(xq) =
n
∑

p=1

αp ψ(xp + qa) , (2.1)

α1 = 1, αp =
∑

∞

r=1 γ
−(p−1)β(r) for p > 1 and β(r) = (nr − 1)/(n− 1).

This version of Kolmogorov’s superposition theorem involves m one–dimensional outer functions
Φq and one single inner function ψ. The definition of ψ will be discussed in detail in the following.

For a fixed base γ > 1 we define for any k ∈ N the set of terminating rational numbers

Dk = Dk(γ) :=

{

dk ∈ Q : dk =
k
∑

r=1

irγ
−r, ir ∈ {0, . . . , γ − 1}

}

. (2.2)
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Then the set
D :=

⋃

k∈N

Dk (2.3)

is dense in [0, 1].

In [28] Sprecher formulated an algorithm, whose convergence proves the above theorem 2.1
constructively. In this algorithm, the inner function ψ was defined point-wise on the set D.
Further investigations on this function were made in [27]. However, to make this proof work,
two fundamental properties of ψ namely continuity and monotonicity are needed. Unfortunately,
the inner function ψ in [27, 28] is neither continuous nor monotone. In the following, we repeat
the definition of ψ here and show that it indeed does not define a continuous and monotone
increasing function.

Let 〈i1〉 := 0 and for r ≥ 2 let

〈ir〉 :=

{

0 when ir = 0, 1 . . . , γ − 2 ,

1 when ir = γ − 1 .

Furthermore, we define [i1] := 0 and, for r ≥ 2,

[ir] :=

{

0 when ir = 0, 1 . . . , γ − 3 ,

1 when ir = γ − 2, γ − 1 ,

ı̃r := ir − (γ − 2)〈ir〉 ,

and

mr := 〈ir〉
(

r−1
∑

s=1

(

[is] · . . . · [ir−1]
)

)

.

The function ψ is then defined on Dk by

ψ(dk) :=
k
∑

r=1

ı̃r 2−mr γ−β(r−mr) . (2.4)

Note that the definition of ψ depends on the dimension n since β(·) depends on n. For a simpler
notation we dispense with an additional index. The graph of the function ψ is depicted in
figure 1 for k = 5, γ = 10 and n = 2, i.e. it was calculated with the definition (2.4) on the set of
rational decimal numbers Dk. The function ψ from (2.4) has an extension to [0, 1], which also
will be denoted by ψ if the meaning is clear from the contents.

The following calculation shows directly that this function is not continuous in contrast to the
claim in [27]. With the choice γ = 10 and n = 2 one gets with the definition (2.4) the function
values

ψ(0.58999) = 0.55175 and ψ(0.59) = 0.55 . (2.5)

This counter–example shows that the function ψ is not monotone increasing. We furthermore
can see from the additive structure of ψ in (2.4) that

ψ(0.58999) < ψ(x) for all x ∈
(

0.58999, 0.59
)

. (2.6)

This shows that the function ψ is also not continuous.

Remark 2.2. Discontinuities of ψ arise for all values x = 0.i19 , i1 = 0, . . . , 9.
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Figure 1: The graph of Sprecher’s ψ from (2.4) on the interval [0, 1] (left) and a zoom into a
smaller interval (small, left), computed for the values of the set D5, γ = 10 and n = 2. One can
clearly see the non–monotonicity and discontinuity near the value x = 0.59. The right image
shows Köppen’s version from (2.7) for the same parameters and a zoom into the same region
(small, right). Here, the discontinuity is no longer present.

Among other things, the convergence proof in [27,28] is based on continuity and monotonicity of
ψ. As the inner function defined by Sprecher does not provide these properties the convergence
proof also becomes invalid unless the definition of ψ is properly modified. To this end, Köppen
suggested in [16] a corrected version of the inner function and stated its continuity. This defini-
tion of ψ is also restricted to the dense set of terminating rational numbers D. Köppen defines
recursively

ψk(dk) =















dk for k = 1 ,

ψk−1(dk − ik
γk ) + ik

γβ(k) for k > 1 and ik < γ − 1 ,

1
2

(

ψk−1(dk − ik
γk ) + ψk−1(dk + 1

γk ) + ik
γβ(k)

)

for k > 1 and ik = γ − 1

(2.7)

and claimed that this recursion terminates. He assumed that there exists an extension from the
dense set D to the real line as in Sprecher’s construction and that this extended ψ is monotone
increasing and continuous but did not give a proof for it. In the following, we provide such a
proof. The function ψk is depicted in figure 1 for the same parameters k = 5, γ = 10 and n = 2
as before.

We first consider the existence of an extension and begin with the remark that every real number
x ∈ [0, 1] has a representation

x =
∞
∑

r=1

ir
γr

= lim
k→∞

k
∑

r=1

ir
γr

= lim
k→∞

dk .

For such a value x, we define the inner function

ψ(x) := lim
k→∞

ψk(dk) = lim
k→∞

ψk

(

k
∑

r=1

ir
γr

)

(2.8)

and show the existence of this limit.
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For the following calculations it is advantageous to have an explicit representation of (2.7) as a
sum. To this end, we need some further definitions. The values of ψk−j at the rational points
dk−j , dk−j + 1

γk−j ∈ [0, 1] are denoted as

ψk−j := ψk−j(dk−j) and ψ+
k−j := ψk−j(dk−j +

1

γk−j
) .

Then, the recursion (2.7) takes for k − j > 1 the form

ψk−j =

{

ik−j

γβ(k−j) + ψk−j−1 for ik−j < γ − 1,
γ−2

2γβ(k−j) + 1
2ψk−j−1 + 1

2ψ
+
k−j−1 for ik−j = γ − 1

(2.9)

and

ψ+
k−j =















ik−j

γβ(k−j) + 1
γβ(k−j) + ψk−j−1 for ik−j < γ − 2,

ik−j

2γβ(k−j) + 1
2ψk−j−1 + 1

2ψ
+
k−j−1 for ik−j = γ − 2,

ψ+
k−j−1 for ik−j = γ − 1 .

(2.10)

Using the values

sj :=











0 for ik−j+1 < γ − 2,
1
2 for ik−j+1 = γ − 2,

1 for ik−j+1 = γ − 1

and s̃j :=

{

0 for ik−j+1 < γ − 1,
1
2 for ik−j+1 = γ − 1,

(2.11)

we can define the matrix and vector

Mj :=

(

(1 − s̃j+1) s̃j+1

(1 − sj+1) sj+1

)

and bj :=





(1 − 2s̃j+1)
ik−j

γβ(k−j) + s̃j+1
γ−2

γβ(k−j)

(1 − sj+1)
[

ik−j

γβ(k−j) + (1 − 2sj+1)
1

γβ(k−j)

]



 .

Now, the representations (2.9) and (2.10) can be brought into the more compact form

(

ψk−j

ψ+
k−j

)

= Mj

(

ψk−j−1

ψ+
k−j−1

)

+ bj . (2.12)

Next, we define the values θ0 := 1, θ+
0 := 0, θ1 := 1 − s̃1, θ

+
1 := s̃1, and set recursively

(

θj+1

θ+
j+1

)

:= MT
j

(

θj

θ+
j

)

(2.13)

for j = 1, . . . , k − 1. By induction we can directly deduce from (2.13) and (2.11) the useful
properties

θj + θ+
j = 1 and θj , θ

+
j > 0 . (2.14)

With these definitions, the ξ–th step of the recursion can be written as the sum

ψk =

ξ−1
∑

j=0

θj

[

(1 − 2s̃j+1)
ik−j

γβ(k−j)
+ s̃j+1

γ − 2

γβ(k−j)

]

+ θ+
j

[

(1 − sj+1)
( ik−j

γβ(k−j)
+ (1 − 2sj+1)

1

γβ(k−j)

)]

+ θξ ψk−ξ + θ+
ξ ψ

+
k−ξ .

(2.15)

6



Proof by induction. ξ = 1: From (2.12) for j = 0 we directly get

ψk =
[

(1 − 2s̃1)
ik

γβ(k)
+ s̃1

γ − 2

γβ(k)

]

+ (1 − s̃1)ψk−1 + s̃1ψ
+
k−1 .

√

ξ → ξ + 1 : With (2.12) and (2.13) we have

ψk =

ξ−1
∑

j=0

θj

[

(1 − 2s̃j+1)
ik−j

γβ(k−j)
+ s̃j+1

γ − 2

γβ(k−j)

]

+ θ+
j

[

(1 − sj+1)
( ik−j

γβ(k−j)
+ (1 − 2sj+1)

1

γβ(k−j)

)]

+ θξ

[

(1 − s̃ξ+1)ψk−(ξ+1) + s̃ξ+1ψ
+
k−(ξ+1) + (1 − 2s̃ξ+1)

ik−ξ

γβ(k−ξ)
+ s̃ξ+1

γ − 2

γβ(k−ξ)

]

+ θ+
ξ

[

(1 − sξ+1)ψk−(ξ+1) + sξ+1ψ
+
k−(ξ+1) + (1 − sξ+1)

[ ik−ξ

γβ(k−ξ)
+ (1 − 2sξ+1)

1

γβ(k−ξ)

]]

=

ξ
∑

j=0

θj

[

(1 − 2s̃j+1)
ik−j

γβ(k−j)
+ s̃j+1

γ − 2

γβ(k−j)

]

+ θ+
j

[

(1 − sj+1)
( ik−j

γβ(k−j)
+ (1 − 2sj+1)

1

γβ(k−j)

)]

+ θξ+1 ψk−(ξ+1) + θ+
ξ+1ψ

+
k−(ξ+1) .

Choosing ξ = k−1 we finally obtain a point-wise representation of the function ψk as the direct
sum

ψk(dk) =
k−2
∑

j=0

θj

[

(1 − 2s̃j+1)
ik−j

γβ(k−j)
+ s̃j+1

γ − 2

γβ(k−j)

]

+ θ+
j

[

(1 − sj+1)
( ik−j

γβ(k−j)
+ (1 − 2sj+1)

1

γβ(k−j)

)]

+ θk−1
i1
γ

+ θ+
k−1

i1 + 1

γ
.

(2.16)

Now we have to show the existence of the limit (2.8). To this end, we consider the behavior of
the function values ψk and ψ+

k as k tends to infinity:

Lemma 2.3. For growing values of k one has for ψk defined in (2.9) and ψ+
k from (2.10)

ψ+
k = ψk + O(2−k) .

Proof. With (2.12), the fact that γβ(j) = γβ(j−1)γnj−1
and γn > 2, we have

|ψ+
k − ψk| ≤

1

2
|ψ+

k−1 − ψk−1| +
γ − 2

γβ(k)

≤
(

1

2

)k−1

|ψ+
1 − ψ1| +

(

1

2

)k−2

(γ − 2)





k
∑

j=2

2j−2

γβ(j)





≤
(

1

2

)k−1

|ψ+
1 − ψ1| +

(

1

2

)k−2

(γ − 2)





∞
∑

j=0

(

2

γn

)j−2




=

(

1

2

)k−2 [ 1

2γ
+

(γ − 2)γn

γn − 2

]

and the assertion is proved.
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If we now apply this result to arbitrary values k and k′, we can show the following lemma:

Lemma 2.4. The sequence ψk defined in (2.9) is a Cauchy sequence.

Proof. For k, k′ ∈ N and without loss of generality k > k′, we set ξ := k − k′ in (2.15). Then,
we obtain by (2.14) and with lemma 2.3 the following estimate:

|ψk − ψk′ | ≤
∣

∣θk−k′ψk′ + θ+
k−k′ψ

+
k′ − ψk′

∣

∣ + 2(γ − 2)
k
∑

j=k′+1

1

γβ(j)

≤
∣

∣θk−k′ψk′ + θ+
k−k′ψ

+
k′ − ψk′

∣

∣ + 2(γ − 2)
k
∑

j=k′+1

(

1

γn

)j−1

=
∣

∣

∣
θk−k′ψk′ + θ+

k−k′

(

ψk′ + O(2−k′

)
)

− ψk′

∣

∣

∣
+

2γn(γ − 2)

1 − γn

(

(

1

γn

)k

−
(

1

γn

)k′
)

≤ O(2−k′

) +
2γn(γ − 2)

1 − γn

(

(

1

γn

)k

−
(

1

γn

)k′
)

.

The right hand side tends to 0 when k, k′ −→ ∞.

The real numbers R are complete and we therefore can infer the existence of a function value
for all x ∈ [0, 1]. Thus the function ψ from (2.8) is well defined. It remains to show that this ψ
is continuous and monotone increasing. This will be the topic of the following subsections.

2.2 The continuity of ψ

We now show the continuity of the inner function ψ. To this end we first recall some properties
of the representations of real numbers.

Let

x :=
∞
∑

r=1

ir
γr

and x0 :=
∞
∑

r=1

i0,r

γr

be the representation of the values x and x0 in the base γ, respectively. Let x0 ∈ (0, 1) be given
and

δ(k0) := min







∞
∑

r=k0+1

i0,r

γr
,

1

γk0
−

∞
∑

r=k0+1

i0,r

γr







.

For any x ∈
(

x0 − δ(k0), x0 + δ(k0)
)

it follows that

ir = i0,r for r = 1, . . . , k0 . (2.17)

Special attention has to be paid to the values x0 = 0 and x0 = 1. In both cases, we can choose
δ(k0) = γ−k0 . Then (2.17) holds for all x ∈

[

0, δ(k0)
)

if x0 = 0 and all x ∈
(

1 − δ(k0), 1
]

if
x0 = 1. The three different cases are depicted in figure 2.

Altogether we thus can find for any given arbitrary x0 ∈ [0, 1] a δ–neighborhood

U :=
(

x0 − δ(k0), x0 + δ(k0)
)

∩ [0, 1]
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in which (2.17) holds. To show the continuity of the inner function ψ in x0, we now choose this
neighborhood and see from (2.16) for x, x0 ∈ U :

|ψ(x) − ψ(x0)| = lim
k→∞

|ψ(dk) − ψ(d0,k)|

= lim
k→∞

∣

∣

∣

∣

∣

∣

k−k0−1
∑

j=0

θj

[

(1 − 2s̃j+1)
ik−j

γβ(k−j)
+ s̃j+1

γ − 2

γβ(k−j)

]

+ θ+
j

[

(1 − sj+1)
( ik−j

γβ(k−j)
+ (1 − 2sj+1)

1

γβ(k−j)

)]

−
k−k0−1
∑

j=0

θ0,j

[

(1 − 2s̃0,j+1)
i0,k−j

γβ(k−j)
+ s̃0,j+1

γ − 2

γβ(k−j)

]

+ θ+
0,j

[

(1 − s0,j+1)
( i0,k−j

γβ(k−j)
+ (1 − 2s0,j+1)

1

γβ(k−j)

)]

∣

∣

∣

∣

≤ lim
k→∞

k−k0−1
∑

j=0

∣

∣

∣

∣

θj

[

(1 − 2s̃j+1)
ik−j

γβ(k−j)
+ s̃j+1

γ − 2

γβ(k−j)

]

∣

∣

∣

∣

+

∣

∣

∣

∣

θ+
j

[

(1 − sj+1)
( ik−j

γβ(k−j)
+ (1 − 2sj+1)

1

γβ(k−j)

)]

∣

∣

∣

∣

+ lim
k→∞

k−k0−1
∑

j=0

∣

∣

∣

∣

θ0,j

[

(1 − 2s̃0,j+1)
i0,k−j

γβ(k−j)
+ s̃0,j+1

γ − 2

γβ(k−j)

]

∣

∣

∣

∣

+

∣

∣

∣

∣

θ+
0,j

[

(1 − s0,j+1)
( i0,k−j

γβ(k−j)
+ (1 − 2s0,j+1)

1

γβ(k−j)

)]

∣

∣

∣

∣

≤ lim
k→∞

4γn(γ − 2)

1 − γn

∣

∣

∣

∣

∣

(

1

γn

)k

−
(

1

γn

)k0

∣

∣

∣

∣

∣

=
4γn(γ − 2)

1 − γn

(

1

γn

)k0

.

(2.18)

Note that the estimation of the last two sums was derived in a similar way to that of the proof
of lemma 2.4.

In conclusion we can find for any given ε > 0 a k0 ∈ N and thus a δ(k0) > 0 such that
|ψ(x) − ψ(x0)| < ε whenever x, x0 ∈ U =

(

x0 − δ(k0), x0 + δ(k0)
)

∩ [0, 1]. This is just the
definition of continuity of ψ in x0 ∈ (0, 1). Since the interval U is only open to the right if
x0 = 0 and open to the left if x0 = 1, the inequality (2.18) also shows for these two cases
continuity from the right and from the left, respectively. We hence have proved the following
theorem:

Theorem 2.5. The inner function ψ from (2.8) is continuous on [0, 1].

2.3 The monotonicity of ψ

A further crucial property of the function ψ is its monotonicity. We show this first on the dense
subset D ⊂ R of terminating rational numbers. Note that the values ψk and ψ+

k from (2.9) and
(2.10) are evaluations of ψ on the dense subset of rational numbers in [0, 1].

Lemma 2.6. For every k ∈ N, there holds

ψ+
k ≥ ψk +

1

γβ(k)
.
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0

∞
∑

r=k0+1

ir
γr

1
γk0

k0
∑

r=1

i0,r

γr

x0 k0
∑

r=1

i0,r

γr + 1
γk0

1 − 1
γk0

k0
∑

r=1

γ−1
γr +

∞
∑

r=k0+1

i0
γr

1 =
∞
∑

r=1

γ−1
γr

δ(k0)
∞
∑

r=k0+1

i0,r

γr
1
γk0

−
∞
∑

r=k0+1

i0,r

γr δ(k0)

Figure 2: The figure shows the interval [0, 1]. For any two values x1 and x2 that both lie in
one of the depicted small intervals it holds that i1,r = i2,r for r = 1, . . . , k0. The three intervals
represent the possible cases that occur in the proof of theorem 2.5.

Proof by induction. k = 1:

ψ+
1 − ψ1 = ψ1(d1 +

1

γ
) − ψ1(d1) = d1 +

1

γ
− d1 =

1

γ
=

1

γβ(1)

√

k → k + 1 :

ψ+
k+1 − ψk+1 = (s0 − s̃0)(ψ

+
k − ψk) +

1

γβ(k+1)

(

(2s̃0 − s0)ik+1 + (1 − s0)(1 − 2s0) − s̃0(γ − 2)
)

=















1
γβ(k+1) for ik+1 < γ − 2 (s0 = s̃0 = 0) ,
1
2(ψ+

k − ψk) − 1
2

γ−2
γβ(k+1) for ik+1 = γ − 2 (s0 = 1

2 , s̃0 = 0) ,
1
2(ψ+

k − ψk) − 1
2

γ−2
γβ(k+1) for ik+1 = γ − 1 (s0 = 1, s̃0 = 1

2) .

For the first case ik+1 < γ − 2, the assertion is trivial. For the other two cases, we have

1

2
(ψ+

k −ψk)−
1

2

γ − 2

γβ(k+1)
≥ 1

2
(ψ+

k −ψk)−
1

2

γ − 2

γβ(k+1)
≥ 1

2

(

1

γβ(k)
− γ − 2

γβ(k+1)

)

≥ 1

γβ(k+1)
.

√

Here, the validity of the last estimate can be obtained from

1

2

(

1

γβ(k)
− γ − 2

γβ(k+1)

)

≥ 1

γβ(k+1)
⇔ 1

2

(

γnk−1

γβ(k+1)
− γ − 2

γβ(k+1)

)

≥ 1

γβ(k+1)

⇔ γnk−1 − γ + 2 ≥ 2 ⇔ γnk−1 ≥ γ ⇔ nk−1 ≥ 1 .
√

We have thus shown that ψ is strictly monotone increasing on a dense subset of [0, 1]. Since the
function is continuous, this holds for the whole interval [0, 1]. This proves the following theorem:

Theorem 2.7. The function ψ from (2.8) is monotone increasing on [0, 1].

In summary, we have demonstrated that the inner function ψ defined by Sprecher (c.f. [27, 28])
is neither continuous nor monotone increasing, whereas the definition (2.8) of ψ by Köppen
from [16] possesses these properties.

3 The algorithm of Sprecher

We will now demonstrate that Sprecher’s constructive algorithm from [28] with Köppen’s defini-
tion of the inner function ψ from [16] is indeed convergent. We start with a review of Sprecher’s
algorithm, where α1 = 1, αp =

∑

∞

r=1 γ
−(p−1)β(r) for p = 2 . . . n, β(r) = (nr − 1)/(n − 1) and

a = [γ(γ − 1)]−1 are defined as in section 2. Additionally, some new definitions are needed.

10



Definition 3.1. Let σ : R → R be an arbitrary continuous function with σ(x) ≡ 0 when x ≤ 0,
and σ(x) ≡ 1 when x ≥ 1. For q ∈ {0, . . . ,m} and k ∈ N given, define

dq
k,p := dk,p + q

k
∑

r=2

γ−r

and set d
q
k = (dq

k,1, . . . , d
q
k,n). Then for each number ξ(dq

k) :=
∑n

p=1 αp ψ(dq
k,p) we set

bk :=

(

∞
∑

r=k+1

γ−β(r)

)





n
∑

p=1

αp



 and

ω(dq
kr

; yq) := σ
(

γβ(k+1)
(

yq − ξ(dq
k)
)

+ 1
)

− σ
(

γβ(k+1)
(

yq − ξ(dq
k) − (γ − 2) bk

)

)

. (3.1)

We are now in the position to present the algorithm of Sprecher which implements the represen-
tation of an arbitrary multivariate function f as superposition of single variable functions. Let
‖ · ‖ denote the usual maximum norm of functions and let f : In → R be a given continuous
function with known uniform maximum norm ‖ f ‖. Furthermore, let η and ε be fixed real
numbers such that 0 < m−n+1

m+1 ε+ 2n
m+1 ≤ η < 1 which implies ε < 1 − n

m−n+1 .

Algorithm 3.2. Starting with f0 ≡ f , for r = 1, 2, 3, . . ., iterate the following steps:

I. Given the function fr−1(x), determine an integer kr such that for any two points x,x′ ∈
Rn with ‖x−x′ ‖ ≤ γ−kr it holds that |fr−1(x)− fr−1(x

′)| ≤ ε‖ fr−1 ‖. This determines

rational coordinate points d
q
kr

= (dq
kr,1, . . . , d

q
kr,n).

II. For q = 0, 1, . . . ,m:

II–1 Compute the values ψ(dq
kr,p).

II–2 Compute the linear combinations ξ(dq
kr

) =
∑n

p=1 αp ψ(dq
kr,p).

II–3 Compute the functions ω(dq
kr

; yq).

III. III–1 Compute for q = 0, . . . ,m the functions

Φr
q(yq) =

1

m+ 1

∑

fr−1(dkr
)ω(dq

kr
; yq) , (3.2)

where the sum is taken over all values d
q
kr

∈ Dn
kr

.

III–2 Substitute for q = 1, . . . ,m the transfer functions ξ(xq) and compute the functions

Φr
q ◦ ξ(xq) :=

1

m+ 1

∑

fr−1(dkr
)ω(dq

kr
; ξ(xq)) .

Again, the sum is built over all values d
q
kr

∈ Dn
kr

.

III–3 Compute the function

fr(x) := f(x) −
m
∑

q=0

r
∑

j=1

Φj
q ◦ ξ(xq) . (3.3)

This completes the r–th iteration loop and gives the r–th approximation to f . Now replace r by

r + 1 and go to step I.
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The convergence of the series {fr} for r → ∞ to the limit limr→∞ fr =: g ≡ 0 is equivalent to
the validity of theorem 2.1. The following convergence proof essentially follows [27,28]. It differs
however in the arguments that refer to the inner function ψ which is now given by (2.8), i.e. we
always refer to Köppen’s definition (2.8), if we use the inner function ψ.

The main argument for convergence is the validity of the following theorem:

Theorem 3.3. For the approximations fr, r = 0, 1, 2, . . . defined in step III–3 of Algorithm 3.2

there holds the estimate

‖ fr ‖ =

∥

∥

∥

∥

∥

∥

fr−1(x) −
m
∑

q=0

Φr
q ◦ ξ(xq)

∥

∥

∥

∥

∥

∥

≤ η‖ fr−1 ‖ .

To prove this theorem, some preliminary work is necessary. To this end, note that a key to
the numerical implementation of Algorithm 3.2 is the minimum distance of images of rational
grid points dk under the mapping ξ. We omit the superscript of d

q
k here for convenience, since

d
q
k ∈ Dn

k and the result holds for all dk ∈ Dn
k . This distance can be bounded from below. The

estimate is given in the following lemma.

Lemma 3.4. For each integer k ∈ N, set

µk :=
n
∑

p=1

αp

[

ψ(dk,p) − ψ(d′k,p)
]

, (3.4)

where dk,p, d
′
k,p ∈ Dk. Then

min |µk| ≥ γ−nβ(k) (3.5)

where the minimum is taken over all pairs dk,p,d
′
k,p ∈ Dn

k for which

n
∑

p=1

|dk,p − d′k,p| 6= 0 . (3.6)

Proof. Since for each k the set Dk is finite, a unique minimum exists. For each k ∈ N, let
dk,p, d

′
k,p ∈ Dk and Ak,p := ψ(dk,p) − ψ(d′k,p) for p = 1, . . . , n. Since ψ is monotone increasing,

we know that Ak,p 6= 0 for all admissible values of p. Now from lemma 2.6 it follows directly
that

min
Dk

|Ak,p| = γ−β(k) , (3.7)

where for each fixed d, k the minimum is taken over the decimals for which |dk,p − d′k,p| 6= 0.
The upper bound

min |µk| ≤ αn γ
−β(k) (3.8)

can be gained from the definition of the µk and the fact that 1 = α1 > α2 > . . . > αn as follows:
Since |µk| ≤

∑n
p=1 αp|Ak,p| we can see from (3.7) and (3.8) that a minimum of |µk| can only

occur if Ak,T 6= 0 for some T ∈ {2, . . . , n}.
Let us now denote the k–th remainder of αp by

εk,p :=
∞
∑

r=k+1

γ−(p−1)β(r) (3.9)
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such that

αp − εk,p =

k
∑

r=1

γ−(p−1)β(r) (3.10)

and consider the expression

Ak,1 +
T
∑

p=2

(αp − εk,p)Ak,p . (3.11)

We claim the following:

If Ak,T 6= 0 then Ak,1 +
T
∑

p=2

(αp − εk,p)Ak,p 6= 0 ,

i.e. the term (αT −εk,T )Ak,T cannot be annihilated by the preceding terms in the sum. To show
this, an application of (3.10) leads to

αT − εk,T = γ−(T−1) + γ−(T−1)β(2) + . . .+ γ−(T−1)β(k) .

Also note that, for the choice k = 1 and i1,T = γ − 1 as well as i′1,T = 0 in (2.16), the largest

possible term in the expansion of |Ak,T | in powers of γ−1 is

γ − 1

γ
.

Therefore, (αT − εk,T )|Ak,T | contains at least one term τ such that

0 < τ ≤ γ−(T−1)β(k)γ − 1

γ
.

But according to (3.7) and (3.10) the smallest possible term of (αp − εk,p)|Ak,p| for p < T is

γ−(T−2)β(k)γ−β(k) = γ−(T−1)β(k)

so that the assertion holds and (3.11) indeed does not vanish.

If |ik,T − i′k,T | = 1, we have without loss of generality in the representation (2.16) the values

i′k ik s̃′1 s′1 θ′0 θ′+0 s̃1 s1 θ0 θ+
0

γ − 2 γ − 1 0 1
2 1 0 1

2 1 1 0

γ − 3 γ − 2 0 0 1 0 0 1
2 1 0

γ − 4 γ − 3 0 0 1 0 0 0 1 0

...
...

...
...

...
...

...
...

...
...

and we can directly infer that the expansion of (3.11) in powers of γ−1 contains the term

γ−(T−1)β(k)γ−β(k) = γ−Tβ(k) . (3.12)

We now show that this is the smallest term in the sum (3.11). To this end, we use the repre-
sentation (2.16) for Ak,p and factor out γ−β(k−j) for each j. Since θj and θ+

j become smaller
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than 2−j , we can bound each term in the sum (3.11) from below by γ−β(k−j)2−j . The further
estimation γ−β(k−j)2−j > γ−β(k) shows that (3.12) is indeed the smallest term in the sum and
hence cannot be annihilated by other terms in (3.11). Therefore,

∣

∣

∣

∣

∣

∣

Ak,1 +
T
∑

p=2

(αp − εk,p)Ak,p

∣

∣

∣

∣

∣

∣

≥ γ−Tβ(k) .

But this implies that also
∣

∣

∣

∣

∣

∣

Ak,1 +
T
∑

p=2

αpAk,p

∣

∣

∣

∣

∣

∣

≥ γ−Tβ(k)

since all possible terms in the expansion of
∑T

p=2 εk,pAk,p in powers of γ−1 are too small to

annihilate γ−Tβ(k). Thus, choosing T = n the lemma is proven.

The linear combinations ξ(dq
k) of the inner functions serve for each q = 0, . . . ,m as a mapping

from the hypercube In to R. Therefore, further knowledge on the structure of this mapping is
necessary. To this end, we need the following lemma:

Lemma 3.5. For each integer k ∈ N, let

δk :=
γ − 2

(γ − 1) γk
. (3.13)

Then for all dk ∈ Dk and εk,2 as given in (3.9) we have

ψ(dk + δk) = ψ(dk) + (γ − 2) εk,2 .

Proof. The proof relies mainly on the continuity of ψ and some direct calculations. If we express
δk as an infinite sum we have

dk + δk = lim
k0→∞

{

dk +

k0
∑

r=1

γ − 2

γk+r

}

=: lim
k0→∞

dk0 .

Since ψ is continuous we get

ψ

(

lim
k0→∞

dk0

)

= lim
k0→∞

ψ(dk0)

and since ik+r = γ − 2 for r = 1, . . . k0, it follows directly that s̃r = 0 for j = 0, . . . , k0 − k.
Therefore θ+

j = 0 and θj = 1 for j = 0, . . . , k0−k. With the representation (2.15) and the choice
ξ = k0 − k, the assertion follows.

As a direct consequence of this lemma, we have the following corollary, in which the one-
dimensional case is treated.

Corollary 3.6. For each integer k ∈ N and dk ∈ Dk, the pairwise disjoint intervals

Ek(dk) := [dk, dk + δk] (3.14)

are mapped by ψ into the pairwise disjoint image intervals

Hk(dk) := [ψ(dk), ψ(dk) + (γ − 2) εk,2] . (3.15)
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Proof. From their definition it follows directly that the intervals Ek(dk) are pairwise disjoint.
The corollary then follows from lemma 3.4 and lemma 3.5.

We now generalize this result to the multidimensional case.

Lemma 3.7. For each fixed integer k ∈ N and dk ∈ Dn
k , the pairwise disjoint cubes

Sk(dk) :=

n
∏

p=1

Ek(dk,p) (3.16)

in In are mapped by
∑n

p=1 αp ψ(dk,p) into the pairwise disjoint intervals

Tk(dk) :=





n
∑

p=1

αp ψ(dk,p) ,
n
∑

p=1

αp ψ(dk,p) +





n
∑

p=1

αp



 (γ − 2) εk,2



 . (3.17)

Proof. This lemma is a consequence of the previous results and can be found in detail in [27].

We now consider Algorithm 3.2 again. We need one more ingredient:

Lemma 3.8. For each value of q and r, there holds the following estimate:

‖Φr
q(yq) ‖ ≤ 1

m+ 1
‖ fr−1 ‖ .

Proof. The support of each function ω(dq
k; yq) is the open interval

U q
k (dq

k) :=
(

ξ(dq
k) − γ−β(k+1) , ξ(dq

k) + (γ − 2)bk + γ−β(k+1)
)

.

Then, by lemma 3.7 the following holds: If ξ(dq
k) 6= ξ(d

′q
k ) then U q

k (dq
k) ∩ U

q
k (d

′q
k ) = ∅. With

this property and the fact that 0 ≤ ω(dq
k; yq) ≤ 1, we derive from (3.2):

∥

∥

∥

∥

1

m+ 1

∑

fr−1(d
q
kr

)ω(dq
kr

; yq)

∥

∥

∥

∥

=
1

m+ 1
max |fr−1(dkr

)| .

Here, the sum is taken over all values d
q
kr

∈ Dn
kr

and the maximum over all dkr
∈ Dn

kr
. The

lemma then follows from the definition of the maximum norm, see also [28], lemma 1.

We are now ready to prove theorem 3.3, compare also [28].

Proof of theorem 3.3. For simplicity, we include the value dk = 1 in the definition of the rational
numbers Dk. Consider now for each integer q and a = [γ(γ − 1)]−1 as in theorem 2.1 the family
of closed intervals

Eq
k(d

q
k) :=

[

dq
k − q a , dq

k − q a+ δk
]

. (3.18)

With δk = (γ − 2)(γ − 1)−1γ−k we can see that

Eq
k(d

q
k) =

[

dk − q

γ − 1
γ−k , dk − q

γ − 1
γ−k +

γ − 2

γ − 1
γ−k

]
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)
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)

E2
k
(d̂2

k
)

E3
k
(d̂3

k
)

E4
k
(d̂4

k
)

S0
k
(d0

k
)

S1
k
(d1

k
)

S2
k
(d2

k
)

S3
k
(d3

k
)

S4
k
(d4

k
)

dk,1 d̂k,1

dk,2

d̂k,2

Figure 3: Let k be a fixed integer, m = 4, γ = 10 and d̃k,i := dk,i − γ−k, d̂k,i := dk,i + γ−k,
i ∈ {1, 2}. The left figure depicts the intervals Eq

k(d
q
k) for q = 1, . . . ,m. The subscript i

indicating the coordinate direction is omitted for this one–dimensional case. The point x is
contained in the intervals E0

k(d̃0
k), E

1
k(d̃1

k), E
3
k(d3

k), E
4
k(d4

k) (shaded) and in the gap G2
k(d̃

2
k) (dark

shaded). The figure on the right shows the cubes Sq
k(d

q
k) for n = 2, q = 1, . . . ,m and different

values dk ∈ Dn
k . For q ∈ {2, 3}, the marked point is not contained in any of the cubes from the

set
{

Sq
k(d

q
k) : dk ∈ Dn

k

}

.

and that these intervals are separated by gapsGq
k(d

q
k) :=

(

dq
k − q a+ δk , d

q
k − q a+ γ−k

)

of width
(γ − 1)−1γ−k, compare figure 3. With the intervals Eq

k we obtain for each k and q = 0, . . . ,m
the closed (Cartesian product) cubes

Sq
k(d

q
k) := Eq

k(d
q
k,1) × . . .× Eq

k(d
q
k,n) ,

whose images under ξ(xq) =
∑n

p=1 αp ψ(xp + qa) are the disjoint closed intervals

T q
k (dq

k) =
[

ξ(dq
k) , ξ(d

q
k) + (γ − 2) bk

]

,

as derived in lemma 3.7. For the two–dimensional case, the cubes Sq
k(d

q
k) are depicted in figure 3.

Now let k be fixed. The mapping ξ(xq) associates to each cube Sq
k(d

q
k) from the coordinate

space a unique image T q
k (dq

k) on the real line. For fixed q the images of any two cubes from
the set

{

Sq
k(d

q
k) : dk ∈ Dn

k

}

have empty intersections. This allows a local approximation of the
target function f(x) on these images T q

k (dq
k) for x ∈ Sq

k(d
q
k). However, as the outer functions

Φr
q have to be continuous, these images have to be separated by gaps in which f(x) cannot

be approximated. Thus an error is introduced that cannot be made arbitrarily small. This
deficiency is eliminated by the affine translations of the cubes Sq

k(d
q
k) through the variation of

the q’s. To explain this in more detail, let x ∈ [0, 1] be an arbitrary point. With (3.18) we see
that the gaps Gq

k(d
q
k) which separate the intervals do not intersect for variable q. Therefore,

there exists only one value q∗ such that x ∈ Gq∗
k (dq∗

k ). This implies that for the remaining m
values of q there holds x ∈ Eq

k(d
q
k) for some dk. See figure 3 (left) for an illustration of this fact.

If we now consider an arbitrary point x ∈ [0, 1]n, we see that there exist at least m − n + 1
different values qj , j = 1, . . . ,m− n+ 1 for which x ∈ S

qj

k (d
qj

k ) for some dk, see figure 3 (right).
Note that the points dk can differ for different values qj . From (3.18) we see that dk ∈ S

qj

k (d
qj

k ).

Now we consider step I of Algorithm 3.2. To this end, remember that η and ε are fixed numbers
such that 0 < m−n+1

m+1 ε+ 2n
m+1 ≤ η < 1. Let kr be the integer given in step I with the associated
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assumption that |fr−1(x) − fr−1(x
′)| ≤ ε‖ fr−1 ‖ when |xp − x′p| ≤ γ−kr for p = 1, . . . , n. Let

x ∈ [0, 1]n be an arbitrary point and let qj , j = 1, . . . ,m − n + 1, denote the values of q such
that x ∈ S

qj

kr
(d

qj

kr
). For the point dkr

∈ S
qj

kr
(d

qj

kr
) we have

|fr−1(x) − fr−1(dkr
)| ≤ ε‖ fr−1 ‖ (3.19)

and for x it holds that ξ(xqj
) ∈ T

qj

kr
(d

qj

kr
). The support U

qj

kr
(d

qj

kr
) of the function ω(d

qj

kr
; yqj

)

contains the interval T
qj

kr
(d

qj

kr
). Furthermore, from definition (3.1) we see that ω is constant on

that interval. With (3.3) we then get

Φr
qj
◦ ξ(xqj

) =
1

m+ 1

∑

d
qj
kr

fr−1(dkr
)ω(d

qj

kr
; ξ(xqj

))

=
1

m+ 1
fr−1(dkr

) .

(3.20)

Together with (3.19) this shows
∣

∣

∣

∣

1

m+ 1
fr−1(x) − Φr

qj
◦ ξ(xqj

)

∣

∣

∣

∣

≤ ε

m+ 1
‖ fr−1 ‖ (3.21)

for all qj , j = 1, . . . ,m− n+ 1. Note that this estimate does not hold for the remaining values
of q for which x is not contained in the cube Sq

kr
(d

qj

kr
). Let us now denote these values by q̄j ,

j = 1, . . . , n. We can apply lemma 3.8 and with the special choice of the values ε and η we
obtain the estimate

|fr(x)| =

∣

∣

∣

∣

∣

∣

fr−1(x) −
m
∑

q=0

Φr
q ◦ ξ(xq)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

m
∑

q=0

1

m+ 1
fr−1(x) −

m−n+1
∑

j=1

Φr
qj
◦ ξ(xqj

) −
n
∑

j=1

Φr
q̄j
◦ ξ(xq̄j

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

n

m+ 1
fr−1(x) +

m−n+1
∑

j=1

1

m+ 1
fr−1(x) − Φr

qj
◦ ξ(xqj

)

∣

∣

∣

∣

∣

∣

+
n

m+ 1
‖ fr−1 ‖

≤
[

m− n+ 1

m+ 1
ε+

2n

m+ 1

]

‖ fr−1 ‖ ≤ η ‖ fr−1 ‖ .

(3.22)

This completes the proof of theorem 3.3.

We now state a fact that follows directly from the previous results.

Corollary 3.9. For j = 1, 2, 3, . . . there hold the following estimates:

‖Φr
q(yq) ‖ ≤ 1

m+ 1
ηr−1‖ f ‖ (3.23)

and

‖ fr ‖ =

∥

∥

∥

∥

∥

∥

f(x) −
m
∑

q=0

r
∑

j=1

Φj
q ◦ ξ(xq)

∥

∥

∥

∥

∥

∥

≤ ηr ‖ f ‖ . (3.24)

Proof. Remember that f0 ≡ f . The first estimate follows from lemma 3.8 and a recursive
application of theorem 3.3. The second estimate can be derived from the definition (3.3) of fr

and again a recursive application of theorem 3.3.
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We finally are in the position to prove theorem 2.1.

Proof of theorem 2.1. From corollary 3.9 and the fact that η < 1 it follows that, for all q =
1, . . . ,m, we have

∥

∥

∥

∥

∥

∥

r
∑

j=1

Φj
q(yq)

∥

∥

∥

∥

∥

∥

≤
r
∑

j=1

∥

∥Φj
q(yq)

∥

∥ ≤ 1

m+ 1
‖ f ‖

r−1
∑

j=0

ηj <
1

m+ 1
‖ f ‖

∞
∑

j=0

ηj < ∞ . (3.25)

The functions Φj
q(yq) are continuous and therefore each series

∑r
j=1 Φj

q(yq) converges absolutely
to a continuous function Φq(yq) as r → ∞. Since η < 1 we see from the second estimate
in corollary 3.9 that fr → 0 for r → ∞. This proves Sprecher’s version of Kolmogorov’s
superposition theorem with Köppen’s inner function ψ.

4 Conclusion and outlook

In this paper we filled mathematical gaps in the articles of Köppen [16] and Sprecher [27,28] on
Kolmogorov’s superposition theorem. We first showed that Sprecher’s original inner function
ψ is not continuous and monotone increasing. Thus the convergence proof of the algorithm
from [28] that implements (2.1) constructively is incomplete. We therefore considered a corrected
version of ψ as suggested in [16]. We showed that this function is well defined, continuous and
monotone increasing. Then, we carried the approach for a constructive proof of Kolmogorov’s
superposition theorem from [27, 28] over to the new continuous and monotone ψ and showed
convergence. Altogether we gave a mathematically correct, constructive proof of Kolmogorov’s
superposition theorem.

The present result is, to our knowledge, the first correct constructive proof of (2.1) and thus
of (1.1). It however still involves (with r → ∞) an in general infinite number of iterations.
Thus, any finite numerical application of algorithm 3.2 can only give an approximation of a
n–dimensional function up to an arbitrary accuracy ǫ̃ > 0 (compare corollary 3.9). While the
number of iterations in algorithm 3.2 to achieve this desired accuracy is independent of the
function f and its smoothness, the number kr which is determined in step I can become very
large for oscillating functions. This reflects the dependency of the costs of algorithm 3.2 on the
smoothness of the function f : In step II the functions ω(dq

kr
, yq) are computed for all rational

values d
q
kr

which can be interpreted as a construction of basis functions on a regular grid in
the unit cube [0, 1]n. Since the number of grid-points in a regular grid increases exponentially
with the dimensionality n, the overall costs of the algorithm increase at least with the same
rate for n→ ∞. This makes algorithm 3.2 highly inefficient in higher dimensions. To overcome
this problem and thus to benefit numerically from the constructive nature of the proof further
approximations to the outer functions in (2.1) have to be made. This will be discussed in a
forthcoming paper.
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