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Abstract

We study properties of ridge functions f(x) = g(a·x) in high dimensions d from
the viewpoint of approximation theory. The considered function classes consist of
ridge functions such that the profile g is a member of a univariate Lipschitz class
with smoothness α > 0 (including infinite smoothness), and the ridge direction a
has p-norm ‖a‖p ≤ 1. First, we investigate entropy numbers in order to quantify
the compactness of these ridge function classes in L∞. We show that they are
essentially as compact as the class of univariate Lipschitz functions. Second, we
examine sampling numbers and face two extreme cases. In case p = 2, sampling
ridge functions on the Euclidean unit ball faces the curse of dimensionality. It is
thus as difficult as sampling general multivariate Lipschitz functions, a result in
sharp contrast to the result on entropy numbers. When we additionally assume
that all feasible profiles have a first derivative uniformly bounded away from zero
in the origin, then the complexity of sampling ridge functions reduces drastically
to the complexity of sampling univariate Lipschitz functions. In between, the
sampling problem’s degree of difficulty varies, depending on the values of α and p.
Surprisingly, we see almost the entire hierarchy of tractability levels as introduced
in the recent monographs by Novak and Woźniakowski.

Keywords ridge functions · sampling numbers · entropy numbers · rate of con-
vergence · information based complexity · curse of dimensionality

Mathematics Subject Classifications (2000) 41A10; 41A25; 41A50; 41A63;
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1 Introduction

Functions depending on a large number of variables (or even infinitely many variables)
naturally appear in many real-world applications. Since analytical representations are
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rarely available, there is a need to compute approximations to such functions or at
least functionals thereof. Examples include parametric and stochastic PDEs [7, 35]
data analysis and learning theory [1, 8, 17], quantum chemistry [11], and mathematical
finance [29].

It is a very well-known fact that approximation of smooth multivariate functions
in many cases suffers from the so-called curse of dimensionality. Especially, for fixed
smoothness, the order of approximation decays rapidly with increasing dimension [9, 23].
Actually, a recent result [27] from the area of information-based complexity states that
on the unit cube, even uniform approximation of infinitely differentiable functions is
intractable in high dimensions. These results naturally lead to the search for other as-
sumptions than smoothness which would allow for tractable approximation, but would
still be broad enough to include real-world applications. There are many different con-
ditions of this kind. Usually, they require additional structure; for example, that the
functions under consideration are tensor products or belong to some sort of weighted
function space. We refer to [36] for an introduction to information-based complexity
and [26, 28] for a detailed discussion of (in)tractability of high-dimensional problems.

In this work, we are interested in functions which take the form of a ridge. This
means that for each function f there is direction a along which f may vary; along
lines perpendicular to a the function is constant. In other words, the function is of
the form f(x) = g(a · x), where g is a univariate function called the profile. Ridge
functions provide a simple, coordinate-independent model, which describes inherently
one-dimensional structures hidden in a high-dimensional ambient space.

That the unknown functions take the form of a ridge is a frequent assumption in
statistics, for instance, in the context of single index models. For several of such statistical
problems, minimax bounds have been studied on the basis of algorithms which exploit
the ridge structure [15, 20, 32]. Another point of view on ridge functions, which has
attracted attention for more than 30 years, is to approximate by ridge functions. An early
work in this direction is [22], which took motivations from computerized tomography,
and in which the term “ridge function” was actually coined. Another seminal paper is
[14], which introduced projection pursuit regression for data analysis. More recent works
include the mathematical analysis of neural networks [3, 31], and wavelet-type analysis
[4]. For a survey on further approximation-theoretical results, we refer the reader to
[30].

For classical setups in statistics and data analysis, it is typical that we have no
influence on the choice of sampling points. In contrast, problems of active learning
allow to freely choose a limited number of samples from which to recover the function.
Such a situation occurs, for instance, if sampling the unknown function at a point is
realized by a (costly) PDE solver. In this context, ridge functions have appeared only
recently as function models. The papers [6] and [12, 38] provide several algorithms and
upper bounds for the approximation error, the latter two even for the more general
situation that f(x) = g(Ax) with A a (k × d) matrix.

We continue in the direction of active learning. The central question studied in the
present paper is the complexity of approximating ridge functions in case that the only
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available information is a limited amount of function values. We assume to have the
following prior knowledge: the ridge functions’ domain is the d-dimensional Euclidean
unit ball; the profiles are Lipschitz of order α > 0 (including infinite smoothness α =∞);
the ridge vectors are contained in a `dp-ball with 0 < p ≤ 2. Besides, we study the
situation that one additionally knows that |g′(0)| ≥ κ for all admissible profiles g and
some prescribed 0 < κ ≤ 1 (of course, this makes only sense in case of α > 1). For the
function classes given by these a-priori assumptions, we prove lower and upper bounds
for the deterministic worst-case error with regard to standard information. Following
[25], we use the term sampling numbers for this worst-case error.

For given Lipschitz smoothness α, the ridge function classes are contained in the unit
ball of the space of general multivariate Lipschitz functions of order α. The latter, in
turn, is related to isotropic d-variate Besov spaces. For those spaces, it is known that
their entropy numbers, which quantify the compactness in L∞, provide a fair indicator for
the behaviour of sampling numbers, see [25]. We investigate whether or not this is still
the case for the ridge function classes. It turns out that they are essentially as compact
as the class of univariate Lipschitz functions of the same order for all possible parameter
values. For the sampling problem, however, we find a much more diverse picture. At first
glance, the simple structure of ridge functions suggests that approximating them should
not be too much harder than approximating a univariate function. But this is far from
true in general. In fact, the sampling problem’s degree of difficulty crucially depends on
the constraint |g′(0)| ≥ κ in our setting. If κ > 0, then it becomes possible to first recover
the ridge direction efficiently. What remains then is only the one-dimensional problem
of sampling the profile. Thus, the ridge structure has a sweeping impact in this scenario
and leads to a polynomially tractable problem. Moreover, the behaviour of entropy and
sampling numbers is similar. But without the constraint on first derivatives the picture
is completely different. Sampling ridge functions is now essentially as hard as sampling
general Lipschitz functions over the same domain, given that all vectors in the domain
may occur as ridge direction (p = 2). It even suffers from the curse of dimensionality
as long as we only have finite smoothness of profiles. Supposing that p < 2, which
can be interpreted as imposing a sparsity constraint on the ridge vectors, mitigates the
situation to some extent. To our surprise, we see almost the entire spectrum of degrees
of tractability as introduced in the recent monographs by Novak and Woźniakowski. In
any case, however, entropy and sampling numbers behave totally different.

The paper is organized as follows. In Section 2, we define the setting in a precise
way and introduce central concepts. Section 3 then is dedicated to the study of entropy
numbers for the ridge function classes. Lower and upper bounds on sampling numbers
are found in Section 4. Finally, in Section 5, we interpret our findings on sampling
numbers in the language of information based-complexity.

2 Preliminaries

Notation For x ∈ Rd, recall the (quasi-)norms ‖x‖p =
(∑d

j=1 |xj|p
)1/p

for 0 < p <∞,
and ‖x‖∞ = max{|x1|, . . . , |xd|}. When X denotes a (quasi-)Banach space, equipped
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with the (quasi-)norm ‖ · ‖X , we write BX = {f ∈ X : ‖f‖X < 1} for the open unit ball
and B̄X for its closure. In the special case that X = `dp(R) = (Rd, ‖ · ‖p) we additionally
use the notation Bd

p for the open unit ball and Sd−1
p for the unit sphere in `dp.

The notation f . g means that f ≤ Cg for some constant C > 0. Likewise, we write
f & g if f ≥ cg for some constant c > 0, and f � g if both f . g and f & g.

2.1 Ridge function classes

The specific form of ridge functions suggests to describe a class of such functions in terms
of two parameters: one to determine the smoothness of profiles, the other to restrict the
norm of ridge directions.

Regarding smoothness, we require that ridge profiles are Lipschitz of some order.
For the reader’s convenience, let us briefly recall this notion. Let Ω ⊂ Rd be a bounded
domain and s be a natural number. The function space Cs(Ω) consists of those functions
over the domain Ω which have partial derivatives up to order s in the interior Ω̊ of Ω,
and these derivatives are moreover bounded and continuous in Ω. Formally,

Cs(Ω) =
{
f : Ω→ R : ‖f‖Cs := max

|γ|≤s
‖Dγf‖∞ <∞

}
,

where, for any multi-index γ = (γ1, . . . , γd) ∈ Nd
0, the partial differential operator Dγ is

given by

Dγf :=
∂|γ|f

∂xγ1

1 · · · ∂x
γd
d

.

Here we have written |γ| =
∑d

i=1 γi for the order of Dγ. For the vector of first derivatives
we use the usual notation ∇f = (∂f/∂x1, . . . , ∂f/∂xd). Beside Cs(Ω) we further need
the space of infinitely differentiable functions C∞(Ω) defined by

C∞(Ω) =
{
f : Ω→ R : ‖f‖C∞ := sup

γ∈Nd0

‖Dγf‖∞ <∞
}
. (2.1)

For a function f : Ω → R and any positive number 0 < β ≤ 1, the Hölder constant
of order β is given by

|f |β := sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
2 min{1, ‖x− y‖1}β

. (2.2)

This definition immediately implies the relation

|f |β ≤ |f |β′ if 0 < β < β′ ≤ 1. (2.3)

Now, for any α > 0, we can define the Lipschitz space Lipα(Ω). If we let s = TαU be the
largest integer strictly less than α, it contains those functions in Cs(Ω) which have partial
derivatives of order s which are moreover Hölder-continuous of order β = α − s > 0.
Formally,

Lipα(Ω) =
{
f ∈ Cs(Ω) : ‖f‖Lipα(Ω) := max{‖f‖Cs , max

|γ|=s
|Dγf |β} <∞

}
.
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For s ∈ N0 and 1 ≥ β2 > β1 > 0 the following embeddings hold true

C∞(Ω) ⊂ Lips+β2
(Ω) ⊂ Lips+β1

(Ω) ⊂ Cs(Ω) ⊂ Lips(Ω) , (2.4)

where the respective identity operators are of norm one. In other words, the respective
unit balls satisfy the same relation. Note that the fourth inclusion only makes sense
if s ≥ 1. The third embedding is a trivial consequence of the definition. The second
embedding follows from the third, and (2.3). The fourth embedding and the second
imply the first. So it remains to establish the fourth embedding. We have to show that
for every γ ∈ Nd

0 with |γ| = s − 1 it holds |Dγf |1 ≤ ‖f‖Cs . On the one hand, Taylor’s
formula in Rd gives for some 0 < θ < 1

|Dγf(x)−Dγf(y)| = |∇(Dγf)(x+ θ(y − x)) · (x− y)|
≤ max
|β|=s
‖Dβf‖∞ · ‖x− y‖1

≤ ‖f‖Cs‖x− y‖1 .

On the other hand, we have |Dγf(x) − Dγf(y)| ≤ 2‖f‖Cs . Both estimates together
yield |Dγf |1 ≤ ‖f‖Cs .

Having introduced Lipschitz spaces, we can give a formal definition of our ridge
functions classes. For the rest of the paper, we fix as function domain the closed unit
ball

Ω = B̄d
2 = {x ∈ Rd : ‖x‖2 ≤ 1}.

As before, let α > 0 denote the order of Lipschitz smoothness. Further, let 0 < p ≤ 2.
We define the class of ridge functions with Lipschitz profiles as

Rα,p
d =

{
f : Ω→ R : f(x) = g(a · x), ‖g‖Lipα[−1,1] ≤ 1, ‖a‖p ≤ 1

}
. (2.5)

In addition, we define the class of ridge functions with infinitely differentiable profiles
by

R∞,pd =
{
f : Ω→ R : f(x) = g(a · x), ‖g‖C∞[−1,1] ≤ 1, ‖a‖p ≤ 1

}
.

Let us collect basic properties of these classes.

Lemma 2.1. For any α > 0 and 0 < p ≤ 2 the class Rα,p
d is contained in B̄Lipα(Ω) and

R∞,pd is contained in B̄C∞(Ω).

Proof. Let f ∈ Rα,p
d and s = TαU. Furthermore, let γ ∈ Nd

0 be such that |γ| ≤ s. Then,
there exists g ∈ Lipα([−1, 1]) with

Dγf(x) = D|γ|g(a · x)aγ , x ∈ Ω ,

where we used the convention aγ =
∏d

i=1 a
γi
i . Therefore, we have

‖Dγf‖∞ ≤ ‖D|γ|g‖∞‖a‖|γ|∞ ≤ ‖a‖|γ|p ≤ 1 .
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If we let s → ∞ this immediately implies R∞,pd ⊂ B̄C∞(Ω). Moreover, if |γ| = s and
β = α− s we obtain by Hölder’s inequality for x, y ∈ Ω

|Dγf(x)−Dγf(y)| = |aγ| · |Dsg(a · x)−Dsg(a · y)|
≤ ‖a‖sp · |Dsg|β · 2 min{1, ‖a‖p · ‖x− y‖1}β

≤ 2 min{1, ‖x− y‖1}β .

Consequently, we have ‖f‖Lipα(Ω) ≤ 1 and hence Rα,p
d ⊂ B̄Lipα(Ω).

Note that in the special case α = 1, we have Lipschitz-continuous profiles. Whenever
0 < α1 < α2 ≤ ∞, we have Rα2,p

d ⊂ Rα1,p
d , which is an immediate consequence of (2.4).

Likewise, for p < q we have the relation Rα,p
d ⊂ R

α,q
d .

Finally, for Lipschitz smoothness α > 1, we want to introduce a restricted version of
Rα,p
d , where profiles obey the additional constraint |g′(0)| ≥ κ > 0. See Section 4.2 and

in particular Remark 4.9 for an explanation why we study this additional constraint.
We define

Rα,p,κ
d = {g(a·) ∈ Rα,p

d : |g′(0)| ≥ κ}. (2.6)

Whenever we say in the sequel that we consider ridge functions with first derivatives
bounded away from zero in the origin, we mean that they are contained in the class
Rα,p,κ
d for some 0 < κ ≤ 1.

Taylor expansion. We introduce a straight-forward, multivariate extension of Tay-
lor’s expansion on intervals to ridge functions in Rα,p

d and functions in Lipα(Ω). For

x, x0 ∈ Ω̊ we define the function Φx(·) by

Φx(t) := f(x0 + t(x− x0)) , t ∈ [0, 1] .

Lemma 2.2. Let α > 1 and α = s+ β, s ∈ N, 0 < β ≤ 1. Let further f ∈ Lipα(Ω) and
x, x0 ∈ Ω̊. Then there is a real number θ ∈ (0, 1) such that

f(x) = Ts,x0f(x) +Rs,x0f(x) ,

where the Taylor polynomial Ts,x0f(x) is given by

Ts,x0f(x) =
s∑
j=0

Φ
(j)
x (0)

j!
=
∑
|γ|≤s

Dγf(x0)

γ!
(x− x0)γ (2.7)

and the remainder

Rs,x0f(x) =
1

s!

(
Φ(s)
x (θ)− Φ(s)

x (0)
)

(2.8)

=
∑
|γ|=s

Dγf(x0 + θ(x− x0))−Dγf(x0)

γ!
(x− x0)γ . (2.9)
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The previous lemma has a nice consequence for the approximation of functions from
Rα,p
d in case α > 1 and 0 < p ≤ 2 . Let p′ denote the dual index of p given by

1/max{p, 1}+ 1/p′ = 1.

Lemma 2.3. Let α = s+ β > 1 and Ω = B̄d
2 .

(i) For f ∈ Lipα(Ω) and x, x0 ∈ Ω̊ we have

|f(x)− Ts,x0f(x)| ≤ 2‖f‖Lipα(Ω)
‖x− x0‖α1

s!
.

(ii) Let 0 < p ≤ 2. Then for f ∈ Rα,p
d we have the slightly better estimate

|f(x)− Ts,x0f(x)| ≤ 2

s!
‖x− x0‖αp′ .

Proof. To prove (i) we use (2.9) and the definition of Lipα(Ω) and estimate as follows

|f(x)− Ts,x0f(x)| ≤
∑
|γ|=s

|Dγf(x0 + θ(x− x0))−Dγf(x0)|
γ!

|(x− x0)γ|

≤ 2‖f‖Lipα(Ω) min{1, ‖x− x0‖1}β ·
∑
|γ|=s

d∏
i=1

|xi − x0
i |γi

γ!
.

Using mathematical induction it is straight-forward to verify the multinomial identity

(a1 + · · ·+ ad)
s =

∑
|γ|=s

s!

γ!
aγ1

1 · · · · · a
γd
d .

Hence, choosing ai = |xi − x0
i | we can continue estimating

|f(x)− Ts,x0f(x)| ≤ 2‖f‖Lipα(Ω) min{1, ‖x− x0‖1}β
‖x− x0‖s1

s!

and obtain the assertion in (i).
For showing the improved version (ii) for functions of type f(x) = g(a ·x) we use formula
(2.8) of the Taylor remainder. We easily see that for t ∈ (0, 1) it holds

Φ(s)
x (t) = g(s)

(
a · (x0 + t(x− x0))

)
· [a · (x− x0)]s .

Using Hölder continuity of g(s) of order β and Hölder’s inequality we see that

|f(x)− Ts,x0f(x)| ≤ 1

s!

∣∣∣[a · (x− x0)]s ·
{
g(s)
(
a · (x0 + θ(x− x0))

)
− g(s)(a · x0)

}∣∣∣
≤ 1

s!
‖a‖sp · ‖x− x0‖sp′ · 2 min{1, |θa · (x− x0)|β}

≤ 2

s!
‖x− x0‖αp′ .

The proof is complete.
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2.2 Information complexity and tractability

In this work, we want to approximate ridge functions from F = Rα,p
d or F = Rα,p,κ

d by
means of deterministic sampling algorithms, using a limited amount of function values.
Any allowed algorithm S consists of an information map Nada

S : F → Rn, and a recon-
struction map ϕS : Rn → L∞(Ω). For given f ∈ F , the former provides function values
f(x1), . . . , f(xn) at points x1, . . . , xn ∈ Ω, which are allowed to be chosen adaptively.
Adaptivity here means that xi may depend on the preceding values f(x1), . . . , f(xi−1).
According to [26], we speak of standard information. The reconstruction map then builds
an approximation to f based on those function values provided by the information map.

Formally, we consider the class of deterministic, adaptive sampling algorithms Sada =⋃
n∈N Sada

n , where

Sada
n =

{
S : F → L∞(B̄d

2) :

S = ϕ ◦Nada, ϕ : Rm → L∞ Nada : F → Rm, m ≤ n
}
.

The n-th minimal worst-case error

gada
n,d (F , L∞) := errn,d(F ,Sada, L∞) = inf

{
sup
f∈F
‖f − S(f)‖∞ : S ∈ Sada

n

}
,

describes the approximation error of the best possible algorithm. Stressing that function
values are the only available information, we refer to gada

n,d (F , L∞) as the n-th (adaptive)
sampling number. To reveal the effect of adaption, it is useful to compare adaptive
algorithms with the subclass S ⊂ Sada of non-adaptive, deterministic algorithms; that
is, for each algorithm S ∈ S the information map is now of the form NS = (δx1 , . . . , δxn),
with n ∈ N and x1, . . . , xn ∈ B̄d

2 . This corresponds to non-adaptive standard information
in [26]. The associated n-th worst-case error

gn,d(F , L∞) := inf
S∈Sn

sup
f∈F

∥∥f − S(f)
∥∥
∞ = errn,d(F ,Sn, L∞)

coincides with the standard n-th sampling number as known in approximation theory
[25]. As a third restriction, let us introduce the n-th linear sampling number glin

n,d(F , L∞);
here, only algorithms from S with linear reconstruction map are allowed. Clearly,

gada
n,d (F , L∞) ≤ gn,d(F , L∞) ≤ glin

n,d(F , L∞).

Remark 2.4. Studying adaptive algorithms makes sense since the considered ridge func-
tions classes are not convex. Hence, the general results on linear problems [26, Section
4.2] do not apply here. Nevertheless, the analysis in Section 4 will reveal that neither
adaptivity nor non-linearity lead to any substantial improvement in the approximation
of ridge functions defined on a Euclidean ball.

Whenever we speak of sampling of ridge functions in the following, we refer to the
problem of approximating ridge functions in F by sampling algorithms from Sada, the
L∞-approximation error measured in the worst-case. Its information complexity n(ε, d)
is given for 0 < ε ≤ 1 and d ∈ N by

n(ε, d) := min{n ∈ N : gada
n,d (F , L∞) ≤ ε}.

8



2.3 Entropy numbers

The concept of entropy numbers is central to this work. They can be understood as a
measure to quantify the compactness of a set w.r.t. some reference space. For a detailed
exposure and historical remarks, we refer to the monographs [5, 10]. The k-th entropy
number ek(K,X) of a subset K of a (quasi-)Banach space X is defined as

ek(K,X) = inf
{
ε > 0 : K ⊂

2k−1⋃
j=1

(xj + εB̄X) for some x1, . . . , x2k−1 ∈ X
}
. (2.10)

Note that ek(K,X) = inf{ε > 0 : Nε(K,X) ≤ 2k−1} holds true, where

Nε(K,X) := min
{
n ∈ N : ∃x1, . . . , xn ∈ X : K ⊂

n⋃
j=1

(xj + εB̄X)
}

(2.11)

denotes the covering number of the set K in the space X, which is the minimal natural
number n such that there is an ε-net of K in X of n elements. We can introduce
entropy numbers for operators, as well. The k-th entropy number ek(T ) of an operator
T : X → Y between two quasi-Banach spaces X and Y is defined by

ek(T ) = ek(T (B̄X), Y ). (2.12)

The results in Section 3 and 4 rely to a great degree on entropy numbers of the
identity operator between the two finite dimensional spaces X = `dp(R), and Y = `dq(R).
Thanks to [10, 21, 34, 37], their behavior is understood very well. For the reader’s
convenience, we restate the result.

Lemma 2.5. Let 0 < p ≤ q ≤ ∞ and let k and d be natural numbers. Then,

ek(B̄
d
p , `

d
q) �


1 : 1 ≤ k ≤ log(d),(

log(1+d/k)
k

)1/p−1/q

: log(d) ≤ k ≤ d,

2−k/dd1/q−1/p : k ≥ d .

The constants behind “�” do neither depend on k nor on d. They only depend on the
parameters p and q.

If we consider entropy numbers of `dp-spheres instead of `dp-balls in `dq , the situation
is quite similar. We are not aware of a reference where this has already been formulated
thoroughly.

Lemma 2.6. Let d ∈ N, d ≥ 2, 0 < p ≤ q ≤ ∞, and p̄ = min{1, p}. Then,

(i)
2−k/(d−1)d1/q−1/p . ek(S

d−1
p , `dq) . 2−k/(d−p̄)d1/q−1/p, k ≥ d.
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(ii)

ek(S
d−1
p , `dq) �

 1 : 1 ≤ k ≤ log(d),(
log(1+d/k)

k

)1/p−1/q

: log(d) ≤ k ≤ d.

The constants behind “�” only depend on p and q.

Proof. For given ε > 0, an ε-covering {y1, . . . , yN} of Sd−1
p in `dp fulfils

(1 + ε)B̄d
p \ (1− ε)B̄d

p ⊆
N⋃
i=1

(yi + 21/p̄εB̄d
p). (2.13)

Let q̄ = min{1, q}. For given ε > 0, a maximal set {x1, . . . , xM} ⊂ Sd−1
p of vectors with

mutual distance greater ε obeys

M⋃
i=1

(xi + 2−1/q̄ εB̄d
q ) ⊆ (1 + εp̄d)

1/p̄B̄d
p \ (1− εp̄d)

1/p̄B̄d
p , (2.14)

where εd = 2−1/q̄ ε d1/p−1/q.
(i). A standard volume argument applied to (2.13) yields h(ε) ≤ Nεd2d/p̄, where h(ε) =
(1 + ε)d − (1 − ε)d. First-order Taylor expansion in ε allows to estimate h(ε) ≥ dε.
Solving for N yields a lower bound for covering numbers in case p = q. The lower bound
in case p 6= q follows from the trivial estimate ek(S

d−1
p , `dq) ≥ d1/q−1/p ek(S

d−1
p , `dp).

For the upper bound in case p = q a standard volume argument applied to (2.14)
yields Mεd2−d/p̄ ≤ hp(ε

p̄/2) with hp(x) = (1 + x)d/p̄ − (1 − x)d/p̄. The mean value
theorem gives hp(x) ≤ d/p̄ 2d/p̄x if 0 < x ≤ 1. Hence, we get hp(ε

p̄/2) ≤ d/p̄ 2d/p̄εp̄/2.
Solving for M gives an upper bound for packing numbers and hence also for covering
numbers. In case p 6= q we again use (2.14) and pass to volumes. This time the quotient
vol(Bd

p)/vol(Bd
q ) remains in the upper bound for M . The given bounds now easily

translate to the stated bounds on entropy numbers. In case p 6= q one has to take[vol(Bd
p)

vol(Bd
q )

]1/(d−p̄)
� d1/q−1/p

into account to get the additional factor in d.
(ii). The proof by Kühn [21] immediately gives the lower bound. The upper bound
follows trivially from Sd−1

p ⊂ B̄d
p .

Remark 2.7. Note, that in case p ≥ 1 we have the sharp bounds

ek(S
d−1
p , `dq) �


1 : 1 ≤ k ≤ log(d),(

log(1+d/k)
k

)1/p−1/q

: log(d) ≤ k ≤ d,

2−
k
d−1d1/q−1/p : k ≥ d .

In case p < 1 there remains a gap between the upper and lower estimate for ek(S
d−1
p , `dq)

if k ≥ d. However, this gap can be closed by using a different proof technique, see [18].
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3 Entropy numbers of ridge functions

This section is devoted to the study of entropy numbers of the classes Rα,p
d and Rα,p,κ

d .
Especially, we want to relate their behavior to that of entropy numbers of uni- and
multivariate Lipschitz functions. This will give us an understanding how “large” the
ridge function classes are. Let us stress that we are interested in the dependence of the
entropy numbers on the underlying dimension d, as it is usually done in the area of
information-based complexity.

To begin with, we examine uni- and multivariate Lipschitz functions from Lipα[−1, 1]
and Lipα(Ω). Recall the notations Bα := BLipα[−1,1] and BLipα(Ω) for the respective open
unit balls. The behavior of entropy numbers of univariate Lipschitz functions is well-
known, see for instance [23, Chap. 15, §2, Thm. 2.6].

Lemma 3.1. For α > 0 there exist two constants 0 < cα < Cα such that

cαk
−α ≤ ek(B̄α, L∞([−1, 1])) ≤ Cαk

−α , k ∈ N .

This behavior does not change if we consider only functions with first derivative in the
origin bounded away from zero, as we do with the profiles in the class Rα,p,κ

d .

Proposition 3.2. Let α > 1 and 0 < κ ≤ 1. Consider the class

Lipκα([−1, 1]) = {f ∈ Lipα([−1, 1]) : ‖f‖Lipα[−1,1] ≤ 1 ,
∣∣f ′(0)

∣∣ ≥ κ}.

For the entropy numbers of this class we have two constants 0 < cα < Cα, such that

cαk
−α ≤ ek(Lipκα([−1, 1]), L∞([−1, 1])) ≤ Cαk

−α , k ∈ N .

Proof. The upper bound is immediate by Lemma 3.1. The lower bound is proven in the
same way as for general univariate Lipschitz functions of order α except that we have
to adapt the “bad” functions such that they meet the constraint on the first derivative
in the origin. Put again s = TαU and β = α − s > 0. Consider the standard smooth
bump function

ϕ(x) =

e−
1

1−x2 : |x| < 1,

0 : |x| ≥ 1.
(3.1)

Let

ψk,b(x) =
cα · ϕ(5k(x− b))

kα
, k ∈ N, b ∈ R,

where cα = 1/(5α‖ϕ‖Lipα
). The scaling factor cαk

−α assures ψk,b ∈ Lipα([−1, 1]). Let

a = π/4− 1/5 and I = [a, a+ 2/5] ⊂ (0, 1). We put h(x) = sin(x) and

γ = sup
j∈N0

max
x∈I
|h(j)(x)| = max

x∈I
max{cos(x), sin(x)} < 1. (3.2)

11



For any multi-index θ = (θ1, . . . , θk) ∈ {0, 1}k let

gθ = (1− γ)
k∑
j=1

θjψk,bj , bj = a+
2j − 1

5k
.

Observe, that supp gθ ⊂ I.
There are 2k such multi-indices and for two different multi-indices θ̂ and θ̃ we have∥∥gθ̂ − gθ̃∥∥∞ = (1− γ)

∥∥ψk,0∥∥∞ = cα(1− γ)e−1k−α.

Put fθ = h+ gθ. Because of the scaling factors, it is assured that fθ ∈ Lipκα([−1, 1]). On
the other hand, f ′θ(0) = cos(0) = 1. Obviously,

∥∥fθ̃ − fθ̂∥∥∞ =
∥∥gθ̃ − gθ̂∥∥∞. We conclude

ek(Lipκα([−1, 1]), L∞) ≥ c′αk
−α

for c′α = (1− γ)e−1cα.

Considering multivariate Lipschitz functions, decay rates of entropy numbers change
dramatically compared to those of univariate Lipschitz functions; they depend exponen-
tially on 1/d. This is known if the domain is a cube Ω = Id, see [23, Chap. 15, §2]. We
provide an extension to our situation where the domain is Ω = B̄d

2 .

Proposition 3.3. Let α > 0. For natural numbers n and k such that 2k−1 < n ≤ 2k we
have

en(B̄Lipα(B̄d2 ), L∞(B̄d
2)) ≥ cαek+1(id : `d2 → `d2)α.

In particular, we have en(id : Lipα(B̄d
2)→ L∞(B̄d

2)) & n−α/d.

Proof. Consider the radial bump function ϕ(x) given by

ϕ(x) =

e
− 1

1−‖x‖22 : ‖x‖2 < 1,

0 : ‖x‖2 ≥ 1.
(3.3)

Let s = TαU. With cα := (‖ϕ‖Lipα
)−1 the rescaling

ϕαε (x) := cαε
αϕ(x/ε)

is contained in the closed unit ball of Lipα(Ω).
For 0 < ε < ek+1(B̄d

2 , `
d
2), let {x1, . . . , xm} be a maximal set of 2ε-separated points in

the Euclidean ball B̄d
2 , the distance measured in `d2. Clearly, every closed ball of radius

ε contains at most one xi, and consequently every covering of B̄d
2 by balls of radius ε

contains at least m elements. The choice of ε implies m > 2k ≥ n. For every multi-index
θ ∈ {0, 1}m, we define

fθ(x) :=
m∑
j=1

θjϕ
α
ε (x− xj).
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By construction of ϕαε , it is assured that fθ ∈ Lipα(Ω) and ‖fθ‖Lipα
≤ 1. Moreover, we

see immediately that ‖fθ‖∞ = cαe
−1εα, and

‖fθ − fθ′‖∞ ≥ cαe
−1εα =: ε1

for θ 6= θ′. Therefore, the set {fθ : θ ∈ {0, 1}m} consists of 2m functions with mutual
distances greater than or equal to ε1. This implies

2n < 2m < Nε1/2(B̄Lipα(Ω), L∞).

Hence, en(id : Lipα(Ω)→ L∞(Ω)) > ε1/2, and by the choice of ε also

en(B̄Lipα(Ω), L∞(Ω)) > c′αek(id : `d2 → `d2)α

for c′α = cα/(4e). Now it follows immediately from the estimate above and Lemma 2.5
that

en(B̄Lipα(Ω), L∞(Ω)) & 2−αk/d & n−α/d.

Now consider ridge functions with Lipschitz profile as given by the class Rα,p
d .

Theorem 3.4. Let d be a natural number, α > 0, and 0 < p ≤ 2. Then, for any k ∈ N,

1

2
max{e2k(B̄

d
p , `

d
2), e2k(B̄α, L∞)} ≤ e2k(Rα,p

d , L∞) ≤ ek(B̄
d
p , `

d
2)min{α,1} + ek(B̄α, L∞) .

Proof. Lower bounds: For ε > 0 let g1, . . . , gn be a maximal set of univariate Lipschitz
functions in B̄α with mutual distances

∥∥gi − gj∥∥∞ > ε for i 6= j. Now, let a = (1, 0, . . . , 0)
and put fi(x) = gi(a · x) for i = 1, . . . , n. Then, of course, we have fi ∈ Rα,p

d , and∥∥fi − fj∥∥∞ = ‖gi − gj‖∞ > ε .

Consequently, the functions f1, . . . , fn are ε-separated, as well. This implies

e2k(Rα,p
d , L∞) ≥ 1

2
e2k(B̄α, L∞) .

On the other hand, for ε > 0, let a1, . . . , an be a maximal set of vectors in B̄d
p with

pairwise distances
∥∥ai − aj∥∥2

> ε. Furthermore, let g(t) = t and put f̃i(x) = g(ai · x) for

i = 1, . . . , n. Then f̃i ∈ Rα,p
d and

‖f̃i − f̃j‖∞ = sup
x∈B̄d2

|f̃i(x)− f̃j(x)| = sup
x∈B̄d2

|g(ai · x)− g(aj · x)|

= sup
x∈B̄d2

|(ai − aj) · x| = ‖ai − aj‖2 > ε.

Thus, the functions f̃1, . . . , f̃n are ε-separated w.r.t. the L∞-norm. This implies

e2k(Rα,p
d , L∞) ≥ 1

2
e2k(B̄

d
p , `

d
2) .
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Upper bound: We use the shorthand ᾱ = min{α, 1}. Let 1/2 > ε1, ε2 > 0 be fixed
and put ε := εᾱ1 + ε2. Let N = {g1, . . . , gn} be a minimal ε1-net of B̄α in the L∞-norm.
Further, let M = {a1, . . . , am} be a minimal ε2-net of B̄d

p in the `d2-norm.
Now, fix some ridge function f : x 7→ g(a · x) in Rα,p

d , i.e. ‖g‖Lipα ≤ 1 and ‖a‖p ≤ 1.
Then there is a function gi ∈ N with ‖g − gi‖∞ ≤ ε1 and a vector aj ∈ M with
‖a− aj‖2 ≤ ε2. We obtain

‖g(a · x)− gi(aj · x)‖∞ ≤ sup
x∈B̄d2

|g(a · x)− g(aj · x)|+ |g(aj · x)− gi(aj · x)|

≤ sup
x∈B̄d2

|g|ᾱ · |a · x− aj · x|ᾱ + ‖g − gi‖∞

≤ ‖a− aj‖ᾱ2 + ‖g − gi‖∞ ≤ εᾱ1 + ε2 = ε.

Hence, the set {x → g(a · x) : g ∈ N , a ∈ M} is an ε-net of Rα,p
d in L∞(Ω) with

cardinality
#N ·#M = Nε1(B̄α, L∞) ·Nε2(B̄d

p , `
d
2) .

Consequently, Nε(Rα,p
d , L∞) ≤ #N ·#M and we conclude that

e2k(Rα,p
d , L∞) ≤ ek(B̄

d
p , `

d
2)ᾱ + ek(B̄α, L∞) .

Remark 3.5. In view of Proposition 3.2, it is easy to see that Theorem 3.4 keeps valid
if we replace the class Rα,p

d by Rα,p,κ
d .

We exemplify the consequences of Theorem 3.4 by considering the case p = 2; for
0 < p < 2 estimates would be similar. As the corollary below shows, entropy numbers
of ridge functions asymptotically decay as fast as those of their profiles. In contrast to
multivariate Lipschitz functions on Ω, the dimension d does not appear in the decay
rate’s exponent. It only affects how long we have to wait until the asymptotic decay
becomes visible.

Corollary 3.6. Let d be a natural number and α > 0. For the entropy numbers of Rα,2
d

in L∞(Ω) we have

max(k−α, 2−k/d) . ek(Rα,2
d , L∞) .

{
1 : k ≤ cαd log d,

k−α : k ≥ cαd log d ,
(3.4)

for some universal constant cα > 0 which does not depend on d.

Before we turn to the proof, let us note that (3.4) implies that

ek(Rα,2
d , L∞) � 1 if k ≤ d,

and
ek(Rα,2

d , L∞) � k−α if k ≥ cαd ln d.

Hence, entropy numbers of ridge functions are guaranteed to decay like those of their
profiles for k ≥ cαd log d—and surely behave differently for k ≤ d.
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Proof of Corollary 3.6. The lower bound in (3.4) follows from Theorem 3.4 combined
with Lemma 2.5, and Lemma 3.1. The upper bounds are proven in the same manner,
using the simple fact that for every α > 0 there are two constants cα, c

′
α > 0, such that

k ≥ cαd log d implies that 2−min{α,1}k/d ≤ c′αk
−α.

Summarizing this section, the classes of ridge functions with Lipschitz profiles of
order α are essentially as compact as the class of univariate Lipschitz functions of order
α. Consequently, when speaking in terms of metric entropy, these classes of functions
must be much smaller than the class of multivariate Lipschitz functions of order α.

Remark 3.7. The reader, who is interested in results on entropy numbers of other
classes of ridge functions, is referred to the recent work [24]. There, classes of sums of
ridge functions are studied such that each sum of ridge functions forms a multivariate
polynomial of some maximal degree.

4 Sampling numbers of ridge functions

In light of Section 3, one is led to think that efficient sampling of ridge functions should
be feasible. Moreover, their simple, two-component structure naturally suggests a two-
step procedure: first, use a portion of the available function samples to identify either the
profile or the direction; then, use the remaining samples to unveil the other component.

However, in Subsection 4.1, we learn that for ridge functions in the class Rα,p
d , sam-

pling is almost as hard as sampling of general multivariate Lipschitz functions on the
Euclidean unit ball. In particular, such two-step procedures as sketched above cannot
work in an efficient manner. It needs additional assumptions on the ridge profiles or
directions. We discuss this in Subsection 4.2.

4.1 Sampling of functions in Rα,p
d

As usual, throughout the section let α > 0 be the Lipschitz smoothness of profiles,
s = TαU the order up to which derivatives exist, and let 0 < p ≤ 2 indicate the p-norm
such that ridge directions are contained in the closed `dp-ball.

The algorithms we use to derive upper bounds are essentially the same as those which
are known to be optimal for general multivariate Lipschitz functions. Albeit, the ridge
structure allows a slightly improved analysis at least in case p < 2.

Proposition 4.1. Let α > 0 and 0 < p ≤ 2. For n ≥
(
d+s
s

)
sampling points the n-th

sampling number is bounded from above by

glinn,d(R
α,p
d , L∞) ≤ ek−∆(B̄d

2 , `
d
p′)

α , (4.1)

where k = blog nc+ 2, ∆ = 1 + dlog
(
d+s
s

)
e, and p′ is the dual index of p.
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Proof. Case α ≤ 1: In this case, s = 0 and ∆ = 1. We choose sampling points
x1, . . . , x2k−2 such that they form an ε-covering of B̄d

2 in `dp′ . Given this covering, we

construct (measurable) sets U1, . . . , U2k−2 such that Ui ⊆ xi + εB̄d
p′ for i = 1, . . . , 2k−2

and
2k−2⋃
i=1

(
xi + εB̄d

p′

)
=

2k−2⋃
i=1

Ui, Ui ∩ Uj = ∅ for i 6= j.

Now we use piecewise constant interpolation: we approximate f = g(a·) ∈ Rα,p
d by

Sf :=
∑2k−2

i=1 f(xi)1Ui . Then,

‖f − Sf‖∞ = sup
i=1,...,2k−2

sup
x∈Ui

∣∣f(x)− f(xi)
∣∣ (4.2)

≤ sup
i=1,...,2k−2

sup
x∈Ui
‖g‖Lipα

‖a‖αp‖x− xi‖
α
p′ ≤ εα. (4.3)

The smallest ε is determined by the (k − 1)-st entropy number ek−1(B̄d
2 , `

d
p′). Conse-

quently,
glin
n,d(R

α,p
d , L∞) ≤ glin

2k−2,d(R
α,p
d , L∞) ≤ ek−1(B̄d

2 , `
d
p′)

α. (4.4)

Case α > 1: Let the sampling points x1, . . . , x2k−∆−1 and the sets U1, . . . , U2k−∆−1 be
as above. However, instead of piecewise constant interpolation we apply on each of the
sets Ui ⊆ xi + εB̄d

p′ a Taylor formula of order s around the center xi.

That is, to approximate a given f = g(a·) ∈ Rα,p
d we set Sf :=

∑2k−∆−1

i=1 Txi,sf1Ui .
Then, by Lemma 2.3 (ii), we have

‖f − Sf‖∞ = sup
i=1,...,2k−∆−1

sup
x∈Ui

∣∣f(x)− Txi,sf(x)
∣∣ ≤ 1

s!
‖x− xi‖αp′ ≤ εα.

It takes 2k−∆−1
(
d+s
s

)
≤ n function values to approximate all the Txi,s above up to arbi-

trary precision by finite-order differences, cf. [39].
The smallest ε is now determined by the (k −∆)-th entropy number ek−∆(B̄d

2 , `
d
p′).

We conclude

glin
n,d(R

α,p
d , L∞) ≤ glin

2k−∆−1,d(R
α,p
d , L∞) ≤ ek−∆(B̄d

2 , `
d
p′)

α. (4.5)

We turn to an analysis of lower bounds for the classes Rα,p
d . Our strategy is to find

“bad” directions which map, for a given budget n ∈ N, all possible choices of n sampling
points to a small range of [−1, 1]. There, we let the “fooling” profiles be zero; outside
of that range, we let the profiles climb as steep as possible. Proposition 4.2 below states
the lower bound that results from this strategy, provided that the “bad” directions are
given by someM⊆ B̄d

p \ {0}. We discuss appropriate choices ofM later. In the sequel,

we use the mapping Ψ : Rd \ {0} → Sd−1
2 defined by x 7→ x/‖x‖2 .
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Proposition 4.2. Let α > 0, 0 < p ≤ 2, and M ⊆ B̄d
p \ {0}. Then, for all natural

numbers k and n with n ≤ 2k−1, we have

gadan,d (Rα,p
d , L∞) ≥ cα inf

a∈M
‖a‖α2 · ek(Ψ(M), `d2)2α .

The constant cα depends only on α.

Proof. Let us first describe the “fooling” profiles in detail. For each a ∈ M and ε < 1,
we define a function

ga,ε(t) = ϑα
[
(t− ‖a‖2(1− ε2/2))+

]α
(4.6)

on the interval [−1, 1]. The factor ϑα assures that ‖ga,ε‖Lipα[−1,1] = 1. Put fa,ε(x) =
ga,ε(a · x). By construction, we have that fa,ε ∈ Rα,p

d . Moreover, whenever x ∈ B̄d
2 and

a ∈M is such that

ε2 <
∥∥x−Ψ(a)

∥∥2

2
(4.7)

then ε2 ≤ 2− 2(x ·Ψ(a)) and hence

x · a = ‖a‖2(x ·Ψ(a)) < ‖a‖2(1− ε2/2) . (4.8)

Therefore, (4.7) implies fa,ε(x) = 0.
Now, let n ≤ 2k−1 and S ∈ Sada

n be an adaptive algorithm with a budget of n
sampling points. Clearly, the first sampling point x1 must have been fixed by S in
advance. Then, let x2, . . . , xn be the sampling points which S would choose when applied
to the zero function. Furthermore, let F (x1, . . . , xn) ⊆ Rα,p

d denote the set of functions
that make S choose the very points x1, . . . , xn. Obviously, we have fa,ε ∈ F (x1, . . . , xn)
if (4.7) holds for every xi, i = 1, ..., n. This is true for some a ∈ M if we choose
ε < ek(Ψ(M), `d2). For the respective function fa,ε, we have in particular Nada

S (fa,ε) = 0
and hence S[fa,ε] = S[−fa,ε]. Consequently,

max
{
‖fa,ε−S[fa,ε]‖∞, ‖−fa,ε−S[−fa,ε]‖∞

}
≥ ‖fa,ε‖∞ = ga,ε(‖a‖2) = cα‖a‖α2 ε2α , (4.9)

where cα := 2−αϑα. Since ε has been chosen arbitrarily but less than ek(Ψ(M), `d2), we
are allowed to replace ε by ek(Ψ(M), `d2) in (4.9) and get

sup
f∈Rα,pd

‖f − S(f)‖∞ ≥ cα inf
a∈M
‖a‖α2 · ek(Ψ(M), `d2)2α.

Taking the infimum over all algorithms S ∈ Sada
n yields

gada
n,d (Rα,p

d , L∞) ≥ cα inf
a∈M
‖a‖α2 ek(Ψ(M), `d2)2α.
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Theorem 4.3. Let α > 0, s = TαU, and 0 < p ≤ 2. For the classes Rα,p
d , we have the

following bounds:
(i) The n-th (linear) sampling number is bounded from above by

glin
n,d(R

α,p
d , L∞) ≤ Cp,α


1 : n ≤ 2d

(
d+s
s

)
,[

log(1+d/ logn1)
logn1

]α(1/max{1,p}−1/2)

: 2d
(
d+s
s

)
< n ≤ 2d+1

(
d+s
s

)
,

n−α/d d−α(1/max{p,1}−1/2) : n > 2d+1
(
d+s
s

)
,

where n1 = n/[2
(
d+s
s

)
], and the constant Cp,α depends only on α and p.

(ii) The n-th (adaptive) sampling number is bounded from below by

gada
n,d (Rα,p

d , L∞) ≥ cp,α


1 : n < d,[

log2(1+d/(2+log2 n))
2+log2 n

]α(1/p−1/2)

: d ≤ n < 2d−1,

n−2α/(d−1) d−α(1/p−1/2) : n ≥ 2d−1 .

The constant cp,α depends only on α and p.

Proof. (i) The upper bound is a direct consequence of Proposition 4.1 and Lemma 2.5.
Note that, for k and ∆ as in Proposition 4.1, it holds true that k−∆−2 ≤ log n1 ≤ k−∆.
Note also that (

d+ s

s

)α/d
≤ (1 + s)sα/ddsα/d ≤ ((1 + s)e)sα

ensures that the constant Cp,α can be chosen independently of d and n.
(ii) Case n < d. Let M = {±e1, . . . ,±ed} be the set of positive and negative

canonical unit vectors. Clearly, we have ]M = 2d and every two distinct vectors in M
have mutual `d2-distance equal to or greater than

√
2. Let k be the smallest integer such

that n ≤ 2k−1; this implies 2k−1 < 2d. Hence, whenever 2k−1 balls of radius ε cover the
setM, there is at least one ε-ball which contains two elements fromM. In consequence,
we have 2ε ≥

√
2 and hence ek(M, `d2) ≥

√
2/2. By Proposition 4.2 and the fact that

M = Ψ(M), we obtain

gada
n,d (Rα,p

d , L∞) ≥ cαek(M, `d2)2α ≥ cα2−α .

Case d ≤ n < 2d−1. For m ≤ d, consider the subset of m-sparse vectors of the p-sphere,

Sd−1
m,p =

{
x ∈ Sd−1

p : ] supp (x) = m
}
.

Using the combinatorial construction of [16], cf. also [13], we know that there exist at
least (d/(4m))m/2 vectors in Ψ(Sd−1

m,p ) = Sd−1
m,2 having mutual `d2-distance greater than

1/
√

2. Therefore, we have

` ≤ m/2 log(d/(4m)) =⇒ e`(Ψ(Sd−1
m,p ), `d2) ≥

√
2/4. (4.10)
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Let k again be the smallest integer such that n ≤ 2k−1. Hence, k ≤ d. Choose

m∗ :=
⌊

min{4k/ log(d/(4k)), k}
⌋
≤ k .

Because of k > log d, we have min{log d, 4} ≤ m∗ ≤ d. Put M = Sd−1
m∗,p. If k ≤ d/64,

then log(d/(4k)) ≥ 4 and k ≤ m∗ log(d/(4k))/2 ≤ m∗ log(d/(4m∗))/2. Hence, by (4.10),
one has ek(Ψ(Sd−1

m∗,p), `
d
2) ≥

√
2/4. Consequently, by Proposition 4.2, it follows that

gada
n,d (Rα,d

d , L∞) ≥ cα(m∗)α(1/2−1/p)ek(Ψ(Sd−1
m∗,p), `

d
2)2α

≥ cα8−α4−α(1/p−1/2)
[ log(d/(4k))

k

]α(1/p−1/2)

≥ cα8−α8−α(1/p−1/2)

(
log(1 + d/k)

k

)α(1/p−1/2)

≥ cp,α

(
log(1 + d/k)

k

)α(1/p−1/2)

.

On the other hand, if d/64 < k ≤ d, then m∗ = k. By Sk−1
2 ⊂ Ψ(Sd−1

m∗,p) ⊂ Sd−1
2 and

Lemma 2.6, we have ek(Ψ(Sd−1
m∗,p), `

d
2) � 1. Proposition 4.2, together with log(1+d/k) <

8 for k > d/64, implies

gada
n,d (Rα,p

d , L∞) ≥ c′αk
−α(1/p−1/2) ≥ c′α8−α(1/p−1/2)

(
log(1 + d/k)

k

)α(1/p−1/2)

= c′p,α

(
log(1 + d/k)

k

)α(1/p−1/2)

.

Case n ≥ 2d−1. Again, k is chosen such that 2k−2 < n ≤ 2k−1, which implies k ≥ d. In
this case, we choose M = Sd−1

p . By Lemma 2.6 and Proposition 4.2, we obtain

gada
n,d (Rα,p

d , L∞) ≥ cα d
−α(1/p−1/2)ek(S

d−1
2 , `d2)2α

≥ cαd
−α(1/p−1/2) (4n)−2α/(d−1)

≥ cα4−2αd−α(1/p−1/2)n−2α/(d−1) .

This completes the proof.

Remark 4.4. Consider the situation p = 2. For sampling numbers with n ≤ 2d−1, we
have

gada
n,d (Rα,2

d , L∞) � 1.

For sampling numbers with n ≥ 2d+1
(
d+s
s

)
, we have

n−2α/(d−1) . gada
n,d (Rα,2

d , L∞) . n−α/d. (4.11)

The upper estimate on sampling numbers is exactly the same as for multivariate Lipschitz
functions from Lipα(Ω). Although there is a gap between lower and upper bound in
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(4.11), the factor 1/(d − 1) in the exponent of the lower bound allows us to conclude
that sampling of ridge functions inRα,2

d is nearly as hard as sampling of general Lipschitz
functions from Lipα(Ω). Hence, we have the opposite situation to Section 3, where ridge
functions in Rα,2

d behave similar to univariate Lipschitz functions.

Remark 4.5. Let us consider the modified ridge function classes R̃α,p
d and R̄α,p

d defined
by

R̃α,p
d :=

{
f : [0, 1]d → R : f(x) = g(a · x), ‖g‖Lipα[0,1] ≤ 1, ‖a‖p ≤ 1, a ≥ 0

}
, (4.12)

for 0 < p ≤ 1, and

R̄α,p
d :=

{
f : B̄d

2 ∩ [0, 1]d → R : f(x) = g(a · x), ‖g‖Lipα[0,1] ≤ 1, ‖a‖p ≤ 1, a ≥ 0
}
.

(4.13)
for 0 < p ≤ 2. Here, a ≥ 0 means, that all coordinates of a are non-negative.

(i) In the recent paper [6] it has been shown that there is an adaptive algorithm which
attains a decay rate of n−α for the worst-case L∞-approximation error with respect to
the class R̃α,1

d , provided that n ≥ d. In terms of adaptive sampling numbers (such that
the feasible algorithms are adjusted to the domain [0, 1]d), this reads as

gada
n,d (R̃α,1

d , L∞) ≤ Cαn
−α, n ≥ d. (4.14)

At the same time, a careful inspection of the proofs of Propositions 4.1, 4.2, and
Theorem 4.3 shows that the results can be carried over to the classes R̄α,p

d for all 0 <
p ≤ 2. In particular, for 0 < p ≤ 1, we have the lower bound

gada
n,d (R̄α,p

d , L∞) ≥ cp,αn
−2α/(d−1)dα(1/2−1/p), n ∈ N . (4.15)

The estimates (4.14) and (4.15) look conflicting at first glance. We encounter the rather
surprising phenomenon that enlarging the domain of the class of functions under con-
sideration leads to better approximation rates. To understand this, let us briefly sketch
the adaptive algorithm of [6]. For f = g(a·) ∈ R̃α,p

d not the zero function, the idea is to
first sample along the diagonal of the first orthant, that is, at points x = t(1, . . . , 1) with
t ∈ [0, 1]. Importantly, it is guaranteed that we can take samples from the whole relevant
range [0, ‖a‖1] of the profile g of f . This in turn assures that, by sampling adaptively
along the diagonal, we find a small range in [0, ‖a‖1] where the absolute value of g′ is
strictly larger than 0. Then, the ridge direction a can be recovered in a similar way as
we do in Subsection 4.2.

On the other hand, for the classes R̄α,p
d , this adaptive algorithm will not work. As-

sume we sample again along the (rescaled) diagonal. This time, we can be sure that we
are able to reach every point in the intervall [0, ‖a‖1/

√
d]. But this interval is in most

cases strictly included in the relevant interval [0, ‖a‖2] for g. Hence, it is not guaranteed
anymore that we sample the whole relevant range of g and find an interval on which g′

is not zero.
(ii) Admittedly, the domain Ω = [0, 1]d ∩Bd

2 in (4.13) is a somewhat artificial choice
in case of p ≤ 1, whereas the cube Ω = [0, 1]d seems natural. Conversely, the definition
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in (4.12) is not reasonable in case p > 1, since then a · x might exceed the domain
interval for g. However, Ω = [0, 1]d ∩ Bd

2 is the natural choice for p = 2 in (4.13). In
this situation, we suffer from the curse of dimensionality for adaptive algorithms using
standard information, see Remark 4.4 and Theorem 5.1,(1) below. This shows that the
condition p ≤ 1 is essential in the setting of [6] and that (4.14) can not be true for the
class R̄α,2

d .

Remark 4.6. We are not aware of any results on the approximation of ridge functions
when arbitrary bounded, linear functionals are admitted in the information map, see
Section 2.2. It seems to be an open problem whether or not such linear information
would lead to substantially better bounds for the worst-case error.

4.2 Recovery of ridge directions

We return to the question under which conditions the two-step procedure sketched at
the beginning of Section 4 is successful. The adaptive algorithm of [6], which we have
already discussed in Remark 4.5, first approximates the profile g. Unfortunately, we
could already argue that this algorithm cannot work in our setting. There is an opposite
approach in Fornasier et al. [12], which first tries to recover the ridge direction and
conforms to our setting. Following the ideas of [2], the authors developed an efficient
scheme using Taylor’s formula to approximate ridge functions with Cs profile obeying
certain integral condition on the modulus of its derivative. This condition was satisfied
for example if

∣∣g′(0)
∣∣ ≥ κ > 0. In their approach, the smoothness parameter s had to be

at least 2. Using a slightly different analysis, this scheme turns out to work for Lipschitz
profiles of order α > 1.

Before we turn to the analysis, let us sketch the Taylor-based scheme in more detail.
As transposes of matrices and vectors appear frequently, for reasons of convenience, we
write a ·x = aTx for the remainder of this subsection. Now, Taylor’s formula in direction
ei yields

f(hei) = f(0) + h∇f(ξ
(i)
h ei)

T ei

= g(0) + hg′(ξ
(i)
h ai)ai .

Hence, we can expose the vector a, distorted by a diagonal matrix with components

ξh = (g′(ξ
(1)
h a1), . . . , g′(ξ

(d)
h ad))

on the diagonal. In total, we have to spend only d + 1 function evaluations for that.
Moreover, each of ξh’s components can be pushed arbitrarily close to g′(0). This gives an
estimate â of a/‖a‖2, along which we can now conduct classical univariate approximation.
Effectively, one samples a distorted version of g given by

g̃ : [−1, 1]→ R, t 7→ f(tâ) = g(taT â).

The approximation ĝ obtained in this way, together with â, forms the sampling approx-
imation to f ,

f̂(x) = ĝ(âTx).
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Observe that g̃(âTx) = g(aT ââTx), so it is crucial that ââT spans a subspace which is
close to the one-dimensional subspace spanned by aaT , in the sense that∥∥aT (Id − ââT )

∥∥
2

has to be small. Importantly, this gives the freedom to approximate a only up to a sign.
Finally, let us note that if the factor g′(0) can become arbitrary small, the information
we get through Taylor’s scheme about a becomes also arbitrarily bad. Hence, for this
approach to work, it is necessary to require

∣∣g′(0)
∣∣ ≥ κ.

Lemma 4.7. Let 0 < β ≤ 1, 0 < κ ≤ 1, and ε > 0. Further let δ = ε·κ
2+ε

and

h = (δ/2)1/β. For any g ∈ Lipκ1+β([−1, 1]) and a ∈ B̄d
2 with a 6= 0 let f = g(a·). Put

ãi =
f(hei)− f(0)

h
, i = 1, . . . , d (4.16)

and â = ã/‖ã‖2. Then ∥∥sign (g′(0))â− a/‖a‖2

∥∥
2
≤ ε.

Proof. By the mean value theorem of calculus there exist ξ
(i)
h ∈ [0, h] such that

ãi = g′(ξ
(i)
h ai)ai.

By Hölder continuity we get

|g′(ξ(i)
h ai)− g

′(0)| < 2|g′|β|ai|β|h|β ≤ δ

for all i = 1, . . . , d. Let us observe that δ < κ and, therefore, ã 6= 0 and â is well defined.
Put ξ = (g′(ξ

(i)
h ai))

d
i=1. Then we can write ã = diag(ξ)a. For the norm of ã we get

‖ã‖2 ≤ ‖diag(ξ)a− g′(0)a‖2 + |g′(0)|‖a‖2

≤ max
i=1,...,d

|g′(ξ(i)
h ai)− g

′(0)|‖a‖2 + |g′(0)|‖a‖2

≤ (δ + |g′(0)|)‖a‖2.

Analogously, by the inverse triangle inequality ‖ã‖2 ≥ (|g′(0)| − δ)‖a‖2. In particular,∣∣‖ã‖2/‖a‖2 − |g′(0)|
∣∣ ≤ δ.

Now, writing γ = sign (g′(0)), we observe∥∥γâ− a/‖a‖2

∥∥
2
≤
∥∥γâ− |g′(0)|a/‖ã‖2

∥∥
2

+
∥∥|g′(0)|a/‖ã‖2 − a/‖a‖2

∥∥
2

= ‖ã‖−1
2

(
‖(diag(ξ)− g′(0)Id) a‖2 +

∣∣|g′(0)| − ‖ã‖2/‖a‖2

∣∣ ‖a‖2

)
≤ 2δ‖a‖2/‖ã‖2 ≤ 2δ/(|g′(0)| − δ) ≤ 2δ/(κ− δ) = ε.
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Having recovered the ridge direction, we manage to unveil the one-dimensional struc-
ture from the high-dimensional ambient space. In other words, recovery of the ridge
direction is a dimensionality reduction step. What remains is the problem of sampling
the profile, which can be done using standard techniques. In combination, this leads to
the following result:

Theorem 4.8. Let α > 1 and 0 < κ ≤ 1.

(i) Let n ≤ d− 1. Then gn,d(Rα,2,κ
d , L∞) = glin

n,d(R
α,2,κ
d , L∞) = 1.

(ii) Let n ≥ d+ 1. Then

cα · n−α ≤ gn,d(Rα,2,κ
d , L∞) ≤ glin

n,d(R
α,2,κ
d , L∞) ≤ Cα(n− d)−α

with constants cα and Cα, which depend on α only.

Proof. (i) It is enough to show that gn,d(Rα,2,κ
d , L∞) ≥ 1 for n ≤ d − 1. Let us assume

that a given (adaptive) approximation method samples at x1, . . . , xn and let us denote
by L their linear span. Then dimL ≤ n < d and we may find a ∈ Rd with ‖a‖2 = 1
orthogonal to all x1, . . . , xn. Finally, if we define g(t) = t, we obtain

1 = ‖g(aT ·)‖∞ ≤
1

2
·
{
‖g(aT ·)− Sn(g(aT ·))‖∞ + ‖ − g(aT ·)− Sn(−g(aT ·))‖∞

}
≤ gn,d(Rα,2,κ

d , L∞).

(ii) Fix some 0 < ε < 1. Let â denote the reconstruction of a obtained by Lemma
4.7, which uses d + 1 sampling points of f . We estimate g by sampling the distorted
version

g̃ : [−1, 1]→ R, t 7→ f(tâ) = g(taT â).

Re-using the value g(0) which we have already employed for the recovery of a, we
spend k = n − d ≥ 1 sampling points and obtain a function ĝ with ‖ĝ − g̃‖∞ ≤ ε :=
C ′αk

−α‖g̃‖Lipα .

Now put f̂(x) = ĝ(âTx) as our approximation to f . To control the total approxima-
tion error, observe that

|f̂(x)− f(x)| ≤ |ĝ(âTx)− g̃(âTx)|+ |g̃(âTx)− g(aTx)| =: E1 + E2.

For the first error term E1, we immediately get

E1 ≤ ‖ĝ − g̃‖∞ ≤ ε = C ′α‖g̃‖Lipαk
−α ≤ C ′αk

−α

as ‖g̃‖Lipα ≤ ‖a‖2 ‖g‖Lipα ≤ 1.
For the second error term, note that

E2 = |g(aT ââTx)− g(aTx)| ≤ ‖g‖Lipα ‖a
T (Id − ââT )‖2 ‖x‖2

≤ ‖g‖Lipα ‖x‖2 ‖a‖2

∥∥aT/‖a‖2 (Id − ââT )
∥∥

2
.
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We do not know the exact value of the subspace stability term ‖aT/‖a‖2 (Id − ââT )‖2.
But because ââT is the identity in direction of â, we have the estimate∥∥aT/‖a‖2 (Id − ââT )

∥∥
2

=
∥∥(a/‖a‖2 − sign (g′(0))â

)T
(Id − ââT )

∥∥
2

≤ ‖Id − ââT‖2→2

∥∥a/‖a‖2 − sign (g′(0))â
∥∥

2

≤ ε.

For the last inequality, we have used Lemma 4.7 and the fact that ‖Id − ââT‖2→2 ≤ 1.
As a consequence,

E2 ≤ ‖x‖2 ‖a‖2 ‖g‖Lipα ε ≤ ε.

Putting everything together, we conclude

‖f̂ − f‖∞ ≤ 2ε ≤ 2C ′αk
−α.

Let us turn to the lower bound. Assume we are given a feasible approximation method
Sn that samples at points {x1, . . . , xn} ⊂ Ω. Let ψk,b be as in the proof of Proposition
3.2. There is an interval I ′ ⊂ I = [π/4 − 1/5, π/4 + 1/5] of length |I ′| = 1/(5n) such
that I ′ does not contain any of the first coordinates of x1, . . . , xn; in other words, it
is disjoint with {x1 · e1, . . . , xn · e1}, where e1 = (1, 0, . . . , 0) is the first canonical unit
vector. Furthermore, let b be the center of I ′, put ψ = ψ2n,b, and a = e1. Finally, with
γ as in (3.2), we write

f(x) = sin(x · e1),

f+(x) = sin(x · e1) + (1− γ)ψ(x · e1),

f−(x) = sin(x · e1)− (1− γ)ψ(x · e1).

As Sn(f) = Sn(f+) = Sn(f−) and all the three functions are in Rα,2,κ
d , we may use

the triangle inequality

‖(1− γ)ψ‖∞ = ‖(1− γ)ψ(e1·)‖∞

≤ 1

2

{
‖(1− γ)ψ(e1·) + f − Sn(f)‖∞ + ‖(1− γ)ψ(e1·)− [f − Sn(f)]‖∞

}
=

1

2

{
‖f+ − Sn(f+)‖∞ + ‖f− − Sn(f−)‖∞

}
,

to conclude that
gn,d(Rα,2,κ

d , L∞) & n−α,

with a constant depending only on α.

Remark 4.9. Let us briefly comment why we assume g′(0) ≥ κ and not g′(t0) ≥ κ for
some arbitrary, but known t0 ∈ [−1, 1]. Let x ∈ B̄d

2 be some arbitrary sampling point
(taken e.g. uniformly at random in B̄d

2). Since the only a-priori information is ‖a‖2 ≤ 1,
by the concentration of measure phenomenon the inner product a · x will most likely be
close to zero when d is large. Hence, to exploit g′(t0) ≥ κ for some t0 6= 0 we effectively
have to know the vector a beforehand.
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Remark 4.10. Once we have control on the derivative in the origin, recovery of the
ridge direction and approximation of the ridge profile can be addressed independently.
Formula (4.16) is based on the simple observation that

∂f

∂xi
(0) = g′(0)ai = g′(0)〈a, ei〉

might be well approximated by first order differences. Furthermore, this holds also for
every other direction ϕ ∈ Sd−1

2 , i.e.,

∂f

∂ϕ
(0) = g′(0)〈a, ϕ〉

can be approximated by differences

f(hϕ)− f(0)

h
.

Taking the directions ϕ1, . . . , ϕmΦ
at random (and appropriately normalized), one can

approximate the scalar products {〈a, ϕi〉}mΦ
i=1. Finally, if one assumes that a ∈ B̄d

p for
0 < p ≤ 1, one can recover a good approximation to a by the sparse recovery methods
of the modern area of compressed sensing. This approach has been investigated in [12].

Although the algorithms of compressed sensing involve random matrices, once a
random matrix with good sensing properties (typically with small constants of their
Restricted Isometry Property) is fixed, the algorithms become fully deterministic. This
allows to transfer the estimates of [12] into an upper bound for the deterministic worst-
case error glin

n,d(R
2,p,κ
d , L∞).

Let 0 < p ≤ 1 and

cκ−
2p

2−p log d ≤ mΦ ≤ Cd,

for two universal positive constants c, C. It follows from the results of [12] that drawing
the directions ϕ1, . . . , ϕmΦ

once yields with high probability a deterministic algorithm
that needs n > mΦ sampling points to recover any function f ∈ R2,p,κ

d up to precision[ mΦ

log(d/mΦ)

]1/2−1/p

+ (n−mΦ)−2.

If 1/p ≤ 5/2 and c′κ−
2p

2−p log d ≤ n ≤ C ′d, this implies that

glin
n,d(R

2,p,κ
d , L∞) .

[ n

log(d/n)

]1/2−1/p

and the same estimate holds if 1/p > 5/2 and c′κ−
2p

2−p log d ≤ n ≤ c′′(log d)
1/p−1/2
1/p−5/2 .

Finally, if c′′(log d)
1/p−1/2
1/p−5/2 ≤ n ≤ C ′d, we obtain

glin
n,d(R

2,p,κ
d , L∞) . n−2.
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5 Tractability results

For the classification of ridge function sampling by degrees of difficulty, the field of
information-based complexity [26] provides a family of notions of so-called tractability.
Despite of their simple structure, ridge functions lead to a surprisingly rich class of
sampling problems in regard of these notions: we run across almost the whole hierarchy
of degrees of tractability if we vary the problem parameters α and p, or add the constraint
on the profiles’ first derivative in the origin.

Let us briefly introduce the standard notions of tractability. We say that a problem
is polynomially tractable if its information complexity n(ε, d) is bounded polynomially
in ε−1 and d, i.e. there exist numbers C, r, q > 0 such that

n(ε, d) ≤ C ε−r dq for all 0 < ε < 1 and all d ∈ N.

A problem is called quasi-polynomially tractable if there exist two constants C, t > 0
such that

n(ε, d) ≤ C exp(t(1 + ln(1/ε))(1 + ln d)) . (5.1)

It is called weakly tractable if

lim
1/ε+d→∞

log n(ε, d)

1/ε+ d
= 0 , (5.2)

i.e., the information complexity n(ε, d) neither depends exponentially on 1/ε nor on d.
We say that a problem is intractable, if (5.2) does not hold. If for some fixed

0 < ε < 1 the number n(ε, d) is an exponential function in d then a problem is, of
course, intractable. In that case, we say that the problem suffers from the curse of
dimensionality. To make it precise, we face the curse if there exist positive numbers
c, ε0, γ such that

n(ε, d) ≥ c(1 + γ)d , for all 0 < ε ≤ ε0 and infinitely many d ∈ N . (5.3)

In the language of IBC, Theorems 4.3 and 4.8 now read as follows:

Theorem 5.1. Consider the problem of ridge function sampling as defined in Subsection
2.2. Assume that ridge profiles have at least Lipschitz smoothness α > 0; further, assume
that ridge directions are contained in the closed `dp-unit ball for p ∈ (0, 2]. Then sampling
of ridge functions in the class Rα,p

d

(1) suffers from the curse of dimensionality if p = 2 and α <∞,

(2) never suffers from the curse of dimensionality if p < 2,

(3) is intractable if p < 2 and α ≤ 1
1/p−1/2

,

(4) is weakly tractable if p < 2 and α > 1
1/max{1,p}−1/2

,

(5) is quasi-polynomially tractable if α =∞,
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(6) and with positive first derivatives of the profiles in the origin it is polynomially
tractable, no matter what the values of α and p are.

To prove Theorem 5.1, we translate Theorem 4.3 into bounds on the information
complexity

n(ε, d) = min{n ∈ N : gn,d(Rα,p
d , L∞) ≤ ε}.

Lemma 5.2. Let p < 2 and α > 0. Set η = α(1/2− 1/p′) = α(1/max{1, p} − 1/2) and
define

εU1 := Cp,α

[
log(1 + d/ log d)

log d

]η
, εU2 := Cp,α

(
1

d

)η
.

Then there are positive constants C0 and C1 such that

log n(ε, d) ≤ C0 + C1


log d : εU1 ≤ ε ≤ 1,

log d · (1/ε)1/η : εU2 ≤ ε < εU1 ,

log(1/ε) · (1/ε)1/η : ε < εU2 .

The constants depend only on p and α.

Lemma 5.3. Let p < 2 and α > 0. Put

εL1 := cp,α

[
log(1 + d/ log d)

log d

]α(1/p−1/2)

, εL2 := cp,α

(
1

d

)α(1/p−1/2)

, εL3 := 4−αεL2 .

Then there are universal constants c0, c1, which depend only on p and α, such that

log n(ε, d) ≥ c0 + c1(1/ε)α
−1(1/p−1/2)−1

for εL3 ≤ ε < εL1 .

Proof of Theorem 5.1. (1). For n ≤ 2d−2, the lower bound in Theorem 4.3 gives

gn,d(Rα,2
d , L∞) ≥ cp,α =: ε0.

Hence, n(ε, d) ≥ 2d−2 for all ε < ε0 and we have the curse of dimensionality.
(2). Since α1 > α2 implies Rα1,p

d ⊆ Rα2,p
d , we can w.l.o.g. assume α ≤ 1. We choose

an arbitrary εU2 ≤ ε ≤ 1. By Lemma 5.2,

n(ε, d) ≤ 2C0dC1εα
−1(1/max{1,p}−1/2)−1

.

By our assumption ε ≥ εU2 , this is true for all natural d > (Cp,α/ε)
α−1(1/max{1,p}−1/2)−1

.
Hence, the curse of dimensionality does not occur.

(3). Put γ = α(1/p− 1/2). Assume d→∞ and εL3 ≤ ε < εL2 . The latter implies(
cp,α
4α

)1/γ

(1/ε)1/γ ≤ d < c1/γ
p,α (1/ε)1/γ.
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This yields
log2 n(ε, d)

d+ 1/ε
≥ c0

d+ 1/ε
+ c1

(1/ε)1/γ

c
1/γ
p,α (1/ε)1/γ + 1/ε

.

Assuming that α ≤ 1/(1/p− 1/2), we have γ ≤ 1 and thus 1/ε ≤ (1/ε)1/γ. We conclude
that

log n(ε, d)

d+ 1/ε
≥ c1

c
1/γ
p,α + 1

> 0.

Consequently, the problem is not weakly tractable; and thus intractable.
(4). Put x = 1/ε+ d. By Lemma 5.2 and 1/ε ≤ x, d ≤ x, we have

log n(ε, d) ≤ C0 + C1 log(x)xα
−1(1/max{1,p}−1/2)−1

.

Now, if α > 1
1/max{1,p}−1/2

, then limx→∞ x−1 log n(ε, d) = 0.

(5). By embedding arguments it is enough to consider the class R∞,2d . We approxi-
mate the function f ∈ R∞,2d via the Taylor polynomial Ts,0f(x) in x0 = 0. Lemma 2.3,
(ii) gives for every s ∈ N the bound

‖f − Ts,0f‖∞ ≤
2

s!
.

Let ε > 0 be given and let s ∈ N be the smallest integer such that 2/s! ≤ ε. Then
(s− 1)! ≤ 2/ε and therefore [(s− 1)/e]s−1 ≤ (s− 1)! ≤ 2/ε. This gives

(s− 1) ln((s− 1)/e) ≤ ln(2/ε) . (5.4)

We know from [39] that it requires
(
s+d
s

)
function values to approximate the Taylor

polynomial up to arbitrary (but fixed) precision. Hence, using (5.4), we see that there
is a constant t > 0 such that

lnn(ε, d) ≤ s ln(e(d+ 1)) ≤ t(1 + ln(1/ε))(1 + ln d),

which is (5.1).
(6). From Theorem 4.8 we can immediately conclude ε−1/α . n(ε, d) . ε−1/α, where

the constants behind “.” behave polynomially in d. Consequently, sampling of ridge
functions in Rα,2,κ

d is polynomially tractable.

By Lemma 2.1, we know that R∞,2d is a subclass of the unit ball in C∞(Ω). Besides,
we know that approximation using function values is quasi-polynomially tractable in
R∞,2d , see Theorem 5.1. What is the respective tractability level in C∞(Ω) ? Or, to
put it differently: how much do we gain by imposing a ridge structure in C∞(Ω) ? The
seminal paper [27] tells us that approximation in C∞([0, 1]d) suffers from the curse of
dimensionality when norming the space in the way as we did in (2.1). In contrast, we will
show that sampling in C∞(Ω) is still weakly tractable. This is not too much of a surprise.
Due to the concentration of measure phenomenon, the Euclidean unit ball’s volume gets
“very small” in high dimensions d; its measure scales like (2πe/d)d/2. Anyhow, the result
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suggests that one still benefits from supposing a ridge structure; infinitely differentiable
ridge functions from R∞,2d probably can be approximated easier than general functions
from the unit ball of C∞(Ω). This is not guaranteed, however, because we do not show
that one cannot get anything better than weak tractability for the sampling of functions
in the unit ball of C∞(Ω).

Theorem 5.4. The sampling problem for C∞(Ω), where the error is measured in L∞(Ω),
is weakly tractable.

Proof. Applying Lemma 2.3, (i) together with (2.4) we obtain for any f ∈ C∞(Ω) with
‖f‖C∞(Ω) ≤ 1 and every s ∈ N the relation

|f(x)− Ts,0f(x)| ≤ 2

(s− 1)!
‖x‖s1 , x ∈ Ω ,

≤ 2ds/2

(s− 1)!
.

Let s ∈ N be the smallest integer such that 2ds/2/(s− 1)! ≤ ε. This leads to

1√
d

(s− 2

e
√
d

)s−2

≤ (s− 2)!

d
s−1

2

≤ 2

ε

which implies

(s− 2) ln
(s− 2

e
√
d

)
≤ ln(2/ε) +

1

2
ln(d) . (5.5)

To approximate the Taylor polynomial Ts,0f with arbitrary precision (uniformly in f) we

need
(
d+s
s

)
function values, see [39, p. 4]. Let us distinguish two cases. If (s− 2) ≤ e2

√
d

we obtain
lnn(ε, d) ≤ s ln(e(d+ 1)) ≤ (e2

√
d+ 2) · ln(e(d+ 1))

and hence (5.2) . If s− 2 > e2
√
d then (5.5) yields s− 2 ≤ ln(2/ε) + ln(d). Thus,

lnn(ε, d) ≤ s ln(e(d+ 1)) ≤ (ln(2/ε) + ln(d) + 2) · ln(e(d+ 1))

and again (5.2) holds true. This establishes weak tractability.

Remark 5.5. (i) The result in Theorem 5.4 is also a consequence of the arguments in
[19, Sections 5.2, 5.3, and Section 6] by putting Lj,d = dj/2.
(ii) Recently, Vyb́ıral [39] showed that there is quasi-polynomial tractability if one re-
places the classical norm supγ∈Nd0 ‖D

γf‖∞ by supk∈N0

∑
|γ|=k ‖Dγf‖∞/γ! in C∞([0, 1]d).

In contrast to that, Theorem 5.4 shows weak tractability for the classical norm on the
unit ball.
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[34] C. Schütt. Entropy numbers of diagonal operators between symmetric Banach
spaces. J. Approx. Theory, 40(1984), pp. 121–128.

[35] C. Schwab, C. J. Gittelson. Sparse tensor discretizations of high-dimensional para-
metric and stochastic PDEs. Acta Numerica, 20(2011), pp. 291–467.

[36] J. Traub, G. Wassilkowski, H. Wozniakowski. Information-Based Complexity. Aca-
demic Press, New York (1988).

[37] H. Triebel. Fractals and Spectra. Birkhäuser, Basel (1997).
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