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ROBUST NORM EQUIVALENCIES AND OPTIMAL

PRECONDITIONERS FOR DIFFUSION PROBLEMS

MICHAEL GRIEBEL, KARL SCHERER, AND MARC ALEXANDER SCHWEITZER

Abstract. Additive multilevel methods offer an efficient way for the fast so-

lution of large sparse linear systems which arise from a finite element dis-
cretization of an elliptic boundary value problem. These solution methods are

based on norm equivalencies for the associated bilinear form using a suitable
subspace decomposition. From these, efficient preconditioners for the stiffness

matrix can be derived. For the robustness of the resulting iteration schemes, it
is crucial that the constants in the norm equivalence do not depend or depend
only weakly on the ellipticity constants of the problem. Here we address this

question for the model problem −∇ω∇u = f with a scalar weight ω.
We prove an upper bound completely independent of the weight ω, whereas

our lower bound involves some information about the local variation the coef-
ficient function. The condition on the coefficient is related to the A2 and A∞
Muckenhoupt classes from approximation theory. It is sufficient to require
ω ∈ A2 ⊂ A∞, however, the results even hold for a slightly larger class of

functions.

1. Introduction

The solution of large sparse linear systems arising from the discretization of a
partial differential equation (PDE) is an essential ingredient in many scientific com-
putations. The ever growing demand for efficient solvers led to the development of
multigrid methods in the 1970s [4, 5, 13, 14] and multilevel preconditioning tech-
niques in the 1980s [22]. Much research work was devoted to the question of optimal
complexity; i.e., to show that the number of operations necessary to obtain the so-
lution up to a prescribed accuracy is proportional to the number of unknowns of the
linear system. However, the convergence behavior of these classical schemes is still
strongly dependent on the coefficients of the considered PDE. This is the so-called
robustness problem of multilevel solvers. It is one major reason which somewhat
limits the applicability of classical multigrid methods and multilevel precondition-
ers to real world problems. Several extensions of these methods e.g. via the use
of more complicated smoothing schemes or through the use of operator-dependent
or matrix-dependent transfer operators [1, 10, 24, 25] in the so-called black-box
multigrid method have been proposed over the years to overcome the robustness
problem. Currently the most successful approach is the algebraic multigrid (AMG)
method [6, 7, 8, 9, 12, 16, 19] which further generalizes the black-box multigrid idea.
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However, the design and implementation of an AMG method is rather involved and
there is no satisfying theoretical foundation which proves the robustness of AMG.
Hence, the development of a provably robust multilevel solver or preconditioner for
general second order PDEs remains an open problem even today.

In this paper we focus on the robustness issue for diffusion problems in two space
dimensions involving a scalar diffusion coefficient ω : R2 → R; i.e., we consider the
model problem

−∇ω∇u = f in Ω ⊂ R2.

We discretize our model problem using linear finite elements on a sequence of uni-
formly refined triangulations. Furthermore, we only require the weight ω to be in
the Muckenhoupt class A2 ⊂ A∞; in fact, the results hold even for a slightly larger
class of functions.

The main ingredients of our analysis are the use of certain weighted projection
operators and auxiliary level-dependent elliptic projection operators. The tools
employed in the proof are the Hardy-inequality, a hybrid Bernstein-type inequality
and a generalized duality technique. We limit ourselves to the two-dimensional
case using linear finite elements only, however, we believe that the results can be
extended to three space dimensions and multi-linear elements.

In this paper we establish the equivalence

a(u, u) ≤ C̃
J∑

j=0

22j‖uj‖2j,ω ≤ Ĉ a(u, u)

for a certain weighted norm where the constants C̃ and Ĉ depend on the initial
triangulation and in general involve some information about the local variation
of the coefficient function ω. For the standard test case of a piecewise constant
coefficient function with maximal jump of height ε−1, we obtain an optimal norm
equivalence with Ĉ ≈ ln(ε−1/2). Note that the location of the jumps, their number
or their frequency is not restricted. Hence, unlike other articles concerned with the
development of robust solvers [11, 15, 20] we do not require that the jumps must
be resolved on any particular level.

The remainder of the paper is organized as follows: First, we introduce the
notation and the employed projection operators in §2. Then, we present the main
result of the paper in §3. Here, we establish two robust norm equivalencies for the
considered model problem using a linear finite element discretization on a sequence
of uniformly refined triangulations. We begin with the derivation of an optimal and
robust upper bound for the bilinear form using a hybrid Bernstein-type estimate
and a Hardy-inequality. Then, we establish a lower bound for the bilinear form
under a weak assumption on the coefficient function ω using a duality technique
and a Hardy-inequality. Finally, we discuss the conditions imposed on the coefficient
functions and show that all weights ω in the Muckenhoupt class A2 ⊂ A∞ fulfill the
requirements. In §4 we present the construction of a preconditioner of BPX-type
based on our robust and optimal norm equivalence before we conclude with some
remarks in §5.
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2. Prerequisites

Let us introduce some notation which we will use throughout this paper. We
will consider a sequence of uniformly refined triangulations

(2.1) T0 ⊂ T1 ⊂ · · · ⊂ TJ
and the associated sequence of piecewise linear finite element spaces

(2.2) V0 ⊂ V1 ⊂ · · · ⊂ VJ .
Let Nj denote the set of all vertices of the triangulation Tj and define

(2.3) R0 := N0, Rj := Nj \ Nj−1, and N = NJ .
Our main interest is the development of robust multilevel solvers for diffusion prob-
lems

(2.4) −∇A∇u = f in Ω ⊂ R2,

with A := (aαβ), aαβ ∈ L∞(Ω) and associated bilinear form

(2.5) a(u, v) :=

∫

Ω

(A∇u,∇v) =

∫

Ω

d∑

α=1

d∑

β=1

aαβ∂βu∂αv.

Let ‖ · ‖a denote the energy norm with respect to the bilinear form a(·, ·), i.e.,

‖u‖a :=
√
a(u, u).

The fundamental prerequisite stated in Assumption 1 for our proof is related to the
discretization of (2.5) on the finest level J .

Assumption 1. The finest triangulation TJ consists of triangles T for which the
bilinear form (2.5) satisfies the local ellipticity condition

(2.6) ωT,J

2∑

α=1

ξ2
α ≤

2∑

α,β=1

aαβ(x)ξαξβ ≤ ωT,J
2∑

α=1

ξ2
α, for all x ∈ T ∈ TJ

with weights ωT,J , ωT,J independent of x ∈ T ∈ TJ .

Since we employ a linear finite element space VJ , the derivatives of v ∈ VJ are
constant on any element T ∈ TJ , i.e., ∇v = const, and Assumption 1 yields the
equivalence

(2.7)
∑

T∈TJ
ωT µ(T )‖∇v‖2T ≤ a(v, v) ≤

∑

T∈TJ
ωT µ(T )‖∇v‖2T

for any v ∈ V where µ(T ) denotes the area of T and ‖ · ‖T the Euclidean norm on
T ⊂ R2.

For any coarser element T̂ ∈ Tj with j < J let us now introduce average weights
ωT̂ and ωT̂ based on the weights ωT,J and ωT,J from (2.6) which are assigned to
the elements T ∈ TJ on the finest level J ; i.e., we define

(2.8) ωT̂ :=
1

µ(T̂ )

∑

T∈TJ
T⊂T̂

µ(T )ωT,J and ωT̂ :=
1

µ(T̂ )

∑

T∈TJ
T⊂T̂

µ(T )ωT,J .
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Note that for elements T ∈ TJ on the finest level J we have ωT = ωT,J and
ωT = ωT,J . Let us further introduce associated weighted norms on all levels j

(2.9) ‖v‖2j,ω :=
∑

T∈Tj
ωT

∫

T

|v|2 and ‖v‖2j,ω :=
∑

T∈Tj
ωT

∫

T

|v|2.

Now the fact that ∇v is constant on T ∈ Tj implies that (2.7) is equivalent to

(2.10) ‖∇v‖2j,ω ≤ a(v, v) ≤ ‖∇v‖2j,ω, for j = 0, 1, . . . , J.

In later sections we will work only with weights ωT,J = ωT,J = ωT,J for the ease
of notation. Hence, we are essentially dealing with the weighted norms ‖ · ‖j,ω =
‖ · ‖j,ω = ‖ · ‖j,ω from (2.9). Throughout the paper we also use the short hand
notation

(2.11) 〈u, v〉ω :=
∑

T∈TJ
ωT

∫

T

uv, ‖u‖ω :=
√
〈u, u〉ω = ‖u‖J,ω

for the weighted norm on the finest level J .
Note that the considered ωT,J = ωT,J = ωT,J case corresponds to the bilinear

form a(·, ·) with coefficient functions aαβ = ωδαβ , i.e.

(2.12) a(u, v) :=

∫

Ω

ω(∇u,∇v),

and a piecewise constant approximation

ωT,J :=
1

µ(T )

∫

T

ω

of the scalar coefficient ω with respect to the finest triangulation TJ ; i.e., we consider
the bilinear form

aJ(u, v) =
∑

T∈TJ
ωT

∫

T

(∇u,∇v)

on the finest level J .

Remark 2.1. For the development of a preconditioner it is essential to employ
identical operators and norms for both bounds, the lower and the upper bound.
Therefore, it is necessary to consider the case ωT,J = ωT,J = ωT,J . Note, however,
that respective upper and lower bounds can be obtained in terms of the weights ωT
and ωT respectively.

For the weighted norm ‖·‖J,ω = ‖·‖ω there holds a local Bernstein-type inequality
under a rather weak additional condition on the weights ωT,J , see [17] for details.

Lemma 2.2. Consider subsets E ⊂ TJ of elements on the finest level J which are
contained in an element T on a coarser level j, i.e. E ⊂ T ∈ Tj , such that

(2.13)
ωE
ωT
≤ 1

2

µ(T )

µ(E)
and

µ(E)

µ(T )
≤ γ

hold for some constant γ independent of E and T where the weight ωE is defined
according to (2.8). Then there holds the local Bernstein-type inequality

(2.14) ‖∇v‖2ω,T ≤ 4γ−2C2
0 (diam(T ))−2‖v‖2ω,T



ROBUST NORM EQUIVALENCIES FOR DIFFUSION PROBLEMS 5

for all v ∈ Vj. Here ‖ · ‖ω,T denotes the restriction of the norm ‖ · ‖ω to T ∈ Tj
and the constant C0 is only dependent on the initial triangulation T0, i.e.,

C0 := max
T̂∈T0

diam(T̂ )‖H−1

T̂
‖

where HT denotes the mapping from T to the reference triangle Tref .

Proof. Here, we only give a sketch of the proof, see [17] for details. Let HT denote
the mapping from T to the reference triangle Tref with vertices (0, 0), (0, 1), (1, 0).
For any v ∈ Vj we have the representation

v(x) = q(ξ) = (g, ξ) + e for all x ∈ T,HT (x) = ξ ∈ Tref

and by definition

‖v‖2ω,T =
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )|(g, ηT̂ ) + e|2 and |∇v(x)|2 ≤ C2
0 (diam(T ))−2‖g‖2

for all x ∈ T , where ηT̂ denotes the reference point in Tref for which HT (yT̂ ) = ηT̂
for suitable yT̂ ∈ T̂ . Hence, it suffices to prove the inequality

(2.15) µ(T )ωT =
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ ) ≤ c
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )
|(g, ξT̂ )|2
‖g‖ .

We first consider the case e = 0 and set b := g
‖g‖ . Then we can find a sub-region

Sref,δ ⊂ Tref for any δ ∈ (0, 1) such that

Sref,δ ⊂ Sbref,δ := {ξ ∈ Tref : |(b, ξ)| ≥ δ}
holds for all b with ‖b‖ = 1. For the set Eref := Tref \Sref,δ one can then show that
µ(Eref) / µ(Tref). It is clear that the most significant contribution to the validity
of (2.15) is due to the points ηT̂ which are located in Sref,δ. With this in mind and
the estimate
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )|(b, ηT̂ )|2 ≥ δ2
∑

T̂∈TJ
η
T̂
∈Sref,δ

ωT̂ µ(T̂ ) ≥ δ2
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )
(

1− µ(E)ωE
µ(T )ωT

)

we see that we can choose E ⊂ T such that for all ηT̂ ∈ Sref,δ we have ηT̂ ∈ E and
µ(E) ≤ 4δ µ(T ). Hence, with a choice of δ = γ

4 we obtain the asserted inequality

(2.15) for e = 0 with c = 1
δ2 . The case e 6= 0 then follows from this, see [17] for

details. �

Remark 2.3. Note that condition (2.13) is equivalent to the following requirement
on the coefficient function ω

F (γ) := sup
T∈Tj

sup
E⊂T,µ(E)≤γ µ(T )

∫
E
ω∫

T
ω
→ 0

when γ → 0. In fact, the proof of Lemma 2.2 (see [17]) shows that it is sufficient to
require F (γ) ∈ (0, 1). However, in this modified form condition (2.13) is equivalent
to the property A∞ in the theory of weighted inequalities for singular integrals (see
[18], p.196). It comprises the properties Ap, 1 ≤ p < ∞, which give necessary and
sufficient conditions in order that weighted Lp-inequalities hold for a general class
of singular integrals.
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With the help of Lemma 2.2 we obtain the equivalence of the weighted norms
‖ · ‖j,ω and ‖ · ‖ω for v ∈ Vj for all levels j.

Theorem 2.4. Under the condition (2.13) of Lemma 2.2 there holds for v ∈ Vj

(2.16) (1 + 2 γ−1 C0)−1 ‖v‖j,ω,T ≤ ‖v‖ω,T ≤ (1 +

√
3

2
C0) ‖v‖j,ω,T .

with the constant C0 only depending on the initial triangulation T0.

Proof. See [17]. �

This lemma is essential for our further considerations, since not all steps of the
proof can be completed for both norms directly. In fact, some intermediate results
can only be obtained directly either for the ‖ · ‖ω norm or the ‖ · ‖j,ω norms. Hence,
the complete proof of the overall norm equivalencies makes significant use of this
lemma.

Remark 2.5. The proof of Theorem 2.4 makes use of the fact that we are in two
space dimension and employ linear finite elements. The extension of the result to
higher dimensions and multi-linear elements is not obvious, however, we believe
that a similar estimate holds true.

Finally, let us introduce the short hand notation A � B for two-sided inequalities
cA ≤ B ≤ CA, and A � B, A � B for one-sided inequalities A ≥ CB, A ≤ cB
with generic constants c and C which do not depend on the arguments of A and B.

3. Robust Norm Equivalencies

The aim of this section is to establish two robust norm equivalencies which in
turn can be used to derive robust multilevel preconditioners for our model problem
(2.12). Namely, we are interested in the equivalence

a(u, u) �
J∑

j=1

22j‖uj‖2j,ω + a(u0, u0)

and the equivalence

a(u, u) �
J∑

j=1

22j‖uj‖2ω + a(u0, u0)

where the decomposition uj := Pju− Pj−1u is based on appropriate bounded and
surjective projection operators Pj : VJ → Vj .
3.1. Upper Bounds for the Bilinear form. We begin with the derivation of
an upper bound for the bilinearform a(u, u). A straightforward computation us-
ing (2.10) shows that we have the following Bernstein-type inequality relating the
bilinear form (2.5) to the weighted norms from (2.9).

Lemma 3.1. For uniformly refined triangulations Tj there holds the estimate

(3.1) a(v, v) ≤ 3

2
C2

0 22j ‖v‖2j,ω
for all v ∈ Vj, if the bilinear form satisfies the local ellipticity condition stated in
Assumption 1.

Proof. See [17], where the result is obtained for the more general weight ω. �
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With the help of this lemma and a strengthened Cauchy–Schwarz inequality we
can derive the following sub-optimal but robust upper bound, see [17, 23] for details.

Theorem 3.2. Let the bilinear form a(·, ·) fulfill Assumption 1 and consider a
sequence of uniformly refined triangulations Tj and the respective sequence of nested
spaces Vj of linear finite elements. Then, the estimate

(3.2) a(u, u) ≤ 3 C2
0 J

J∑

j=1

22j ‖(Pj − Pj−1)u‖2j,ω + 2 a(u0, u0)

holds true for any choice of bounded and surjective projections Pj : V = VJ → Vj.

Now we will improve this sub-optimal upper estimate of a(u, u). Our improve-
ment gives a robust and optimal estimate, i.e., it does not involve the factor J . It
is achieved in three steps: First, we introduce weighted projection operators Qω

j

based on 〈·, ·〉ω. Furthermore, we need to consider a second sequence of projection
operators Qaj based on auxiliary bilinear forms aj(·, ·) which are defined in a level-
dependent fashion. With the help of the two projections Qω

j and Qaj , we establish
a hybrid Bernstein-type inequality involving both projections. Finally, we derive
a robust and optimal upper bound of a(·, ·) using only the projections Qω

j via a
Hardy inequality in Theorem 3.5.

To find appropriate projections for the bilinear form a(u, v), we introduce the
weighted projections Qωj : VJ → Vj by the relation

(3.3) 〈Qωj u, v〉ω = 〈u, v〉ω
for all u ∈ VJ and v ∈ Vj . Furthermore, we need to consider auxiliary projection
operators Qaj : VJ → Vj defined by

(3.4) aj(Q
a
ju, v) = aj(u, v)

for all u ∈ VJ and v ∈ Vj to obtain an optimal estimate of a(u, u) by the Qωj . Here,
the bilinear forms aj(u, v) are defined in a level-dependent way, i.e.,

(3.5) aj(u, v) :=
∑

T∈Tj
ωT

∫

T

(∇u,∇v)

using the average weights (2.8) for all u ∈ VJ and v ∈ Vj . Due to the definition of
ωT and the use of linear finite elements, it follows that

ak(u, v) =
∑

U∈Tk
ωU

∫

U

(∇u,∇v) =
∑

T∈Tj

∑

U∈Tk,U⊂T
µ(U) ωU (∇u,∇v)|T

=
∑

T∈Tj
ωT

∫

T

(∇u,∇v) = aj(u, v)

for u, v ∈ Vj with j ≤ k. This holds true, since ∇u is constant on any T ∈ Tk with
k ≥ j for u ∈ Vj . With the definition

(3.6) vj = vj(u) := Qaju−Qaj−1u,

we obtain

a(vj , vk) = ak(vj , Q
a
ku−Qak−1u) = ak(vj , u)− ak(vj , u) = 0
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for j < k, and since u = QaJu =
∑J
j=0 vj , where v0 := Qa0u, we get the equivalence

(3.7) a(u, u) =
J∑

j,k=0

a(vj , vk) =
J∑

j=0

a(vj , vj) =
J∑

j=0

‖vj‖2a

for any u ∈ VJ . Furthermore, we introduce the sequence

(3.8) uk = uk(u) := Qωku−Qωk−1u

based on the projections Qωk .
With the definitions (3.6) and (3.8) we can now obtain an upper bound for ‖vj‖a

in terms of ‖uk‖k,ω for k ≥ j; i.e., we establish a hybrid Bernstein-type estimate of
a(vj , vj) in terms of ‖vj‖a‖uk‖k,ω for k ≥ j.

Lemma 3.3. Let vj ∈ Vj and uk ∈ Vk for k ≥ j be defined as in (3.6) and (3.8),
respectively. Then there holds the estimate

a(vj , vj) ≤ 6 C2‖vj‖a
J∑

k=j

22j−k‖uk‖k,ω,

‖vj‖a ≤ 6 C2

J∑

k=j

22j−k‖uk‖k,ω,

with a constant

(3.9) C2 := max
T̂∈T0

diam(T̂ )√
µ(T̂ )

which depends on the initial triangulation T0 only.

Proof. Since vj = Qaju − Qaj−1u, we have a(vj , w) = 0 for all w ∈ Vj−1. Hence,
with the choice w = Qωj−1u we obtain

a(vj , vj) = aj(vj , vj) = aj(vj , u) = aj(vj , u−Qωj−1u)

=
∑

T∈Tj
ωT

∫

T

(∇vj ,∇(u−Qωj−1u)).

Using the identity u − Qωj−1u =
∑J
k=j Q

ω
ku − Qωk−1u =

∑J
k=j uk we establish the

equivalence

a(vj , vj) =
∑

T∈Tj
ωT

J∑

k=j

∫

T

(∇vj ,∇uk)

and integration by parts for each T ∈ Tj yields

a(vj , vj) =
∑

T∈Tj

J∑

k=j

ωT

∫

∂T

uk(∇vj , n∂T ).



ROBUST NORM EQUIVALENCIES FOR DIFFUSION PROBLEMS 9

Now consider a fixed T ∈ Tj and U ∈ Tk with U ⊂ T . Then we obtain

|ωT
∫

∂T

uk(∇vj , n∂T )| = |µ(T )−1
∑

U∈Tk
U⊂T

µ(U)ωU

∫

∂U

uk(∇vj , n∂U )|

≤ µ(T )−1
∑

U∈Tk
U⊂T

µ(U)
√
ωU

∫

∂U

|uk| |∇vj |∞,T
√
ωU

≤ 6
∑

U∈Tk
U⊂T

√
ωU

∫

U

|uk|2
diam(U)

µ(T )

√
ωU

∫

U

|∇vj |2.

Here, in the last line, the inequality∫

∂U

|uk| ≤ diam(U)[w1 + w2 + w3] ≤ 6 diam(U) µ(U)−
1
2

(∫

U

|uk|2
) 1

2

was used which results from the well-known formula∫

U

|v|2 =
µ(U)

12
[w2

1 + w2
2 + w2

3 + (w1 + w2 + w3)2]

for linear functions v on U with vertices w1, w2, and w3. Since we consider uniformly
refined triangulations in two dimensions, we have µ(T ) = 22(k−j) µ(U) and therefore
diam(U) ≤ C2 22(j−k) 2k µ(T ) with C2 given in (3.9) depending on the initial
triangulation T0 only. Hence, we end up with the assertion

a(vj , vj) ≤ 6 C2

J∑

k=j

2−k
∑

T∈Tj
‖uk‖k,ω,T 22j ‖∇vj‖j,ω,T

≤ 6 C2

J∑

k=j

22j−k‖uk‖k,ω ‖vj‖a.

�

Note that this lemma is a strengthened version of the following Bernstein-type
inequality of broken order for certain weighted trace norms

‖u‖ 1
2 ,j,ω

:=
(∑

T∈Tj
ωT

∫

∂T

|u|2
) 1

2

which employs only a single projection.

Lemma 3.4. For elements v ∈ Vj there holds

‖v‖a ≤
√

3C2C1 2
j
2 ‖v‖ 1

2 ,j,ω
,

where the constants C1 := maxT∈T0
diam(T ), and C2 from (3.9) depend on the

initial triangulation T0 only.

Proof. Keeping in mind that ∇v is constant on T ∈ Tj , integration by parts yields

a(v, v) =
∑

T∈Tj
ωT

∫

T

(∇v,∇v) =
∑

T∈Tj
ωT

∫

∂T

v(∇v, n∂T )

≤
(∑

T∈Tj
ωT

∫

∂T

|v|2
) 1

2
(∑

T∈Tj
ωT

∫

∂T

‖∇v‖2
) 1

2

.



10 MICHAEL GRIEBEL, KARL SCHERER, AND MARC ALEXANDER SCHWEITZER

Here, the first sum represents the semi-norm ||v|| 1
2 ,ω,j

, whereas each term in the

second sum can be bounded using the local Bernstein-type inequality
∫

∂T

‖∇v‖2 ≤ 3 diam(T ) ‖∇v‖2 ≤ 3C2 µ(T )
1
2 ‖∇v‖2 ≤ 3C2C1 2j

∫

T

‖∇v‖2.

Hence, after multiplication with ωT and summation with respect to T ∈ Tj , we
obtain the overall estimate

a(v, v) =
∑

T∈Tj
ωT

∫

T

(∇v,∇v) ≤
√

3C2C1 2
j
2 ‖v‖ 1

2 ,j,ω

√
a(v, v)

and the assertion follows after division by
√
a(v, v). �

Finally, we are in the position to prove the main result of this section, a robust
and optimal upper bound for the bilinear form a(u, u).

Theorem 3.5. Let the bilinear form a(·, ·) fulfill Assumption 1 and consider a
sequence of uniformly refined triangulations Tj and the respective sequence of nested
spaces Vj of linear finite elements. Then, there holds the upper bound

(3.10) a(u, u) ≤ 32

3
C2

J∑

j=0

22j ‖uj‖2j,ω

for uk from (3.8) and the norm ‖ · ‖j,ω from (2.9). The constant C2 given in (3.9)
depends only on the initial triangulation T0.

Proof. With (3.7) and Lemma 3.3 we obtain

a(u, u) =

J∑

j=0

‖vj‖2a ≤ 6 C2

J∑

k=0

2−k‖uk‖k,ω
k∑

j=0

22j ‖vj‖a

≤
( J∑

k=0

22k‖uk‖2k,ω
) 1

2
( J∑

k=0

16−k
( k∑

j=0

22j ‖vj‖a
)2) 1

2

(3.11)

after interchanging the sums. Using the Hardy inequality

(3.12)
( J∑

k=0

bk s2
k

) 1
2 ≤ 1

1−
√
b

( J∑

j=0

bj a2
j

) 1
2

,

where

sk :=

k∑

j=0

aj , s−1 := 0, and ck :=

J∑

l=k

bl, cJ+1 := 0,

we obtain
( J∑

k=0

16−k
( k∑

j=0

22j ‖vj‖a
)2) 1

2 ≤ 4

3

( J∑

j=0

‖vj‖2j,ω
) 1

2

.

with the choice aj := 22j‖vj‖j,ω and b = 1/16. Plugging this estimate into (3.11),
we establish the asserted optimal and robust upper bound (3.10). �

We obtain the respective upper bound for the weighted norm ‖ · ‖ω on the finest
level using Theorem 2.4.
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Theorem 3.6. Let the bilinear form a(·, ·) fulfill Assumption 1 and consider a
sequence of uniformly refined triangulations Tj and the respective sequence of nested
spaces Vj of linear finite elements. Then, there holds the upper bound

(3.13) a(u, u) ≤
(

1 + 2 γ−1 C0

)2 32

3
C2

J∑

j=0

22j ‖uj‖2ω

for uj given in (3.8) and the norm ‖ · ‖ω from (2.11).

3.2. Lower Bounds for the Bilinear form. The next step in our search for
robust norm equivalencies is the derivation of optimal and robust lower bounds for
the bilinear form a(·, ·) in terms of the norms ‖ · ‖j,ω and ‖ · ‖ω; i.e., we are looking
for a Jackson-type inequality for ‖uj‖j,ω and for ‖uj‖ω
J∑

j=1

22j‖uj‖2j,ω + a(u0, u0) � a(u, u) and
J∑

j=1

22j‖uj‖2ω + a(u0, u0) � a(u, u).

Unlike in the Bernstein case, the constants will involve some information about the
coefficient ω, yet in a very weak norm. The main reason for this slight dependence
is due to the problem that we cannot obtain an optimal lower bound directly for
the ‖ · ‖j,ω norms. Here, we rather need to work with the ‖ · ‖ω norm to obtain an
optimal estimate. Then, we can exploit the result of Theorem 2.4 to get a similar
bound for ‖ · ‖j,ω. Yet, it is this detour in our proof, which forces us to introduce
some information about the weight ω in the estimate.

In a first step, we bound the uj-decomposition in terms of the vj-decomposition
with respect to the ‖ · ‖ω norm in the following lemma. The respective estimate for
the ‖ · ‖j,ω norms then follows with Theorem 2.4.

Lemma 3.7. The decompositions defined in (3.6) and (3.8) allow for the estimates

J∑

j=0

22j‖uj‖2ω ≤ 4

J∑

j=0

22j‖vj‖2ω

and
J∑

j=0

22j‖uj‖2j,ω ≤ 4(1 + 2γ−1C0)2(1 +

√
3

2
C0)2

J∑

j=0

22j‖vj‖2j,ω.

Proof. Observe that due to (3.3) we have

‖uj‖2ω = ‖Qωj u−Qωj−1u‖2ω = 〈Qωj u−Qωj−1u,Q
ω
j u〉ω

= 〈Qωj u−Qωj−1u, u〉ω = 〈Qωj u−Qωj−1u, u−Qaj−1u〉ω
for all j so that we obtain

J∑

j=0

22j‖uj‖2ω ≤
J∑

j=0

22j‖u−Qaj−1u‖2ω ≤
J∑

j=0

22j
J∑

k=j

‖vk‖2ω,

where vj is defined in (3.6) and uj is defined in (3.8). Then using Hardy’s inequality
again, we obtain

J∑

j=0

22j‖uj‖2ω ≤ 4
J∑

j=0

22j‖vj‖2ω.
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Now we pass back from the ‖·‖ω norm to the ‖·‖j,ω norms with the help of Theorem
2.4 and end up with the estimates

(3.14)
J∑

j=0

22j‖uj‖2ω ≤ 4(1 +

√
3

2
C0)2

J∑

j=0

22j‖vj‖2j,ω,

and
J∑

j=0

22j‖uj‖2j,ω ≤ 4(1 + 2γ−1C0)2(1 +

√
3

2
C0)2

J∑

j=0

22j‖vj‖2j,ω.

�
Remark 3.8. Note that it is necessary for the proof to switch to the ‖ · ‖ω norm,
since the terms in the Hardy inequality must employ the same norm on all levels
j.

Now, we need to deal with the projection operators Qaj and the respective se-
quence vj only. Here, we can prove a local estimate for the ‖ · ‖j,ω norms using
a modified version of the duality technique due to Aubin and Nitsche, see also
[2], and a certain regularity result for the Neumann problem. However, we are
able to obtain this local estimate on a particular level j only under the additional
assumption

(3.15) 1 > C max
S′,S∈Tj
S′,S∈U

√
ωS
ωS′

diam(U)

where C denotes an absolute constant, and U = UT refers to the union of the
supports of all nodal basis functions ψl,j−1 which intersect the considered element
T ∈ Tj−1 (compare (3.16)). Note that this condition essentially intertwines the
necessary refinement level j with the “smoothness” of the coefficient function ω.

Theorem 3.9. Consider the neighborhood

(3.16) U := UT =
⋃

T̂∈Tj−1

T̂⊂supp(ψl,j−1)

supp(ψl,j−1)∩T 6=∅

T̂

of T ∈ Tj−1 and let condition (3.15) be fulfilled. Then there holds the estimate

(3.17) ‖vj‖j,ω,U ≤ C
(

max
S′,S∈Tj
S′,S⊂U

√
ωS
ωS′

)
diam(U) ‖∇vj‖j,ω,U .

Essential for the proof of (3.17) is the regularity result stated in the following
lemma.

Lemma 3.10. Consider the domain Ũ with a smooth boundary ∂Ũ such that Ũ ⊃
U , all vertices ξ ∈ ∂U are also ξ ∈ ∂Ũ , and diam(Ũ) < 2 diam(U) with U defined
in (3.16). Let ṽj denote the continuous and piecewise linear extension of vj from

U to Ũ which fulfills

(3.18) ‖ṽj‖0,2,Ũ ≤ 2‖vj‖0,2,U .
Then, the solution ϕU to the inhomogeneous Neumann problem

−∆ϕU = ṽj in Ũ ,
∂ϕU
∂ν

= g on ∂Ũ
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is in H2(U) and allows for the estimate

(3.19) |ϕU |2,2,U ≤ C ‖vj‖0,2,U .
Here, the boundary data for the Neumann problem are g := αh with a piecewise
linear h ∈ L2(∂Ũ) such that h ≥ 0 on the boundary ∂Ũ and h(ξ) = 0 for all vertices

ξ ∈ ∂U ∩ ∂Ũ . Furthermore, α ∈ R is such that the compatibility condition

(3.20)

∫

Ũ

ṽj = −
∫

∂Ũ

g

is fulfilled.

Proof. Consider the scaled domain Ω̂ := RŨ and the spaces

V (Ω̂) := {ϕ ∈W 2
2 (Ω̂) :

∫

Ω̂

ϕ dx = 0} and

W (Ω̂) := {〈f, g〉 ∈ L2(Ω̂)×W 1/2
2 (∂Ω̂) :

∫

Ω̂

f dx+

∫

∂Ω̂

g ds = 0}

and the mapping T : ϕ ∈ V 7→ T ϕ ∈W defined by

T ϕ :=

{
f = ∆ϕ ∈ L2(Ω̂),

g = ∂ϕ/∂ν ∈W 1/2
2 (∂Ω̂).

This mapping is linear and continuous; i.e., there exists a constant MΩ̂ such that

‖T ϕ‖W ≡ ‖f‖0,2,Ω̂ + ‖g‖1/2,2,∂Ω̂ ≤ MΩ̂‖ϕ‖2,2,Ω̂
holds. Furthermore, T is also bijective from V onto W , see [21], p. 336-339. Hence
by the open mapping theorem its inverse T−1 : 〈f, g〉 7→ ϕ is also continuous and
satisfies

‖ϕ‖V ≡ ‖ϕ‖2,2,Ω̂ ≤ LΩ̂

(
‖∆ϕ‖0,2,Ω̂ + ‖∇ϕ/∂ν‖1/2,2,∂Ω̂

)
, ϕ ∈W (Ω̂),

with a constant LΩ̂. However, it is still necessary to determine the dependence

of LΩ̂ on the size of Ω̂ = RŨ , i.e., on the scaling R, since by definition (3.16)
U = UT depends on the level j. To this end, let us consider the scaling R such that
R−1 := diam(Ũ) ≤ 2 diam(U) so that

(3.21) ‖ψ‖2,2,Ω̂ ≤ C∗
(
‖∆ψ‖0,2,Ω̂ + ‖∂ψ/∂ν‖1/2,2,∂Ω̂

)
, ψ ∈W (Ω̂),

with C∗ depending only on the shape of U but not on the size. Hence, C∗ depends
only on the initial triangulation T0. The connection between ϕ and ψ is given by
ψ(t) = ϕ(t/R) := ϕ(x). Therefore, there hold the equivalencies

‖ψ‖0,2,Ω̂ = R ‖ϕ‖0,2,Ũ , |ψ|1,2,Ω̂ = |ϕ|1,2,Ũ , and |ψ|2,2,Ω̂ = R−1 |ϕ|2,2,Ũ .
Using the explicit form of the trace norm ‖ · ‖1/2,2,∂Ω̂ given by (see e.g. [21], p. 94)

‖ψ‖2
1/2,2,∂Ω̂

:=
∑

i

‖ψi‖20,2,∂Ω̂
+
∑

i

|ψi|21/2,2,∂Ω̂

|ψi|21/2,2,∂Ω̂
:=

∫

∂Ω̂

∫

∂Ω̂

|ψi(t)− ψi(s)|2
|t− s|2 dσ dσ,(3.22)

where ψ =
∑
i ψi is a partition of ψ with respect to the representation by charts of

the curve ∂Ω̂ with curve element dσ, we conclude

‖∂ψ/∂ν‖1/2,2,∂Ω̂ = R−1/2 ‖∂ϕ/∂ν‖0,2,∂Ũ +R−1 |∂ϕ/∂ν|1/2,2,∂Ũ .
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Consequently, by (3.21) we obtain the estimate

(3.23)
|ϕU |1,2,Ũ + diam(U) |ϕU |2,2,Ũ ≤ C∗ diam(U)

(
‖ṽj‖0,2,Ũ+

|g|1/2,2,∂Ũ +
‖g‖0,2,∂Ũ√

diam(U)

)

for the data of the Neumann problem above, i.e., ϕ = ϕU ∈W 2
2 (Ũ),−∆ϕU = ṽj in

Ũ and ∂ϕ/∂ν = g on ∂Ũ . Now we use the fact that g is piecewise linear on ∂Ũ by
construction. Therefore,

|g|1/2,2,∂Ũ ≤ C(diam(U))−1 ‖g‖0,1,∂Ũ(3.24)

‖g‖0,2,∂Ũ ≤ C (diam(U))−1/2 ‖g‖0,1,∂Ũ(3.25)

holds with a constant C independent of Ũ and g. For completeness, we give the
proof of the inequalities (3.24) and (3.25) here. To this end, let ∂Ũi be one of the

two pieces of the segment of ∂Ũ between two vertices of Tj−1. Here g is a linear
function. Then by (3.22) with ψi = g

|g|1/2,2,∂Ũi =

(∫

∂Ũi

∫

∂Ũi

|g(t)− g(s)|2
|t− s|2 dσ dσ

)1/2

≤ C diam(∂Ũi) |∇g|∞,∂Ũi

follows. Furthermore, we can replace g by g̃ := g − ḡ where ḡ := min∂Ũi |g|. Then

g̃ has a zero on ∂Ũi and we have the equivalence
∫

∂Ũi

|g̃| dσ � (diam(∂Ũi))
2 |∇g|∞,∂Ũi ,

with constants independent of Ũi and g. Since
∫

∂Ũi

|g̃| dσ ≤
∫

∂Ũi

|g| dσ + C diam(∂Ũi) ḡ ≤ C

∫

∂Ui

|g| dσ = C‖g‖0,1,∂Ũi ,

the comparison with the previous inequality yields (3.24). The second inequality
(3.25) follows from
∫

∂Ũi

|g|2 dσ ≤ C
(∫

∂Ũi

|g̃|2 dσ +

∫

∂Ũi

|ḡ|2 dσ
)

≤ C (diam(∂Ũi))
3 |∇g|2∞,∂Ũi + C(diam(∂Ũi))

−1
(∫

∂Ũi

|g| dσ
)2

≤ C(diam(∂Ũi))
−1
(∫

∂Ũi

|g| dσ
)2

.

This completes the proof of (3.24) and (3.25), since we can choose Ũ such that

diam(Ũ) � diam(∂Ũ).
Inserting (3.24) and (3.25) into inequality (3.23) and taking (3.18) and (3.20)

into account, the desired inequality (3.19) directly follows:

|ϕU |2,2,U ≤ C
(
‖ṽj‖0,2,Ũ + (diam(U))−1‖g‖0,1,∂Ũ

)

= C
(
‖ṽj‖0,2,Ũ + (diam(U))−1‖ṽj‖0,1,Ũ

)
≤ C ‖vj‖0,2,U .

�

With this lemma, we are in the position to prove Theorem 3.9.
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Proof (Theorem 3.9). At first we note that we can assume vj(x) ≥ 0 in U since
otherwise vj changes sign in U and we can obtain the desired inequality (3.17)
directly. Therefore we need to consider in the following only U which do not
intersect boundary elements T ∈ Tj−1.

With the help of (2.9) and Lemma 3.10 we obtain, after integration by parts on
each S ⊂ U ,
(3.26)

‖vj‖2j,ω,U = −
∫

U

vj ∆ϕU =
∑

S⊂U
ωS

∫

S

(∇vj ,∇ϕU ) −
∑

S⊂U
ωS

∫

∂S

vj(∇ϕU , n∂S).

Concerning the first sum, observe that by definition of vj , see (3.6),

0 = a(vj , w) =
∑

S∈Tj
ωS

∫

S

(∇vj ,∇w)

holds for all w ∈ Vj−1. Now, we choose w to be the function in Vj−1 which
interpolates ϕU at the nodes in T and has support in U = UT . Then, we can
estimate the first sum via the Bramble–Hilbert Lemma on U

I1(U) :=
∣∣∣
∑

S⊂U
ωS

∫

S

(∇ϕU ,∇vj)
∣∣∣ =

∣∣∣
∑

S⊂U
ωS

∫

S

(∇(ϕU − w),∇vj)
∣∣∣

≤
(∑

S⊂U
ωS

∫

S

|∇(ϕU − w)|2
)1/2

‖∇vj‖j,ω,U

≤ C diam(U)|ϕU |2,2,U
(

max
S⊂U
√
ωS

)
‖∇vj‖j,ω,U ,(3.27)

where the constant C depends only on the shape of U , i.e., by assumption only on
the initial triangulation T0.

The second sum in (3.26) can be estimated by
∣∣∣
∑

S⊂U
ωS

∫

∂S

vj(∇ϕU , n∂S)
∣∣∣ ≤

∑

S⊂U
ωS‖vj‖∞,∂S

∫

∂S

|∇ϕU | := I2(U).

Note that due to the choice of g in Lemma 3.10, the normal derivative ∂ϕU/∂νξ = g
vanishes at each vertex ξ ∈ ∂U . And since any normal vector nK of an arbitrary
edge K ⊂ U can be represented as a linear combination of three such normal vectors
at ξi, i = 1, 2, 3, we can bound the normal derivative at x ∈ K by

|(∇ϕU , nK)(x)| =
∣∣∣

3∑

i=1

βi
∂ϕU
∂νξi

(x)
∣∣∣

=
∣∣∣

3∑

i=1

βi

(∂ϕU
∂νξi

(x)− ∂ϕU
∂νξi

(ξi)
)∣∣∣

≤
3∑

i=1

|βi|
∫ 1

0

∣∣∣(∇∂ϕU
∂ν

)(ξi + t(x− ξi), x− ξi)dt
∣∣∣

with
∑3
i=1 |βi|2 = 1. Hence after integration over K we obtain

∫

K

|(∇ϕU , nK)(x)|dx ≤ C diam(U)
∑

|α|=2

∫

U

|DαϕU |dx ≤ C (diam(U))2|ϕU |2,2,U .
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Altogether, we can now establish the estimate

I2(U) ≤ C
∑

S⊂U
ωS‖vj‖∞,∂S (diam(U))2|ϕU |2,2,U

≤ C ‖vj‖j,ω,U
(

max
S⊂U
√
ωS

)
diam(U) |ϕU |2,2,U ,(3.28)

due to
∑
S⊂U
√
ωS diam(U) ‖vj‖∞,∂S ≤ C ‖vj‖j,ω,U . Now the assertion (3.17)

follows easily with the aid of (3.19): Insert (3.19) into (3.27) and (3.28) and obtain

‖vj‖2j,ω,U ≤ I1(U) + I2(U)

≤ C diam(U)
(
‖vj‖j,ω,U + ‖∇vj‖j,ω,U

)
(max
S⊂U
√
ωS) ‖vj‖0,2,U .

With the estimate (maxS⊂U
√
ωS) ‖vj‖0,2,U ≤

(
maxS′,S⊂U

√
ωS/ωS′

)
‖vj‖j,ω,U ,

this yields the inequality

‖vj‖j,ω,U ≤ C diam(U)
(

max
S′,S⊂U

√
ωS
ωS′

)(
‖vj‖j,ω,U + ‖∇vj‖j,ω,U

)

after division by ‖vj‖j,ω,U . Hence, we end up with

(
1−C diam(U)

(
max
S′,S⊂U

√
ωS
ωS′

))
‖vj‖j,ω,U ≤ C diam(U)

(
max
S′,S⊂U

√
ωS
ωS′

)
‖∇vj‖j,ω,U .

Thus, the assertion follows with assumption (3.15)

‖vj‖j,ω,U ≤
C diam(U)

(
maxS′,S⊂U

√
ωS
ωS′

)

1− C diam(U)
(

maxS′,S⊂U
√

ωS
ωS′

)‖∇vj‖j,ω,U .

�

A direct consequence of Theorem 3.9 is the following lower bound.

Theorem 3.11. Let the bilinear form a(·, ·) fulfill Assumption 1 and consider a
sequence of uniformly refined triangulations Tj and the respective sequence of nested
spaces Vj of linear finite elements. Consider the sets U = UT and S, S′ ∈ Tj defined
in Theorem 3.9 for every T ∈ Tj−1. Now define

(3.29) Cj,ω := max
T∈Tj−1

max
S′,S∈Tj
S′,S∈UT

ωS
ωS′

and CJ,max,ω := max
0≤j≤J

Cj,ω

and let ω be such that we can find a minimal refinement level j0 < J so that

(3.30) 2j > C
√
CJ,max,ω

holds for all j ≥ j0 and Theorem 3.9 is applicable for all j ≥ j0. Then there holds
the estimate

(3.31)
J∑

j=j0

22j‖uj‖2ω ≤ 4 (1 +

√
3

2
C0)2C CJ,max,ω a(u, u)

for uj defined in (3.8).
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Proof. Using Lemma 3.7, compare (3.14), we establish the estimate

J∑

j=j0

22j‖uj‖2ω ≤ 4 (1 +

√
3

2
C0)2

J∑

j=j0

22j‖vj‖2j,ω

≤ 4 (1 +

√
3

2
C0)2 C CJ,max,ω

J∑

j=j0

a(vj , vj)

after squaring (3.17) and summation with respect to UT , i.e., over all T ∈ Tj−1,
where the constant C0 depends on the shape of the triangles of the initial triangu-
lation only. Then, with (3.7) the assertion (3.31) follows. �

Note that this estimate employs the minimal conditions on the coefficient func-
tion ω in the sense, that assuming a fixed a refinement level J we may find such a j0

for a rather large set of functions ω. However, from a more practical point of view
it is rather important to ensure the existence of j0 independent of J involving only
information obtainable from ω directly. Hence, let us now focus on the formulation
of conditions on the coefficient function ω such that the results of Theorem 3.11
still hold, but for j0 independent of J .

In essence, we are looking for coefficient functions ω such that

(3.32) Cj,ω = max
T∈Tj−1

max
S′,S∈Tj
S′,S∈UT

ωS
ωS′

< diam2(UT ),

starting from a certain level j0. Hence, if we consider a non-negative function ω
such that for all x and y with ‖x− y‖ < 2j0 and ω(x) > ω(y) the estimate

ω(x) < 22j0 w(y)

holds, then condition (3.32) is fulfilled for all j ≥ j0. A trivial sufficient condition
is of course

Cj,ω ≤ Cω <∞ for all j.

Also, it is obvious that continuous weights ω are admissible. Another simple con-
dition which suffices is

Ej,ω := max
T∈Tj

max
x,y∈T

∥∥∥ω(x)− ω(y)

ω(y)

∥∥∥→ 0 for j →∞,

since

ωS
ωS′

=

∫
S
ω∫

S′ ω

µ(S′)
µ(S)

=

∫
S

ω
ω(y)∫

S′
ω

ω(y)

µ(S′)
µ(S)

≤ (1 + Ej,ω)
∫
S

1

(1− Ej,ω)
∫
S′ 1

µ(S′)
µ(S)

=
(1 + Ej,ω)

(1− Ej,ω)
.

Furthermore, any piecewise constant coefficient function allows for the determina-
tion of j0 independent of the number of jumps, their frequency and their location.
Note that the estimate does not rely on any specific knowledge about the “resolu-
tion” of the jumps on a particular level or grid. Only the height of the maximal
jump is relevant for j0. Let ε−1 denote the height of the maximal jump, then
choosing j0 such that ln(ε−1/2) < j0 is sufficient.

Let us now consider ω ∈ A∞, since we already required ω to be in the Muck-
enhoupt class in Lemma 2.2 to establish the norm equivalence between ‖ · ‖ω and
‖ · ‖j,ω in Theorem 2.4.
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A function ω is in A∞(Ω) if and only if

1

µ(B)

∫

B

ωdx exp
( 1

µ(B)

∫

B

ln(
1

ω
)dx
)
≤ A <∞

holds for all balls B ⊂ Ω. Another characterization is given by: A weight ω is in
A∞ if and only if for all balls B and all F ⊂ B with µ(F ) ≥ αµ(B) there exists a
constant β ∈ (0, 1) such that

(3.33)

∫

F

ω ≥ β
∫

B

ω

holds. Using this property, we obtain that any such weight fulfills our limited
growth condition automatically. Consider S, S ′ ⊂ U , since we employ uniformly
refined triangulations, we have µ(S ′) ≈ µ(S) ≥ µ(U)/16. Now, let B denote the
smallest ball which completely contains U , i.e. U ⊂ B, then the estimate

µ(S′) ≈ µ(S) ≥ C∞ µ(B)

with C∞ depends on the initial triangulation T0 only. Hence, with the characteri-
zation (3.33) given above we obtain

∫

S′
ω ≥ β

∫

B

ω

and therefore

(3.34)
ωS
ωS′
≤
∫
B
ω

β
∫
B
ω

µ(S′)
µ(S)

≤ C2

β
:= C∞,ω.

Therefore, all quotients ωS
ωS′

are bounded independent of the level j by C∞,ω for

ω ∈ A∞ and the results of Theorem 3.9 hold.

Remark 3.12. Note that there is a close connection between the Muckenhoupt class
A∞ with the space BMO via the implications

ω ∈ Ap ⊂ A∞ ⇒ ln(ω) ∈ BMO

and
f ∈ BMO ⇒ f = c lnω with ω ∈ A∞.

Let us summarize our results in the following theorem.

Theorem 3.13. Let the bilinear form a(·, ·) fulfill Assumption 1 and consider a
sequence of uniformly refined triangulations Tj and the respective sequence of nested
spaces Vj of linear finite elements. Furthermore, let us consider ω ∈ A∞. Then
Cj,ω < C∞,ω holds for all j. Hence, there exists a minimal refinement level j0
independent of J such that the limited growth condition

(3.35) 2j > C
√
C∞,ω

is fulfilled for all j ≥ j0. Therefore, the equivalencies

(3.36) a(u, u) ≤
j0−1∑

j=0

a(vj , vj) + C3

J∑

j=j0

22j‖uj‖2j,ω ≤ C4 a(u, u)

and

(3.37) a(u, u) ≤
j0−1∑

j=0

a(vj , vj) + C5

J∑

j=j0

22j‖uj‖2ω ≤ C6a(u, u)
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hold with the constants

(3.38) C3 :=
32

3
C2, C4 := C3 4 (1 + 2γ−1C0)2(1 +

√
3

2
C0)2C C∞,ω

and

(3.39) C5 := C3 (1 + sγ−1C0)2, C6 := C5 C C∞,ω,
where C0, C1, and C2 depend on the initial triangulation T0 only and γ is a constant
determined by the A∞ property of the coefficient function ω.

Let us now consider the remainder terms for the coarser levels j = 0, . . . , j0 −
1. Since j0 is independent of J it is sufficient to establish an equivalence which
explicitly involves j0 (compare Theorem 3.2). Hence, we can employ a similar
approach as in [23]. To this end, let us introduce the averaging operators Mj

similar to [23]. However, our averaging operators Mj are based on the weighted
scalar product 〈·, ·〉ω, namely we use

(3.40) Mω
j u :=

nj∑

i=1

〈u, ψji 〉ω
〈1, ψji 〉ω

ψji

where ψji denotes the piecewise linear finite element basis function at vertex i on
level j and nj = #Nj denotes the number of vertices in the triangulation Tj .
Similarly as in the proof of Lemma 3.7 we obtain

(3.41) ||uj ||ω ≤ ||u−Mω
j−1v||ω.

Omitting the level superscript j for the basis functions, we have on each triangle
T ∈ Tj the equivalence

Mω
j u
∣∣∣
T

=

3∑

ν=1

〈u, ψi(T,ν)〉ω
〈1, ψi(T,ν)〉ω

ψi(T,ν)

where i(T, ν) indicates the respective vertex of T . For the ease of notation we use
ψν for ψi(T,ν) in the following. With this local formulation we directly obtain the
estimate

||Mω
j u||2ω,T ≤

( 3∑

ν=1

|〈u, ψν〉ω|
〈1, ψν〉ω

||ψν ||ω,T
)2

≤ 3
3∑

ν=1

|〈u, ψν〉ω|2
||ψν ||2ω,T
〈1, ψν〉2ω

.

With (ψ(x))2 ≤ ψ(x) for all basis functions ψ we obtain

||ψν ||2ω,T
〈1, ψν〉2ω

=

∫
T
ω(x)|ψν(x)|2 dx

(∫
supp(ψν)

ω(x)|ψν(x)| dx
)2 ≤

(∫

supp(ψν)

ω(x)|ψν(x)| dx
)−1

.

Hence, we have the local boundedness of the averaging operators Mω
j with the

estimate

|〈u, ψν〉ω|2 =
∣∣∣
∫

supp(ψν)

u(x)ω(x)ψν(x) dx
∣∣∣
2

=
∣∣∣
∫

supp(ψν)

(
u(x)

√
ω(x)ψν(x)

)√
ω(x)ψν(x) dx

∣∣∣
2

≤
∫

supp(ψν)

ω(x)ψν(x) dx

∫

supp(ψν)

|u(x)|2ω(x)ψν(x) dx.



20 MICHAEL GRIEBEL, KARL SCHERER, AND MARC ALEXANDER SCHWEITZER

Lemma 3.14. For any T ∈ Tj let U =
⋃3
ν=1 supp(ψν) be the union of the supports

of the three nodal basis functions ψν = ψi(T,ν) with T ⊂ supp(ψν). Then the
estimate

‖Mω
j u‖2ω,T ≤ 3

3∑

ν=1

∫

supp(ψν)

ω(x)|u(x)|2ψν(x)dx ≤ 3

∫

U

ω(x)|u(x)|2dx.

holds for any u ∈ V so that

(3.42) ‖Mω
j u‖2ω,T ≤ 3 ‖u‖2ω,U .

Since Mω
j preserves constants we obtain the estimate

(3.43) ||Mω
j u−u||ω,T ≤ ||Mω

j (u−aT )||ω,T +||u−aT ||ω,T ≤ (1+
√

3) ||(u−aT )||ω,U
with the help of this lemma. Now we use the Sobolev inequality in R2, i.e., the
Taylor-remainder formula in integral form, which reads

u(x) =

∫

U

ϕ(y)u(y)dy + R1u(x) =

∫

U

ϕ(y)u(y)dy +
∑

|α|=1

∫

U

Kα(x, y)u(α)(y)dy

where ϕ is a smooth function with support in a ball B ⊂ U and
∫
ϕ(x)dx = 1, and

the kernels Kα are given by

Kα(x, y) = (x− y)α
∫ 1

0

s−3ϕ(x+ s−1(y − x))ds.

One can show that the estimate∣∣∣∣∣

∫

U

Kα(x, y)u(α)(y)dy

∣∣∣∣∣ ≤ C
(diam(U))2

δ2

∫

U

|u(α)(z)|(x− z)α| |x− z|−2dz

holds, with CK = C (diam(U))2

δ2 depending only on the initial triangulation T0, where
C is an absolute constant independent of u, and δ is the radius of the ball B. Thus,
choosing aT =

∫
U
ϕ(y)u(y)dy we obtain the estimate

‖u(x)− aT ‖2ω,U ≤ CK(diam(U))2

∫

U

ω(x)

∣∣∣∣∣
∑

|α|=1

∫

U

|u(α)(z)||x− z|−2dz

∣∣∣∣∣

2

dx.

Now we introduce the kernel G(x) := |x|−2 and rewrite the right-hand side as a
singular integral with the notation (u(α) ∗U G)(x) =

∫
U
u(α)(z)G(x− z) dz

‖u(x)− aT ‖2ω,U ≤ CK(diam(U))2
∑

|α|=1

∫

U

ω(x)
∣∣(u(α) ∗U G)(x)

∣∣2dx.

Then, using a result from harmonic analysis [18] for weights ω ∈ A2 (a sub-class of
the Muckenhoupt class A∞) we obtain

∫

U

ω(x)
∣∣(u(α) ∗U G)(x)

∣∣2dx ≤ C2,ω
∫

U

ω(x)|u(α)|2dx

with C2,ω depending on ω only. Hence, with α = 1 and (3.43) we end up with

(3.44) ‖Mω
j u‖ω,T ≤ (1 +

√
3) ||(u− aT )||ω,U ≤ C2,ω CK(diam(U))2‖∇u‖2ω,U .

Finally, we choose v = Mω
j u in (3.41) and we obtain

‖uj‖2j,ω ≤ 4 ‖Mω
j u− u‖2j,ω ≤ C2,ω 2−2ja(u, u)
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where we have used ‖∇u‖2ω = a(u, u) after summation with respect to U , i.e.
T ∈ Tj .

Recall that we can determine j0 for ω ∈ A∞ due to the limited growth condition

2j > C
√
C∞,ω

for all j ≥ j0 and we obtain

j0 := ln(C
√
C∞,ω).

Altogether, we can now establish our robust and optimal norm equivalencies in the
following theorem.

Theorem 3.15. Let the bilinear form a(·, ·) fulfill Assumption 1 and consider a
sequence of uniformly refined triangulations Tj and the respective sequence of nested
spaces Vj of linear finite elements. Furthermore, let us consider ω ∈ A2 ⊂ A∞.
Then the equivalence

(3.45) a(u, u) ≤ C3

J∑

j=0

22j‖uj‖2j,ω ≤ C7 a(u, u)

where

C7 := C3 (ln(C
√
C∞,ω)C2,ω + 4 (1 + 2γ−1C0)2(1 +

√
3

2
C0)2 C C∞,ω)

γ, C2,ω and C∞,ω depend on ω only, C0 and C3 depend on the initial triangulation
T0 only. With respect to the ‖ · ‖ω norm we have the equivalence

(3.46) a(u, u) ≤ C3 (1 + 2γ−1C0)2
J∑

j=0

22j‖uj‖2ω ≤ C8 a(u, u)

where

C8 := C3 (1 + 2γ−1C0)2(ln(C
√
C∞,ω)C2,ω(1 +

√
3

2
C0)2 + C C∞,ω).

4. Robust and Optimal Preconditioners

Let us now focus on the design of appropriate preconditioners based on the es-
tablished norm equivalencies. Here, however, we can derive a simple preconditioner
based on the ‖ · ‖ω norm only. The following standard construction for BPX-type
preconditioners B [3, 22] does not work for the level-dependent norms ‖ · ‖j,ω.

Let us define the preconditioner B via

(4.1) 〈u,Bu〉ω = a(Qω0 u,Q
ω
0 u) +

J∑

j=1

22j‖uj‖2ω.

Using the orthogonality property 〈uj , ul〉ω = δj,l for uj = (Qωj −Qωj−1)u we obtain
the operator formulation

B = A0Q
ω
0 +

J∑

j=1

22j(Qωj −Qωj−1).
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Similarly, we obtain the inverse operator

B−1 = A−1
0 Qω0 +

J∑

j=1

2−2j(Qωj −Qωj−1).

Note that we can rewrite the sum of the differences of the projections also as a
simple sum of the Qωj , i.e.

J∑

j=1

2−2j(Qωj −Qωj−1) = 2−2JQωJ − 2−2Qω0 +
J−1∑

j=1

2−2jQωj −
J−1∑

j=1

2−2j−2Qωj

= 2−2JQωJ − 2−2Qω0 +
J−1∑

j=1

(1− 2−2)2−2jQωj .

With this we obtain the alternative representation of the operator B−1 as

B−1 = (A−1
0 − 2−2)Qω0 +

J−1∑

j=1

(1− 2−2)2−2jQωj + 2−2JQωJ .

Therefore, it is clear that the equivalent operator B̃−1

B̃−1 = A−1
0 Qω0 +

J∑

j=1

2−2jQωj

can also be used as a preconditioner. However, the orthogonal projections Qω
j

are rather expensive to compute. Instead we will employ the spectrally equivalent
averaging operators (3.40)

Mω
j u =

nj∑

i=1

〈u, ψji 〉ω
〈1, ψji 〉ω

ψji .

where nj = #Nj denotes the number of vertices of the triangulation Tj . The
operators Mω

j satisfy

(4.2) γ0 〈u,Mω
j u〉ω ≤ 〈u,Qωj u〉ω ≤ γ1 〈u,Mω

j u〉ω uniformly in j.

Finally, we obtain the substantially less expensive preconditioner B̂ with

B̂−1 = A−1
0 Qω0 +

J∑

j=1

2−2j

nj∑

i=1

〈·, ψji 〉ω
〈1, ψji 〉ω

ψji .

It remains to show the spectral equivalence (4.2) which we obtain from the following
lemma.

Lemma 4.1. Let the weight ω but such that (2.13) is fulfilled. Then the piecewise

linear finite element functions ψ
(j)
l form a Riesz-basis for the spaces Vj in the

weighted norm ‖ · ‖ω arising from the weighted scalar product (2.11); i.e., there
holds the estimate

(4.3) A

nj∑

l=1

〈1, ψ(j)
l 〉ω|αl|2 ≤ ‖

nj∑

l=1

αlψ
(j)
l ‖2ω ≤ B

nj∑

l=1

〈1, ψ(j)
l 〉ω |αl|2

with constants A and B independent of the level j.
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Proof. The inequality on the right-hand side follows from

‖
nj∑

l=1

αlψ
(j)
l ‖2ω ≤

∥∥∥∥∥
( nj∑

l=1

|αl|2ψ(j)
l

)1/2
∥∥∥∥∥

2

ω

=
∑

l∈Nj
|αl|2〈1, ψ(j)

l 〉ω

With the help of Theorem 2.4 we obtain

‖
nj∑

l=1

αlψ
(j)
l ‖2ω ≥ (1 + 2 γ−1 C0) ‖

nj∑

l=1

αlψ
(j)
l ‖2j,ω

= (1 + 2 γ−1 C0)
∑

T∈Tj
ωT

∫

T

∣∣∣
3∑

ν=1

αν,Tψν,T

∣∣∣
2

for the inequality on the left-hand side, where the ψν,T denote the three nodal
functions of level j with supp(ψν,T ) ⊃ T . By the well-known stability properties of

the ψ
(j)
l there holds (cf. [23])

∫

T

∣∣∣
3∑

ν=1

αν,Tψ
(j)
ν,T

∣∣∣
2

≥
3∑

ν=1

|αν,T |2〈1, ψν,T 〉T .

Since the support of each ψ
(j)
i consists only of a finite number of triangles it follows

further that

(4.4)

‖
nj∑

l=1

αlψ
(j)
l ‖2ω ≥ (1 + 2 γ−1 C0)

∑

T∈Tj
ωT

3∑

ν=1

|αν,T |2〈1, ψν,T 〉T

≥ C(1 + 2 γ−1 C0)

nj∑

l=1

|αl|2〈1, ψ(j)
l 〉j,ω,

with an absolute constant C. Now, with the L1-counterpart of Theorem 2.4 we
obtain the estimate

‖
nj∑

l=1

αlψ
(j)
l ‖2ω ≥ C̄

nj∑

l=1

|αl|2〈1, ψ(j)
l 〉ω.

�
Note that this equivalence involves the same constants as Theorem 2.4, i.e.,

involves some information on the coefficient function ω and holds for ω ∈ A∞.
With the help of this lemma we obtain (4.2) by the following consideration, see

[23]. With Qωj u = αlψ
(j)
l we have the equivalence

〈u,Qωj u〉ω = 〈Qωj u,Qωj u〉ω = 〈~α,Gj~α〉Rnj
where Gj := (〈ψ(j)

l , ψ
(j)
k 〉ω)l,k denotes the Gram matrix. Now observe that with

Dj := diag(〈1, ψ(j)
l 〉ω) and û := Qωj u, we also have

〈Gj~α,D−1
j Gj~α〉Rnj = 〈û,Mω

j û〉ω = 〈Qωj u,Mω
j Q

ω
j u〉ω = 〈Qωj u,Mω

j u〉ω = 〈u,Mω
j u〉ω.

since Qωj is an orthogonal projection. Finally, with the notation ~β := Gj~α and
Lemma 4.1 we obtain

〈~α,Gj~α〉Rnj = 〈G−1
j
~β, ~β〉Rnj � 〈~β,D−1

j
~β〉Rnj = 〈Gj~α,D−1

j Gj~α〉Rnj
which is only the discrete form of (4.2). This completes the construction of our
preconditioner based on the ‖ · ‖ω norm.
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Remark 4.2. Note, however, that this preconditioner still involves the weights ωT
with T ∈ TJ for all levels j. Hence, the evaluation of the 〈1, ψ(j)

l 〉ω terms is not
trivial.

The development of a preconditioner based on the level-dependent norms ‖ · ‖j,ω
which should give a superior performance, i.e., should lead to a smaller condition
number, is an open problem. Already the definition of a simple linear operator B
similar to (4.1) is not trivial since the terms on the right-hand side now involve the
level-dependent norms ‖ · ‖j,ω and the orthogonality property holds for the norm
‖ · ‖ω on the finest level only. The derivation of such a preconditioner is subject of
current research and will be addressed in a forthcoming paper.

5. Concluding Remarks

We presented two optimal and (almost) robust norm equivalencies based on
certain weighted norms for diffusion problems −∇ω∇u = f in two space dimensions
with a scalar diffusion coefficient ω. We only require ω to be in the Muckenhoupt
class A2 ⊂ A∞ to obtain our optimal bounds which involve some information on
the boundesness of the local variation of the coefficient function ω. This covers all
piecewise constant functions independent of the location of jumps, their number or
their frequency. This is in contrast to previous results, which require the resolution
of the jumps on a particular level, i.e. the coarsest level.

Based on the weighted norm ‖ · ‖ω which involves the evaluation of the piecewise
constant approximation of the weights ωT with respect to the finest triangula-
tion TJ we have furthermore presented a simple and (nearly) robust BPX-type
preconditioner. The design of a preconditioner based on the more sophisticated
level-dependent norms ‖ · ‖j,ω is more involved and subject of current research.

References

1. R. E. Alcouffe, A. Brandt, J. E. Dendy and J. W. Painter, The Multi-Grid Method for the

Diffusion Equation with Strongly Discontinuous Coefficients, SIAM J. Sci. Comput. 2 (1981),
430–454.

2. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,
Cambridge University Press, 2001.

3. J. H. Bramble, J. E. Pasicak, and J. Xu, Parallel Multilevel Preconditioners, Math. Comp.

55 (1990), no. 191, 1–22.
4. A. Brandt, Multi-Level Adaptive Technique (MLAT) for Fast Numerical Solution to Bound-

ary Value Problems, Proc. of the Third Int. Conf. on Numerical Methods in Fluid Mechanics,
Univ. Paris 1972 (New York, Berlin, Heidelberg) (H. Cabannes and R. Teman, eds.), Springer,

1973.
5. , Multi-Level Adaptive Solutions to Boundary-Value Problems, Math. Comp. 31

(1977), 333–390.
6. , Algebraic Multigrid Theory: The Symmetric Case, Preliminary Proceedings for the

International Multigrid Conference (Copper Mountain, Colorado), April 1983.
7. , Algebraic Multigrid Theory: The Symmetric Case, Appl. Math. Comput. 19 (1986),

23–56.
8. A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic Multigrid for Automatic Multi-

grid Solutions with Application to Geodetic Computations, Technical Report, Institute for

Computational Studies, Fort Collins, Colorado, October 1982.
9. , Algebraic Multigrid for Sparse Matrix Equations, Sparsity and Its Applications (D. J.

Evans, ed.), Cambridge University Press, 1984.
10. J. E. Dendy, Black Box Multigrid, J. Comput. Phys. 48 (1982), 366–386.

11. M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz Methods for Elliptic Problems
with Discontinuous Cefficients in Three Dimensions, Numer. Math. 72 (1996), 313–348.



ROBUST NORM EQUIVALENCIES FOR DIFFUSION PROBLEMS 25

12. T. Grauschopf, M. Griebel, and H. Regler, Additive Multilevel-Preconditioners based on Bilin-

ear Interpolation, Matrix Dependent Geometric Coarsening and Algebraic Multigrid Coars-
ening for Second Order Elliptic PDEs, Applied Numerical Mathematics 23(1) (1997), 63–96.

13. W. Hackbusch, Ein iteratives Verfahren zur schnellen Auflösung elliptischer Randwertprob-
leme, Tech. Report 76-12, Mathematisches Institut, Universität zu Köln, 1976.
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