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Chapter 1

Introduction

The classical finite element method (FEM) is a well-established tool in scientific computing and
widely used in many areas of application, see e.g. [160, 161]. The success of the FEM can be
attributed in part to its improved geometry handling compared with the finite difference or fi-
nite volume methods, and to the fact that finite element (FE) shape functions fFE

i are piecewise
polynomial.

These features render the FEM a very versatile numerical approach and it can be regarded
as a general purpose solver e.g. for the discretization of partial differential equations (PDE). How-
ever, this flexibility comes at a prize — mesh-generation. The construction of good quality meshes
is not an easy task and accounts for a large percentage of the total (computational and economical)
cost of a FE simulation. Moreover, we must acknowledge the fact that (piecewise) polynomials
are very much appropriate for the approximation of smooth functions but they are not tailored
for the approximation of non-smooth functions. Here, local geometric mesh refinement must be
employed. This may yield an optimal asymptotic convergence behavior but can involve a large
number of refinement steps and degrees of freedom to reach the required accuracy.

This effect can only be avoided by abandoning the restriction to piecewise polynomial shape
functions in the FEM; i.e. by the generalization of the FEM. Then, we can employ an algebraic re-
finement of the approximation space VFE which can provide a much more efficient approximation
than geometric mesh refinement. However, the incorporation of non-polynomial shape functions
in VFE must respect the global regularity constraints, i.e. the inter-element continuity conditions.
To this end, the partition of unity (PU) property

NX

i=1

fFE
i ⌘ 1

of the piecewise polynomial FE shape functions fFE
i is utilized. With the PU approach we attain

an enriched approximation space by

VFE
E := VFE + h

X

l2L

fFE
l (1.1)

where h denotes a specific (solution- or problem-dependent) non-smooth enrichment function
and L ⇢ {1, . . . , N} defines the subset of algebraically refined FE shape functions. This first
generalization of the classical FEM lead to the introduction of the special finite elements of [7],
the extended finite element method (XFEM) [16, 20, 100, 101], and the generalized finite element
method [5, 42, 44, 44, 45, 134, 135].

3



4 Chapter 1. Introduction

Yet, the algebraic refinement (1.1) of the classical FE approximation space VFE may com-
promise the stability of the basis hfFE

i , fFE
l hi and can yield an ill-conditioned or even singular

stiffness matrix. Thus, the improved approximation properties of VFE
E may come at a high prize

since the (iterative) solution of the arising linear system can be challenging and very expensive.
To overcome this drawback of the algebraic refinement approach we must impose an ad-

ditional assumption on the employed PU — the flat top property [8, 65, 125]. This property,
however, is not satisfied by the FE shape functions fFE

i so that the second generalization of the
FEM which ensures the stability of the basis of an enriched approximation space of type (1.1) in-
dependently of the employed enrichment functions h cannot be carried out on a mesh-based PU.1
Thus we abandon the mesh and construct a meshfree PU {ji} which satisfies the flat top property
to define the meshfree generalized finite element space

VPU :=
NX

i=1

jiVi, with Vi := P
pi + Ei (1.2)

where P pi = spanhys
i i denotes the space of polynomials of degree p  pi and Ei = spanhht

i i a
problem-dependent (local) enrichment space.

Due to the flat top property we can easily identify a stable basis of VPU so that we obtain
a regular stiffness matrix which can be efficiently solved by a generalized multilevel solver. Fur-
thermore, we have eliminated the need for the expensive mesh-generation due to the meshfree
construction of the PU. Hence, a meshfree generalized FEM has by design the capabilities to out-
perform the classical FEM especially in the approximation of non-smooth functions. Though the
conceptual advantages of a meshfree method also lead to some practical challenges e.g. the im-
plementation of essential boundary conditions or the numerical integration of the meshfree shape
functions.

In this manuscript we present a general framework for the construction of a meshfree gen-
eralized finite element space of type (1.2). Here, we rather focus on the methodology than on a
specific type of enrichment, i.e. a particular class of applications. Thus, our construction yields an
approximation space VPU with the following properties.

1. The construction of the meshfree shape functions is simpler than full-blown mesh-generation.

2. The approximation properties of VPU are determined by N, the number of the PU functions
ji, and the choice of the local approximation spaces Vi = P

pi + Ei, i.e. the polynomial
degree pi of P pi and the enrichment space Ei. Thus, we can employ local h-refinement
(acting on ji), local p-refinement (acting on P pi ), or local algebraic refinement (acting on Ei)
to optimize the approximation properties of VPU.

3. The selection of a stable basis of VPU requires at most O(N) operations independently of
the employed enrichment space Ei.

4. The treatment of essential boundary conditions via a non-conforming discretization as well
as the automatic construction of a conforming subspace VPU

K ⇢ VPU is of optimal complex-
ity.

5. The linear system arising from the Galerkin discretization of a PDE with VPU as trial and
test space can be solved efficiently by a generalized multigrid method independently of the
local enrichment spaces Ei.

Furthermore, we present a fast and (numerically) reliable scheme for the numerical integration of
the constructed meshfree shape functions and the parallelization of the overall method.

1 With special mesh-generation techniques a flat top PU can be constructed, see e.g. [117].
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We not only summarize the background of meshfree and generalized finite element meth-
ods but present some recent developments and improvements which substantially advanced the
maturity of meshfree methods. In particular the treatment of essential boundary conditions was
somewhat cumbersome in most meshfree methods. With the popularization of Nitsche’s method
[108] this issue was significantly simplified. However the specific global formulation employed
in [64] turned out to be less appropriate for the multilevel solution of linear systems arising from
adaptive discretizations [125]. Here, we present an overlapping local formulation of Nitsche’s
method which not only yields optimal convergence properties but also maintains the optimal
convergence behavior of our multilevel solver for adaptive discretizations.

Even though this non-conforming implementation of essential boundary conditions pro-
vides optimal convergence it has certain drawbacks. First and foremost, there is the need to
construct an appropriate weak form of the PDE analytically which depend strongly on the config-
uration of the boundary conditions. Thus, it is not trivial to change boundary conditions in an
interactive user-driven manner. Often a change in the boundary conditions requires some amount
of implementation work and a re-assembly of the stiffness matrix on the boundary. Secondly, the
essential boundary data is only weakly approximated and the error on the boundary is balanced
with the error in the interior by Nitsche’s approach. This can be inappropriate in situations where
the boundary conditions need to be enforced strictly. Moreover, Nitsche’s method is in some sense
restricted to stationary problems and its application in explicit time-discretization schemes is not
obvious. Thus, the realization of an efficient technique for the conforming treatment of essential
boundary conditions that does not rely on very restrictive assumptions on the input data is an
important research topic in meshfree methods.

In this manuscript we present an algebraic approach to the construction of a conforming
subspace VPU

K ⇢ VPU that does not involve any additional restrictions on the employed local
approximation spaces or on the distribution of the degrees of freedom near the boundary. To
our knowledge it is the only constructive approach to the automatic conforming treatment of
essential boundary conditions and constitutes a significant improvement in the applicability and
usefulness of meshfree methods outside of academia.

Moreover, we present the adaptive refinement of a meshfree approximation space VPU

based on a local error estimator. Here, we not only allow for a classical hp-refinement but also
the algebraic refinement of VPU via enrichment. The hierarchical enrichment scheme we present
in this manuscript not only recovers the optimal convergence behavior of the uniform h-version
independently of the regularity of the solution but in fact attains a kind of super-convergence near
the singularities of the solution.

The remainder of this manuscript is structured as follows. In §2 we introduce the moving
least squares method (MLSM) which is the foundation of many meshfree methods (MM). Here,
we limit ourselves to the discussion of properties of this scattered data approach which are rele-
vant to the construction of meshfree shape functions, i.e. a meshfree PU.

The abstract partition of unity method (PUM) [8, 9] is presented in §3. Here, we focus on
its theoretical approximation properties and the implementation of essential boundary conditions
with a PUM. The subject of §4 is the particle–partition of unity method (PPUM) a meshfree in-
stance of the PUM. We present the specific construction of the meshfree PU employed in the
PPUM and how a stable basis of the approximation space VPU can be selected automatically and
independently of the employed enrichment spaces Ei. Furthermore, we discuss the extraction of a
conforming subspace VPU

K ⇢ VPU for the direct implementation of essential boundary conditions.
The extension of the PPUM to the multilevel setting is the topic of §5. Here, we present

an automatic coarsening scheme for the approximation space VPU = VPU
J to obtain an initial

sequence of (non-nested) spaces VPU
k with k = 0, . . . , J. Based on this sequence of spaces we then

introduce a multilevel solver for the PPUM utilizing the flat top property of the constructed PU
and specific geometric properties of the coarsening process.
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Then, we turn to the question of refinement of a space VPU
J . First, we consider the algebraic

refinement of VPU
J by hierarchical enrichment. Here, the focus is on the construction of a stable

basis via a local preconditioning technique which attains the stability of the enriched basis and op-
timal approximation properties. The presented error analysis shows that a uniform h-refinement
in conjunction with hierarchical enrichment yields the optimal convergence rate independently
of the regularity of the solution. Moreover, a kind of super-convergence near the singularities of
the solution can be observed.

Next, we are concerned with the adaptive hp-refinement of the PPUM space VPU
J . To this

end, we present an error estimator of subdomain type which is asymptotically reliable and effi-
cient. With the help of this local error estimator and a simple extrapolation approach we define an
hp-refinement scheme that preserves the essential properties of the resulting sequence of PPUM
spaces VPU

k with k = 0, . . . , J such that the multilevel construction of §5 is directly applicable.
The numerical integration of our PPUM shape functions is presented in §6. Here, we also

discuss the visualization of the computed approximation and the parallelization of the overall
method. The validation of the theoretical results of the PPUM is the subject of §7. Here, we
focus on the approximation properties of the PPUM and the efficiency of the presented multilevel
solver. The presented results clearly show that our meshfree generalized finite element method
practically attains the theoretical properties of §3, §4, and §5. Finally, we conclude this manuscript
with a discussion of some open questions and propose several extension of the PPUM for future
research in §8.

At this point I would like to take the opportunity to express my gratitude to all my friends
and colleagues who made this work possible and provided valuable input. First and foremost
I thank Michael Griebel for his continuous encouragement and support over the years. He in-
troduced me to the field of Scientific Computing and gave me the opportunity to work in this
exciting field of meshfree methods. He and all of my colleagues (former and current) at the
Institut für Numerische Simulation and the Institut für Angewandte Mathematik of the Rhein-
ische Friedrich–Wilhelms–Universität Bonn contributed significantly to the very inspiring, open-
minded and friendly atmosphere in the group. Thank you.

I owe special thanks to Lukas Jager and Jan Hamaekers for proof-reading the manuscript
and the very helpful discussions on enrichment techniques. Furthermore, I would like to ac-
knowledge the financial support of the Sonderforschungsbereich 611 funded by the Deutsche
Forschungsgemeinschaft.

Finally, I apologize to my family for spending too much time away from them during the
preparation of this manuscript. It took much longer than it should have. Undskyld.



Chapter 2

Meshfree Methods

There are (at least) two different classes of meshfree methods (MM) [48, 49, 66, 76, 90, 93, 121, 144]:
classical particle schemes and techniques inspired by scattered data approximation. Traditional
particle methods [2, 57, 104–107] originated from physics applications like the Boltzmann equa-
tion and are of great interest also in mathematical modeling. These schemes though are discrete
and Lagrangian in nature, i.e., they can only be applied in a time-dependent setting and usually
exhibit rather poor convergence properties in weak norms.1 We, however, are interested in the
approximation of a continuum model in a function space setting. Thus, we focus on the latter
approach — MM stemming from scattered data techniques [17, 43, 49, 76, 77, 121, 125, 151]. Note
that there exists a large variety of such methods. For instance, there is the smoothed particle hy-
drodynamics (SPH) technique of Lucy, Gingold and Monaghan [55, 56, 97, 102, 103, 139] which is
closely related to Shepard’s method [131] and was generalized by Dilts [37, 38] using the moving
least squares method (MLSM) [87, 88]. The MLSM was furthermore used by Duarte and Oden
[43, 46] in their hp-clouds approach and by Belytschko and coworkers [17, 18] in the element
free Galerkin method (EFGM). The reproducing kernel methods of Liu et al. [89, 94, 95] are also
closely connected to the MLSM; so is the generalized finite difference method (GFDM) of Liska
and Orkisz [92]. Thus, many MM share the same mathematical foundation: the MLSM.2 In the
following we introduce the MLSM with the focus on the construction of shape functions for a
meshfree Galerkin discretization of a PDE.

2.1 Scattered Data Approximation
The reconstruction of an unknown function u : W ⇢ RD

! R from discrete data pairs (xi, fi =
u(xi)) 2 RD

⇥R for i = 1, . . . , N is probably the most fundamental constructive approximation
problem. The goal is the construction of an approximation uN either such that the data are exactly
matched, i.e, uN(xi) = fi, then uN is an interpolant, or in some sense approximated, i.e., uN(xi) ⇡
fi. If the data are noisy the latter approach is more appropriate. In both cases the approximation

1The finite mass method (FMM) of Yserentant [81, 82, 155, 156] is somewhat different from the classical particle meth-
ods. The FMM is rather a discretization of the mass than of the domain which guarantees the conservation of mass.
Moreover, the particles are not considered in the sense of statistical mechanics but they are viewed as relatively large
mass-packets.

2Another scattered approach to the development of MM is the radial basis function method [49, 51, 52, 78, 79, 121, 148,
149].

7



8 Chapter 2. Meshfree Methods

can essentially be written as

uN(x) :=
NX

j=1

cj({ fi | i = 1, . . . , N}) fj({xi | i = 1, . . . , N}, x)

where the coefficients cj depend on the data values { fi | i = 1, . . . , N} and the basis functions fj
on the data sites XN := {xi | i = 1, . . . , N}. Note that we do not assume a specific regularity in the
distribution of the data sites or sampling points XN , i.e. the data sites are scattered and there is no
given connectivity pattern among the data sites.

The reconstruction problem arises in a wide arena of applications, see e.g. [121] and the
references therein, and serves as a basis for our considerations concerning the construction of
meshfree basis functions fj for the Galerkin discretization of a PDE.

Let us consider the vector space P k(W) with dP k := dim(P k) of all polynomials p with total
degree less than or equal to k. Furthermore, let a set of pairs (xi, fi) 2 RD

⇥ R with sampling
points xi 2 RD and data values fi 2 R for i = 1, . . . , N be given. We obtain the classical least
squares fit to the data fi at positions xi by the minimization of the quadratic energy

JLS(p) :=
NX

i=1

( fi � p(xi))2 (2.1)

over all polynomials p 2 Pk(W). Setting the first variation dJLS to zero and choosing a particular
basis {pq | q = 1, . . . , dP k

} for Pk we find the solution to the minimization problem by the solution
of the linear system

GLSũ = f̂LS (2.2)

where the entries GLSq,r of the system matrix GLS 2 RdPk
⇥dPk

are given by

GLSq,r :=
NX

i=1

pq(xi)pr(xi) for all q, r = 1, . . . , dP
k

and the vector f̂LS 2 RdPk
on the right-hand side is defined as

f̂LS :=
⇣ NX

i=1

fi pq(xi)
⌘dPk

q=1
.

The minimizing polynomial pLS is then simply

pLS(x) =
dPk
X

q=1

ũq pq(x).

Note that the approximation pLS does in general not align with the data, i.e. pLS(xi) 6= fi.
We define the least squares operator ALS which maps a data vector f̃ = ( fi)N

i=1 to its asso-
ciated polynomial pLS 2 Pk by ALS f̃ = pLS. Note that the operator ALS maps elements from
a vector space of dimension N to elements of a space of dimension dP k . To obtain a uniquely
solvable linear system (2.2) it is a necessary condition that dP k

 N. In fact we attain a unique
solution to (2.2) if and only if the set of sampling points XN is Pk(W)-unisolvent, see Definition
2.1 and Theorem 2.1.
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Definition 2.1 (V-unisolvent). A set Y ⇢ RD is called V-unisolvent, if for all f 2 V the implication

f|Y = 0 ) f ⌘ 0

holds.

To assess the quality of the least squares approach let us consider the approximation of a
smooth function u 2 Cr(W). Given a set of sampling points XN , we define the data values fi =
u(xi). Obviously, the error u(x)� pLS(x) with pLS = ALS f̃ 2 Pk can be bounded with respect to
the polynomial degree k. However, increasing the number of sampling points N will provide no
further reduction of the error. If we choose the maximal polynomial degree K = K(N) for which
the set XN is PK-unisolvent we have a unique solution of (2.2) and the error can be bounded
with respect to K = K(N), i.e. with respect to min(K, r). However, the condition number of GLS
will deteriorate rapidly with increasing K and the least squares approach will become instable
just like interpolation using global polynomials. Keeping in mind that we approximate a smooth
function u we can make use of all available information, i.e. an increasing number of sampling
points, by a localization approach. Recall that the value of the least squares approximation pLS
at a particular point x involves all data pairs (xi, fi = u(xi)). However, for a smooth function
u it is clear that values fi = u(xi) with xi close to the point of evaluation x provide all relevant
information already. Hence, it is very natural to extend the least squares approach in the following
way, see also [49, 53, 98, 150, 151].

2.2 Moving Least Squares Method
Consider a locally supported non-negative function W often referred to as window function or
weight function and the pointwise moving least squares energy

JMLS(p)(x) :=
NX

i=1

W(x� xi)( fi � p(xi))2. (2.3)

Note that (2.3) is defined for all x 2 W and formally involves all data pairs (xi, fi) for each point of
evaluation x 2 W. Utilizing the fact that the weight function is locally supported we can rewrite
(2.3) to obtain

JMLS(p)(x) =
NX

i=1

W(x� xi)( fi � p(xi))2 =
X

xi2XN
W(x�xi)>0

W(x� xi)( fi � p(xi))2.

With the convention wi := supp�W(·� xi) and Definition 2.2 of a neighborhood N (x) ⇢ XN of
an arbitrary point x 2 W, compare (2.7), we attain

JMLS(p)(x) =
X

xi2N (x)

W(x� xi)( fi � p(xi))2. (2.4)

Definition 2.2. Let a set of points XN and associated patches CW := {wi} be given. Then we refer
to the sets

Ni := {xk 2 XN | xk 2 wi} (2.5)
and

Ci := {wk 2 CW |wk \wi 6= ∆}. (2.6)
as local neighborhoods of a particular particle xi or the respective patch wi. For an arbitrary point
x 2 W we define its associated neighborhood as

N (x) := {xk 2 XN | x 2 wk}. (2.7)
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The solution pMLS(x) with pMLS 2 Pk to the minimization of (2.4) is obtained by the linear
system

GMLS(x)ũx = f̂MLS(x) with (GMLS(x))q,r :=
X

xi2N (x)

pq(xi)W(x� xi)pr(xi). (2.8)

The vector f̂MLS(x) 2 RdPk
on the right-hand side is defined as

f̂MLS(x) :=
⇣ X

xi2N (x)

fiW(x� xi)pq(xi)
⌘dPk

q=1
.

The linear system (2.8) is uniquely solvable if the neighborhood N (x) is Pk-unisolvent and we
can define the moving least squares operator

⇣
AMLS f̃

⌘
(x) = pMLS(x) =

dPk
X

q=1

ux,q pq(x). (2.9)

Note that in the classical least squares approximation we need to solve a single linear system (2.2)
only to obtain the approximation pLS on the complete domain W. The resulting polynomial pLS
can then be evaluated directly for all x 2 W, i.e., the coefficients ũq of pLS are independent of x.
In the moving least squares approach, however, we need to solve a linear system for each point
of evaluation x 2 W to obtain the respective polynomial pMLS which can then be evaluated at x
only, i.e., the coefficients ũx of pMLS depend on x, compare (2.9). Let us summarize our findings
so-far in the following theorem which generalizes the above setting slightly.

Theorem 2.1. Let the set of points XN = {xi | i = 1, . . . , N}, associated weight functions Wi 2
C(RD, R+

0 ) such that (supp(Wi))� = wi and data f̃ = ( fi) 2 RN be given. Assume that for k 2 N0
the neighborhood associated with each x 2 W defined in (2.7) is Pk-unisolvent. Then the approximation

⇣
AMLS f̃

⌘
(x) = pMLS(x)

where pMLS 2 Pk and pMLS(x) is the solution of the minimization problem

min
p2Pk

JMLS(p)(x) = min
p2Pk

X

xi2N (x)

Wi(x)( fi � p(xi))2 (2.10)

is well-defined.

Proof. Consider an arbitrary but fixed point of evaluation x⇤ 2 W and the respective minimization
problem

min
p2Pk

JMLS(p)(x⇤) = min
p2Pk

X

xi2N (x⇤)

Wi(x⇤)( fi � p(xi))2.

The necessary condition dJMLS(pMLS, p) = 0 for all p 2 Pk yields
X

xi2N (x⇤)

⇣
fi � pMLS(xi)

⌘
Wi(x⇤)p(xi) = 0 for all p 2 Pk.

Choosing an arbitrary basis {pq | q = 1, . . . , dP k
} and setting

pMLS(x⇤) =
dPk
X

q=1

ux⇤ ,q pq(x⇤) (2.11)
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we obtain

X

xi2N (x⇤)

⇣
fi �

dPk
X

q=1

ux⇤ ,q pq(xi)
⌘

Wi(x⇤)pr(xi) = 0 for all r = 1, . . . , dP
k

(2.12)

which is equivalent to the matrix equation

GMLS(x⇤)ũx⇤ = f̂MLS(x⇤) (2.13)

with the system matrix GMLS(x⇤) = (GMLS(x⇤)q,r) 2 RdPk
⇥dPk

and the right-hand side vector

f̂MLS(x⇤) =
⇣

f̂MLS(x⇤)q

⌘
2 RdPk

defined as

GMLS(x⇤)q,r :=
X

xi2N (x⇤)

pq(xi)Wi(x⇤)pr(xi), and f̂MLS(x⇤)q :=
X

xi2N (x)

fiWi(x⇤)pq(xi).

Recall that the unique solvability of (2.13) and the minimal property of pMLS(x⇤) follow from the

positive definiteness of GMLS(x⇤). To this end, we consider for an arbitrary vector g 2 RdPk
the

scalar product

g · GMLS(x⇤)g =
X

xi2N (x)

Wi(x⇤)
⇣ dPk
X

q=1

gq pq(xi)
⌘2

.

From the non-negativity of Wi follows g · GMLS(x⇤)g � 0 and hence GMLS is positive semi-
definite. Now let us assume that there is a particular g 6= 0 such that g · GMLS(x⇤)g = 0. Since
xi 2 N (x⇤) we have x⇤ 2 wi = (supp(Wi))� and due to the smoothness of the weight functions
Wi we have Wi(x⇤) > 0. Therefore, gq pq(xi) = 0 for all q = 1, . . . , dP k and xi 2 N (x⇤). The
unisolvence of N (x⇤) implies that g = 0 which contradicts the assumption g 6= 0 and hence we
conclude that GMLS(x⇤) is positive definite. ut

Recall that in the classical least squares approach the minimizer pLS 2 P
k is a global polyno-

mial. It can be represented via the basis hpqi of P k. In the moving least squares approach however
only the value pMLS(x) at the current point of evaluation x 2 W can be expressed via hpqi. So
far we have no representation of pMLS as a function. Hence, the question is if we can construct
appropriate basis functions fi such that pMLS 2 spanhfii.

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then the representation formula

⇣
AMLS f̃

⌘
(x) =

NX

i=1

fifi(x) (2.14)

holds and the basis functions fi are given by

fi(x) := Wi(x)
dPk
X

q=1

ax,q pq(xi) (2.15)

where the coefficient vector ax = (ax,q) is the unique solution of the linear system

GMLS(x)ax = p(x) = (pq(x))dPk
q=1. (2.16)
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Figure 2.1. Moving least squares basis functions in one dimension using a cubic spline weight
function (left: all basis functions; center: single basis function; right: first derivative).

Proof. Again, consider a fixed but arbitrary point of evaluation x⇤ 2 W. According to (2.9) and
(2.13) we have

⇣
AMLS f̃

⌘
(x⇤) =

dPk
X

q=1

ũx⇤ ,q pq(x⇤).

With the equivalence (2.16) this yields

⇣
AMLS f̃

⌘
(x⇤) = ũ(x⇤) · GMLS(x⇤)ax⇤ =

dPk
X

q=1

ux⇤ ,q
X

xi2N (x⇤)

Wi(x⇤)pq(xi)
dPk
X

r=1

pr(xi)ax⇤ ,r.

Rearranging the sums we obtain

⇣
AMLS f̃

⌘
(x⇤) =

dPk
X

r=1

ax⇤ ,r
X

xi2N (x⇤)

Wi(x⇤)
dPk
X

q=1

ux⇤ ,q pq(xi)pr(xi). (2.17)

Plugging (2.12) into (2.17) gives

⇣
AMLS f̃

⌘
(x⇤) =

dPk
X

r=1

ax⇤ ,r
X

xi2N (x⇤)

Wi(x⇤) fi pr(xi) =
X

xi2N (x⇤)

fiWi(x⇤)
dPk
X

r=1

ax⇤ ,r pr(xi)

and with definition (2.15) this yields the asserted representation (2.14), compare Figures 2.1 and
2.2. ut
Remark 2.1. Note that the coefficient vector ax of (2.16) is independent of the particle xi and hence
ax is identical for all particles xi 2 N (x); i.e. for all respective basis functions fi. Thus the eval-
uation of a single basis function fi at a particular point x 2 W is of similar complexity as the
simultaneous evaluation of all non-vanishing basis functions fj in x 2 W.

Due to (2.15) we can view the moving least squares technique as a constructive approach to
obtain compactly supported shape functions fi with supp(fi) = supp(Wi) from scattered inde-
pendent points xi 2 XN only; i.e., an approach for the construction of meshfree shape functions.
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Figure 2.2. Moving least squares basis function (left) in two dimensions and its partial derivatives
(center and right) using a cubic spline weight function.

Since we are ultimately interested in the development of a meshfree Galerkin method for the nu-
merical treatment of partial differential equations we must be concerned with the regularity of
the basis functions (2.15).

Lemma 2.1. Let the assumptions of Theorem 2.1 be satisfied with Wi 2 C
r(RD) with r > 0 for all

i = 1, . . . , N. Then, there holds fi 2 C
r(RD) for the basis functions fi of (2.15).

The second important property we must consider is the consistency of our moving least
squares functions (2.15).

Lemma 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then, the composed operator

AMLSEXN : C(W)! spanhfi | i = 1, . . . , Ni ⇢ C(W)

with fi defined in (2.15), EXN : C(W) ! RN denotes the point evaluation, i.e. EXN (u) = (u(xi))N
i=1,

reproduces all polynomials p 2 Pk(W), i.e.

AMLSEXN |Pk(W) = I, AMLSEXN (p) = p for all p 2 Pk(W). (2.18)

Proof. Recall the representation (2.14)

⇣
AMLSEXN (p)

⌘
(x) =

NX

i=1

p(xi)fi(x).

The polynomial p has a unique representation in the employed basis for Pk(W), i.e.

dPk
X

q=1

gq pq(x) = p(x)

for all x. With the representation of the basis (2.15) this yields

⇣
AMLSEXN (p)

⌘
(x) =

NX

i=1

dPk
X

q=1

gq pq(xi)f(x) =
NX

i=1

dPk
X

q=1

gq pq(xi)Wi(x)
dPk
X

r=1

ax,r pr(xi).
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Rearranging the sums, we obtain

⇣
AMLSEXN (p)

⌘
(x) =

dPk
X

q=1

dPk
X

r=1

NX

i=1

gq pq(xi)Wi(x)pr(xi)ax,r = g · GMLS(x)ax.

Since (2.16) holds, we obtain the asserted equivalence

⇣
AMLSEXN (p)

⌘
(x) = g · p(x) =

dPk
X

q=1

gq pq(x) = p(x) for all x 2 W.

ut
An immediate consequence of this lemma is that the basis functions fi constructed by the

moving least squares approach are a partition of unity independent of the employed polynomial
degree k 2 N0.

Corollary 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then, the basis functions defined in (2.15)
satisfy

NX

i=1

fi(x) = 1 for all x 2 W. (2.19)

Yet, the basis functions fi in general do not satisfy the Kronecker property, i.e.

fi(xj) 6= dij =
⇢

1 i = j,
0 i 6= j,

compare Figures 2.1 and 2.2. Note also that the assumption of the Pk-unisolvence of N (x) for
k � 0 and all x 2 W is not trivial to verify for arbitrary point sets XN , i.e. a specific choice of Wi for
i = 1, . . . , N. Thus, the selection of appropriate supports wi is in general a somewhat challenging
task. Observe though that for the important special case of k = 0, i.e. an approximation with the
constant function, there holds the equivalence

N (x) is P0-unisolvent () W ⇢
N[

i=1

wi.

In this case (2.15) reduces to

fi(x) = Wi(x)ax,0, with GMLS0,0ax,0 = 1 (2.20)

if we choose p0 ⌘ 1 as the basis of P0. Plugging the definition (2.8) into (2.20) we obtain the
explicit representation

fi(x) =
Wi(x)
S(x)

, with S(x) :=
NX

j=1

Wj(x)

whereas in general with k > 0 the basis functions fi of (2.15) are known implicitly only via (2.16).
Due to the compact support of the weights Wi and the observation that N (x) ⇢ Ci for all x 2 wi,
compare (2.6) and Definition 2.2, we can rewrite the moving least squares function for k = 0 as

fi(x) =
Wi(x)
Si(x)

, with Si(x) :=
X

wj2Ci

Wj(x). (2.21)
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Observe that these function, the so-called Shepard functions, satisfy Corollary 2.2. The Shepard
functions are a partition of unity.

Finally, we need to consider the stability of the evaluation of the basis functions (2.15); i.e. the
conditioning of the system matrix GMLS(x⇤) for all x⇤ 2 W. Note that the choice of the polynomial
basis in the proof of Theorem 2.1 is arbitrary for each point of evaluation x⇤. Hence, we can for
instance consider linear transformations Tx⇤ : RD

! RD depending on the point of evaluation x⇤

of a fixed basis { p̂q | q = 1, . . . , dP k
}, i.e.,

Tx⇤ : x 7!
x⇤ � x

rx⇤
, px⇤ ,q(x) = p̂q � Tx⇤(x) = p̂q

⇣x⇤ � x
rx⇤

⌘
. (2.22)

The approximation (2.9) and hence the representation (2.14) and the basis functions (2.15) are un-
changed, but the respective linear systems GMLS and right-hand side vectors need to be modified.

Corollary 2.3. Consider the choice of basis (2.22) for the solution of the pointwise minimization problem
(2.10) at a fixed but arbitrary point x⇤ 2 W. Then, the solution pMLS(x⇤) is obtained by the solution of

the linear system (2.13) with the system matrix GMLS(x⇤) = (GMLS(x⇤)q,r) 2 RdPk
⇥dPk

GMLS(x⇤)q,r :=
X

xi2N (x⇤)

px⇤ ,q(xi)Wi(x⇤)px⇤ ,r(xi) =
X

xi2N (x⇤)

p̂q

⇣x⇤ � xi
rx⇤

⌘
Wi(x⇤) p̂r

⇣x⇤ � xi
rx⇤

⌘

and the right-hand side

f̂MLS(x⇤)q :=
X

xi2N (x⇤)

fiWi(x⇤)px⇤ ,q(xi) =
X

xi2N (x⇤)

fiWi(x⇤) p̂q

⇣x⇤ � xi
rx⇤

⌘
.

The basis functions fi are given by

fi(x⇤) := Wi(x⇤)
dPk
X

q=1

ax⇤ ,q px⇤ ,q(xi) = Wi(x⇤)
dPk
X

q=1

ax⇤ ,q p̂q

⇣x⇤ � xi
rx⇤

⌘
(2.23)

where the coefficient vector ax⇤ = (ax⇤ ,q) is the unique solution of the linear system

GMLS(x⇤)a(x⇤) = px⇤(x⇤) = p̂
⇣x⇤ � x⇤

rx⇤

⌘
= p̂(0). (2.24)

The advantage of (2.23) over (2.15) in computations is that the condition number of the sys-
tem matrix GMLS(x⇤) can be controlled via the parameter rx⇤ whereas (2.8) can become unstable
when we use more and more points xi 2 XN . Observe that such a refinement of the point set XN
does not assume any connectivity among the points xi. The insertion of new points xi into XN
and thereby an h-adaptive refinement of the respective meshfree function space VMLS := spanhfii
is straightforward. Unfortunately this is not the case for a local p-adaptive refinement.

Recall that the weight functions Wi can be chosen arbitrarily on each wi; i.e., they are inde-
pendent of each other and more importantly independent of the point of evaluation x⇤. Hence,
we can consider the linear transformations of a window function

Ti(x) : x 7!
x� xi

ri
, Wi(x) := W

⇣x� xi
ri

⌘

as weight functions. Then, (2.23) becomes

fi(x⇤) := W

⇣x⇤ � xi
ri

⌘ dPk
X

q=1

ax⇤ ,q p̂q

⇣x⇤ � xi
rx⇤

⌘
. (2.25)
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Note the difference in the scaling of the window function (using 1/ri) and the employed poly-
nomial (scaled by 1/rx⇤). This is due to the fact that the polynomial basis can be chosen with
respect to x⇤ and is evaluated at xi, whereas the weight functions can be chosen with respect to xi
and are evaluated at x⇤, compare (2.3) and (2.10). From this observation it is clear that the mov-
ing least squares approach does not support a p-adaptive approximation, i.e., the variation of the
polynomial degree k on each wi. We can change the polynomial degree k only with respect to the
point of evaluation x⇤. Yet, such an approach suggests a disjoint partition of the domain W into
Wl = {x⇤ 2 W | k(x⇤) = kl} with kl 2 N0 and it is clear that at the boundaries of these disjoint
sub-regions, i.e., x 2 ∂Wl1 \ ∂Wl2 with l1 6= l2, the variation in the polynomial degree may lead to
a jump in the resulting approximation AMLS(x) f̃ and the associated basis functions fi.

Thus, we can use the moving least squares approach to construct meshfree functions spaces
VMLS that support h-adaptive refinement easily but do they not allow for p-adaptive refinement
without compromising the regularity of the shape functions. The capability of p-adaptive refine-
ment of our meshfree function space must be provided by an additional construction outside of
the moving least squares approach.

2.3 Local Enrichment
The partition of unity property (2.19) of the MLS basis functions fi defined in (2.23) can be utilized
to enhance the approximation properties of the associated MLS function space

VMLS := spanhfii (2.26)

and more importantly we can define an enriched version VLE
MLS of VMLS that allows for a p-

adaptive approximation approach, see e.g. [41, 128].
Let us consider the MLS basis functions fi and a collection of sufficiently regular local ap-

proximation spaces
Vi(wi, R) := spanhJn

i i (2.27)
with 1 2 Vi(wi, R) for all i = 1, . . . , N. Then, the space

VLE
MLS :=

NX

i=1

fiVi = spanhfiJ
n
i i � VMLS (2.28)

obviously contains VMLS and hence enjoys at least the approximation properties of VMLS. More-
over, the local approximation spaces are completely arbitrary and independent of each other since
the global regularity of the product functions is inherited from the fi. Thus, if we choose Vi as
local polynomials of degree pi on wi the space VLE

MLS of (2.28) can reproduce higher order polyno-
mials in some parts of the domain than in others. Therefore, VLE

MLS can be used in a p-adaptive
setting — unlike the space VMLS.

On the other hand, if we choose the local approximation spaces Vi such that their basis
functions resolve particular singularities we can make use of this enrichment approach to avoid
a more expensive approximation of singular functions by h-adaptive refinement.

In summary, the concept of local enrichment based on a partition of unity can substan-
tially improve the approximation properties and improves the cost-efficiency of the respective
numerical method dramatically. Not surprisingly, this technique is employed in many meshfree
e.g. [19, 109, 128] and mesh-based methods e.g. [7, 16, 20, 42, 44, 45, 100, 143]. Rather than focus-
ing on the particular differences of the realization of the presented enrichment concept in these
methods we refer to the abstract technique as a partition of unity method [8, 9] (PUM) since the
PU property of the fi is the only necessary assumption for the presented approach and regard all
of the above methods as special instances of the PUM. The mathematical foundation of the PUM
and its particularities are the subject of the next chapter.



Chapter 3

Partition of Unity Method

The notion of a partition of unity method (PUM) was coined in [8, 9] and is based on the special
finite element methods developed in [7]. The abstract ingredients of a PUM are

• a partition of unity (PU) {ji | i = 1, . . . , N} with

ji 2 C
r(RD, R) and patches wi := supp�(ji),

• a collection of local approximation spaces

Vi(wi, R) := spanhJn
i i (3.1)

defined on the patches wi for i = 1, . . . , N.

With these two ingredients we define the PUM space

VPU :=
NX

i=1

jiVi = spanhjiJ
n
i i; (3.2)

i.e., the shape functions of a PUM space are simply defined as the products of the PU functions ji
and the local approximation functions Jn

i . The PU functions provide the locality and global regu-
larity of the product functions whereas the functions Jn

i equip VPU with its approximation power.
Thus, we refer to the PU functions ji also as h-components and denote the local approximation
functions Jn

i also as p-components of the PUM space VPU.

3.1 Properties and Approximation
To study the approximation properties of the PUM space VPU we need to introduce some notation
and specific assumptions on the PU and the local approximation spaces, see also [9, 98].

Definition 3.1 (Partition of Unity). Let W ⇢ RD be an open set. Let {ji | i = 1, . . . , N} be a
collection of N Lipschitz functions with

0  ji(x)  1,
NX

i=1

ji ⌘ 1 on W,

kjikL•(RD)  C•, krjikL•(RD) 
Cr

diam(wi)
,

17
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where wi := supp(ji)� is a Lipschitz domain, C• and Cr are two positive constants. The collec-
tion of functions {ji | i = 1, . . . , N} is referred to as a partition of unity (PU) and the PU is said
to be of degree k 2 N0 if ji 2 C

k(RD) and krk jikL•(R) 
C
rk

diam(wi)
for all i = 1, . . . , N. The sets

wi are called patches and their collection is referred to as a cover CW := {wi | i = 1, . . . , N} of the
domain W.

For PUM spaces (3.2) which employ a PU {ji} satisfying Definition 3.1 there hold the fol-
lowing error estimates due to [9].

Theorem 3.1. Let W ⇢ RD be a Lipschitz domain. Let {ji} be a partition of unity according to Definition
3.1. Let us further introduce the covering index lCW : W! N such that

lCW(x) := card({wi 2 CW | x 2 wi}) (3.3)

and let us assume that lCW(x)  M 2 N for all x 2 W. Let a collection of local approximation spaces
Vi = spanhJn

i i ⇢ H1(wi) be given. Let u 2 H1(W) be the function to be approximated. Assume that
the local approximation spaces Vi have the following approximation properties: On each patch W \wi, the
function u can be approximated by a function ui 2 Vi such that

ku� uikL2(W\wi)  êi, and kr(u� ui)kL2(W\wi)  ẽi (3.4)

hold for all i = 1, . . . , N. Then the function

uPU :=
NX

i=1

jiui 2 VPU
⇢ H1(W)

satisfies the global estimates

ku� uPU
kL2(W) 

p

MC•

⇣ NX

i=1

ê2
i

⌘1/2
, (3.5)

kr(u� uPU)kL2(W) 
p

2M
⇣ NX

i=1

� Cr
diam(wi)

�2
ê2

i + C2
• ẽ2

i

⌘1/2
. (3.6)

Proof. There holds VPU
⇢ H1(W) since the local approximation spaces Vi ⇢ H1(wi) can be

extended to the complete domain W due to the fact that the patches are Lipschitz domains.
With the PU property

PN
i=1 ji ⌘ 1 on W there holds

u(x)�
NX

i=1

ji(x)ui(x) =
NX

i=1

ji(x)(u(x)� ui(x)).

Since the covering index lCW is uniformly bounded by M for all x 2 W there are no more than M
non-vanishing terms in these sums. With the help of the inequality

� MX

j=1

|aj|
�2
 M

MX

j=1

|aj|
2 for all M < •

we can bound

|

NX

i=1

ji(x)(u(x)� ui(x))|2  M
NX

i=1

|ji(x)(u(x)� ui(x))|2
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for all x 2 W. With the bounds of Definition 3.1 this yields the estimate

ku� uPU
k

2
L2(W)  M

NX

i=1

kji(u� ui)k2
L2(wi\W)  MC2

•

NX

i=1

ku� uik
2
L2(wi\W)  MC2

•

NX

i=1

ê2
i .

Analogously, we obtain the bounds for the gradient of the error

kr(u� uPU)k2
L2(W)  2M

⇣ NX

i=1

k(rj)(u� ui)k2
L2(wi\W) +

NX

i=1

kjr(u� ui)k2
L2(wi\W)

⌘

 2M
⇣

C2
•

NX

i=1

ẽ2
i +

NX

i=1

⇣ Cr
diam(wi)

⌘2
ê2

i

⌘

ut
The estimates (3.5) and (3.6) show that the global error is of the same order as the local errors

provided that the covering index is bounded independent of N, i.e. M = O(1).
If we for instance assume that diam(wi) ⇡ h for all i = 1, . . . , N and the local spaces Vi

contain polynomials of degree p for all i = 1, . . . , N then the spaces Vi satisfy the local error
bounds

ku� uikL2(W\wi)  C hp+1
kukHk(W\wi) =: êi,

kr(u� ui)kL2(W\wi)  C hp
kukHk(W\wi) =: ẽi

for u 2 Hk(W) with k � 1 and p  k� 1 due to the Bramble–Hilbert-Lemma. Then, the estimates
(3.5) and (3.6) become

ku� uPU
k

2
L2(W) 

p

MC• C hp+1
kukHk(W)

and
kr(u� uPU)k2

L2(W) 
q

2M(C• + Cr) C hp
kukHk(W)

which correspond to the classical finite element estimates of a uniform h-version.
Note however that Theorem 3.1 is an abstract approximation result only and involves a

specific choice of the approximation uPU. It does not state that this approximation is the best-
approximation in VPU nor the uniqueness of the representation

PN
i=1 jiui. In fact the above as-

sumption are not sufficient to ensure the uniqueness of the representation uPU =
PN

i=1 jiui; i.e.,
the shape functions jiJ

n
i may be linearly dependent in the PUM with the assumptions of Theorem

3.1.
To this end, consider the following simple one-dimensional situation: Let W = (0, 1) be the

unit interval and define
j0(x) := 1� x, and j1(x) := x.

Furthermore, we define the local approximation spaces

V0 := spanh1, xi, and V1 := spanh1, xi.

Obviously, the choice of components satisfies the assumptions above, however, the resulting PUM
shape functions are linearly dependent. Observe that the PU functions j0 and j1 are linear poly-
nomials as are all local approximation functions Jn

i . Hence, the four product functions jiJ
n
i are

the quadratic polynomials
(1� x), x(1� x), x, x2.

Yet, there exist only three linearly independent quadratic polynomials on the interval W so that
the four shape functions of our PUM space VPU = j0V0 + j1V1 must be linearly dependent. On
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Figure 3.1. Shepard functions satisfying the flat top property using a cubic weight function (left:
all Shepard functions; center: single Shepard function; right: first derivative).

the other hand, the space VPU = P
2 obviously has better reproduction properties than the local

spaces Vi = P
1 so that better global error bounds than those of Theorem 3.1 can be attained.

To overcome this problem of linearly dependent shape functions which is sometimes re-
ferred to as the nullity of the PUM we introduce an additional assumption: the so-called flat top
property, see also Figures 3.1 and 3.2.

Definition 3.2 (Flat top property). Let {ji, | i = 1, . . . , N} be a partition of unity according to
Definition 3.1. Let us define the sub-patches wFT,i ⇢ wi such that ji|wFT,i ⌘ 1. Then, the PU is said
to have the flat top property, if there exists a constant CFT such that for all patches wi = supp�(ji)

µ(wi)  CFTµ(wFT,i) (3.7)
where µ(A) denotes the Lebesgue measure of A ⇢ RD. We have C• = 1 for a PU satisfying (3.7).

Remark 3.1. The PU concept is employed in many meshfree methods. However, in most cases
very smooth PU functions ji 2 Ck(W) with k � 2 are used and the functions ji have rather
large supports wi which overlap extensively. Hence in most meshfree methods card(Ci) and M
are very large and the employed PU does not have the flat top property. This makes it easier
to control krjikL• , compare Definition 3.1, (3.6), and Figures 2.1 and 3.1, but it can lead to ill-
conditioned and even singular stiffness matrices.

For a PU that satisfies the flat top property1 we obtain the equivalence

NX

i=1

ji

dim(Vi)X

n=1

un
i Jn

i ⌘ 0 ()

dim(Vi)X

n=1

un
i Jn

i ⌘ 0 for all i = 1, . . . , N

which essentially states that the PUM space VPU is not just a weighted sum of the local approxi-
mation spaces Vi but it is a direct sum; i.e.

VPU =
NX

i=1

jiVi =
NM

i=1

jiVi.

Therefore, the product functions jiJ
n
i inherit the linear independence of the local approximation

functions Jn
i and we obtain the stability of the approximation.

1Note that the flat top property is a sufficient condition only for the linear independence of the shape functions in a
PUM.
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Figure 3.2. A partition of unity obtained by classical linear finite elements (left) and a partition
of unity which satisfies the flat top property (right).

Remark 3.2. Note that for a PU that satisfies Definition 3.2 the estimates of Theorem 3.1 are of opti-
mal order since the products jiJ

m
i of the local approximation functions Jm

i with the PU functions
ji agree with Jm

i on wFT,i. Therefore, the approximation order of the global space VPU is lim-
ited by the approximation properties of the local approximation spaces Vi. We do not encounter
higher reproduction properties as in the above example but attain a linearly independent set of
product functions.

The main challenge in a PUM is the construction of a PU that satisfies Definition 3.1 and
Definition 3.2. To this end let us introduce the notion of an admissible cover.

Definition 3.3 (Admissible Cover). Let W ⇢ RD be an open set. Let wi ⇢ RD be open sets with
W \ wi 6= ∆ for i = 1, . . . , N. The collection CW := {wi | i = 1, . . . , N} is called an admissible
cover of W and the sets wi are denoted admissible cover patches if the following conditions are
satisfied.

• Global covering:

W ⇢
N[

i=1

wi.

• Minimal overlap: There exists a constant CFT such that

µ(wi)  CFTµ({x 2 wi | lCW(x) = 1}). (3.8)

• Bounded overlap: There exists a constant M > 0 such that for any x 2 W there holds

klCWkL•(W) < M⌧ N. (3.9)

• Sufficient overlap: There exists a constant CS > 0 such that for any x 2 W there is at least
one cover patch wi such that x 2 wi and

dist(x, ∂wi) � CS diam(wi). (3.10)

• Comparability of neighboring patches: A subset

Ci := {wj 2 CW |wj \wi 6= ∆} ⇢ CW (3.11)
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Figure 3.3. Examples of an open cover CW of a domain W ⇢ R2 using spherical patches (left) and
rectangular patches (right).

is called a local neighborhood or local cover of a particular cover patch wi 2 CW. There
exists a constant CN � 1 such that for all patches wj, wi 2 CW the implication

wj \wi 6= ∆, diam(wi) � diam(wj) =)
diam(wi)
diam(wj)

 CN . (3.12)

holds.

Based on an admissible cover, compare Figure 3.3, we can now employ the MLS construc-
tion, i.e. Shepard’s method, of the previous chapter to obtain a PU that satisfies Definition 3.1 and
Definition 3.2. To this end let us assume that non-negative weight functions Wk are associated
with the cover patches wk, i.e. Wk(x) > 0 for all x 2 wk \ ∂wk. Recall that the Shepard functions
are defined as

ji(x) :=
Wi(x)
Si(x)

where Si(x) :=
X

wj2Ci

Wj(x). (3.13)

Obviously, the smoothness of the resulting PU functions ji is determined entirely by the smooth-
ness of the employed weight functions. Hence, on a cover with tensor product patches wi we
can easily construct partitions of unity of any regularity for instance by using tensor products of
splines with the desired regularity as weight functions.2 Hence, let us assume that the weight
functions Wi are all given as affine transformations of a generating normalized spline weight
function W : RD

! R with supp(W) = [�1, 1]D, i.e.,

Wi(x) = W � Ti(x), Ti : wi ! [�1, 1]D, kDTik• 
CT

diam(wi)
, kWk• = 1,

krWk•  CW , W(x) � CW ,∂ dist(x, ∂([�1, 1]D)) for all x 2 (�1, 1)D
(3.14)

Then there holds the following Lemma.

Lemma 3.1. The PU defined by (3.13) with weights (3.14) defined on an admissible cover CW is valid
according to Definition 3.1 and satisfies Definition 3.2.

2Other shapes of the cover patches wi 2 CW are of course possible, e.g. balls or ellipsoids compare Figure 3.3, but the
resulting partition of unity functions ji are more challenging to integrate numerically. For instance a subdivision scheme
based on the piecewise constant covering index lCW leads to integration cells with very complicated geometry, see §6.1.
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Proof. Note that Si(x)  lCW(x)  M for all x 2 W due to (3.14). Furthermore, for all x 2 wi
there holds

Si(x) =
X

wj2Ci

Wj(x) =
NX

j=1

Wj(x) �W � Tk(x).

With (3.10) and (3.14) we obtain the lower bound

|Si(x)| � 2CSCW ,∂

for all x 2 W. Together with (3.14) and (3.12) this yields the point-wise estimate

|rji(x)| =
���
Wi(x)rSi(x)�rWi(x)Si(x)

S2
i (x)

���



⇣
|rW � Ti(x)DTi(x)Si(x)|+ |Wi(x)

P
krW � Tk(x)DTk(x)|

⌘

|S2
i (x)|


(CN + 1)MCTCW

(CSCW ,∂)2 diam(wi)
,

which gives the asserted bound krjikL•(RD) 
Cr

diam(wi)
with Cr � (CN + 1)CWMCT(CW ,∂CS)�2.

Property (3.7) follows directly from (3.8) and therefore C• = 1. ut
It remains to specify the local approximation spaces Vi employed in the PUM. From Theorem

3.1 it is clear that we are by no means limited to classical polynomial approximation spaces Vi.
The ability to employ problem-dependent local approximation spaces in the PUM is one of its
key advantages over classical numerical methods. On the other hand, polynomials are highly
appropriate local spaces Vi if we are interested in the approximation of locally smooth solutions.
Thus, we make the convention that the local approximation spaces Vi in our PUM are composed
of two sub-spaces: A smooth part P pi := spanhys

i i comprised of polynomials ys
i of total degree

p  pi, and a problem-dependent enrichment part Ei := spanhht
i i; i.e.,

Vi := P
pi + Ei = spanhys

i , ht
i i. (3.15)

For the time being let us assume that the system of functions hys
i , ht

i i provide a stable basis for Vi,
see §4.2.1 and §5.3.2 on how this assumption can be satisfied in general. For the ease of notation
we furthermore define hJn

i i := hys
i , ht

i i. Apart from this assumption we impose no further re-
striction on the choice of the local approximation spaces. The resulting PUM space then becomes

VPU :=
NX

i=1

jiVi = spanhjiJ
n
i i =

NX

i=1

jiP
pi +

NX

i=1

jiEi = spanhjiy
s
i , jih

t
i i. (3.16)

3.2 Boundary Conditions
Our PUM shape functions jiJ

n
i are not cardinal functions; i.e., they do not satisfy the Kronecker

d-condition. One of the reason for this is that the PU functions themselves do not satisfy the
Kronecker condition since it is not guaranteed that ji(xi) = 1 due to the fact that xi 62 wFT,i is
allowed by the construction presented above. Furthermore, the usage of multi-dimensional local
approximation spaces Vi generates an approximation space VPU with more degrees of freedom
than sampling points XN = {xi | i = 1, . . . , N}. Thus, the treatment of boundary conditions is not
straightforward in the PUM (as it is for most meshfree methods).
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Consider the abstract model problem

Lu = f in W ⇢ RD,
BNu = gN on GN ,
BDu = gD on GD := ∂W \ GN ,

(3.17)

where L is a symmetric partial differential operator of second order and BN and BD express
suitable boundary conditions. First consider (3.17) with pure Neumann boundary conditions
BNu = un := ∂u/∂n := ru · n = g on GN := ∂W, where n denotes the outer normal. Here, we
learn from the variational formulation

F(v) :=
1
2

a(v, v)� h f , viL2 �

Z

∂W
gv! min{v 2 H1(W)}, (3.18)

that the trial functions v have to fulfill no additional constraint besides being from the definition
space H1(W) of the differential operator L in its weak form. The boundary conditions are not im-
posed explicitly on the function space; i.e., the employed basis functions do not need to satisfy the
boundary conditions explicitly. Thus, the basis of a finite-dimensional subspace V ⇢ H1(W) used
to approximate the solution of (3.18) may be compiled of arbitrary functions v 2 H1(W). Hence,
we may use our PUM shape functions jiJ

n
i as trial and test functions in a Galerkin procedure

without any modification for the approximation of pure Neumann problems.
However, Dirichlet boundary conditions BDu = u = g on GD 6= ∆ explicitly impose the

values of the solution u on the boundary segment GD. Thus, the trial space of the usual weak
formulation

Find u 2 H1
D(W) : a(u, v) = h f , viL2 for all v 2 H1

0(W)

is not the complete space H1(W) but H1
D(W) := {v 2 H1(W) | BDu = g on GD}, whereas the test

space is H1
0(W). The PU functions ji however do not vanish on the boundary so that we must

realize the boundary conditions via the local approximation spaces Vi to obtain a conforming
treatment of essential boundary conditions in the PUM.

3.2.1 Conforming Local Approximation Spaces
To this end, we need to assume that the local basis system hJn

i i of Vi for all wi 2 CW with wi \ GD 6=
∆ can be split into the sub-systems hJn

i,Di and hJn
i,0iwhere hJn

i,0i is used for the respective PUM test
space and hJn

i,Di is employed to approximate the boundary data. A seemingly simple solution to
this assumption is the use of classical finite elements as local approximation spaces Vi. A similar
approach was also proposed in [84]. This however destroys the meshfree character of the PUM
and explicitly requires mesh-generation near the Dirichlet boundary. Other a priori approaches to
the construction of conforming local approximation introduce severe restrictions on the cover CW
and essentially lead to the same mesh-generation issues as the previous approach. Hence, we will
not make the assumption that the local approximation spaces Vi employed in our PUM are given
a priori via a conforming splitting. Note however that there is a simple a posteriori technique
[129] that automatically constructs the required splitting of the local approximation spaces, see
§4.2.2.

3.2.2 Non-conforming Approaches
There are many different non-conforming techniques for the treatment of essential boundary con-
ditions, see e.g. [5, 46, 68, 124] and the references therein. Within the meshfree context one of
the

1. penalty or perturbation methods [74, 96],
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2. the Lagrange multiplier method [60, 124],

3. or Nitsche’s method [5, 64, 76]

is usually employed.
The penalty or perturbation approaches are very general concepts for the implementation

of constraints in a variational problem. In our setting we would introduce an additional surface
term in the variational formulation to enforce the boundary conditions. This penalty term may
change the properties of the functional and we need to be concerned with the issues of existence
and uniqueness of a solution. Furthermore, we usually do not achieve the maximal rate of con-
vergence [3, 5, 108]; i.e., thus we would experience a reduction in the approximation quality of
the overall method just because of the inappropriate treatment of boundary conditions.

The Lagrange multiplier method is a general approach toward the solution of constrained
minimization problems which is also used in the finite element [4, 24] and wavelet [86] context to
implement essential boundary conditions. It is well-known that the method converges with the
optimal rates if the function spaces involved, in our setting the interior PUM approximation space
and the multiplier space on the boundary, fulfill a (discrete) Ladyzhenskaya–Babuška–Brezzi (or
inf-sup) condition. Here, the main problem is the design of an appropriate multiplier space on the
boundary. Within the finite element context Pitkäranta [113–115] showed that there is not much
freedom in the design of the multiplier space if the optimal convergence of the method is desired.
Furthermore, the use of Lagrange multipliers (in general) leads to a saddle-point problem and the
arising linear system is indefinite and the design of an optimal solver is not an easy task.

A different variational approach to Dirichlet problems due to Nitsche [108], however, allows
for the use of subspaces VN ⇢ H1(W) which do not have to satisfy the boundary conditions
explicitly, yet it gives the optimal rate of convergence. Let us shortly review this approach in the
following referred to as Nitsche’s method, see [1, 14, 98, 125, 133] for details and the connection
to Mortar techniques. To this end, we first consider the Poisson problem

�Du = f in W ⇢ RD,
u = g on ∂W, (3.19)

for reasons of simplicity. Let ∂nu := ∂u
∂n denote the normal derivative. Testing equation (3.19) with

any sufficiently smooth test function v yields
Z

W
ru ·rv dx�

Z

∂W
(∂nu)v ds =

Z

W
f v dx. (3.20)

Since u = g on ∂W is given as an essential boundary condition, we can introduce the terms
Z

∂W
u(∂nv) ds =

Z

∂W
g(∂nv) ds

in (3.20) and obtain the symmetric formulation
Z

W
ru ·rv dx�

Z

∂W
(∂nu)v ds�

Z

∂W
u(∂nv) ds =

Z

W
f v dx�

Z

∂W
g(∂nv) ds. (3.21)

Yet, the problem (3.21) is not uniquely solvable since the associated bilinear form is not defi-
nite. To overcome this issue, we define additional regularization terms again exploiting the given
boundary data u = g. For instance, we can introduce the terms

Z

∂W
uv ds =

Z

∂W
gv ds.
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Adding a b multiple of these regularization terms to (3.21) gives

Z

W
ru ·rv dx�

Z

∂W

�
(∂nu)v + u(∂nv)

�
ds + b

Z

∂W
uv ds =

Z

W
f v dx�

Z

∂W
g(∂nv) ds + b

Z

∂W
gv ds. (3.22)

Hence, we arrive at the bilinear form

ab(u, v) :=
Z

W
ru ·rv dx�

Z

∂W

�
(∂nu)v + u(∂nv)

�
ds + b

Z

∂W
uv ds (3.23)

and the associated linear form

hlb, vi :=
Z

W
f v dx�

Z

∂W
g(∂nv) ds + b

Z

∂W
gv ds. (3.24)

The regularization parameter b can now be used to enforce the definiteness of the bilinear form
(3.23) and the stability of the above scheme on a particular subspace of V ⇢ H1(W) under the
assumption that there holds the inverse estimate

k∂nukL2(∂W)  CinvkrukL2(W)

for all u 2 V with some constant Cinv > 0. This is readily seen from the inequality

ab(u, u) � kruk2
L2(W) � 2k∂nukL2(∂W)kukL2(∂W) + bkuk2

L2(∂W)
� kruk2

L2(W) � 2CinvkrukL2(W)kukL2(∂W) + bkuk2
L2(∂W)

�
1
2
kruk2

L2(W) + (b� 2C2
inv)kuk2

L2(∂W).

Nitsche proved that the discrete solution of this formulation converges to the exact solution with
optimal order in H1(W) and L2(W) if Cinv ⇣ C diam(supp(fi))�1 for a basis hfii of V. This
additional assumption essentially introduces some geometric constraints on the intersections
supp(fi) \ W and supp(fi) \ ∂W; i.e., in our meshfree context on the cover CW or in the finite
element context on the regularity of the mesh.

In the following we present the application of Nitsche’s method in the PUM context. Here,
a slightly different choice of the regularization terms is more appropriate due to the overlapping
supports of our shape functions. Before we can define these special regularization terms let us
introduce the cover of the boundary ∂W

C∂W := {wi 2 CW | gi 6= ∆}, where gi := wi \ ∂W. (3.25)

Now we define the discrete cover-dependent regularization terms

X

wi2C∂W

diam(gi)�1
Z

gi

uv ds :=
X

wi2C∂W

diam(gi)�1
Z

gi

gv ds.

Note that these regularization terms are weighted sums of overlapping boundary integrals. Adding
a t-multiple of these terms to (3.21) yields the bilinear form

aCW ,t(u, v) :=
Z

W
ru ·rv dx�

Z

∂W

�
(∂nu)v + u(∂nv)

�
ds + t

X

wi2C∂W

diam(gi)�1
Z

gi

uv ds (3.26)
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and the associated linear form

hlCW ,t , vi :=
Z

W
f v dx�

Z

∂W
g(∂nv) ds + t

X

wi2C∂W

diam(gi)�1
Z

gi

gv ds. (3.27)

What is the benefit of using this formulation over (3.23) and (3.24)? To answer this question let us
introduce the following discrete cover-dependent norms on the space H

3
2 +e(W)3

kuk2
1
2 ,CW

:=
X

wi2C∂W

diam(gi)�1
kuk2

L2(gi)
,

k∂nuk2
�

1
2 ,CW

:=
X

wi2C∂W

diam(gi)k∂nuk2
L2(gi)

,

kuk2
1,CW

:= kruk2
L2(W) + kuk2

1
2 ,CW

+ k∂nuk2
�

1
2 ,CW

.

(3.28)

The respective inverse assumption now reads as follows.

Assumption 3.1 (Inverse Assumption). Consider the discrete function space VPU
⇢ H3/2+e(W).

There exists a constant Cinv > 0 such that

k∂nuk
�

1
2 ,CW
 CinvkrukL2(W) (3.29)

holds for all u 2 VPU.

Lemma 3.2. If Assumption 3.1 is satisfied. Then, the bilinear form (3.26) is coercive on VPU provided that
t > 2C2

inv. There hold the estimates

aCW ,t(u, u) � min{
1
4

,
1
4

C�1
inv, t � 2C2

inv}kuk1,CW for all u 2 VPU and
|aCW ,t(u, v)|  (1 + t)kuk1,CWkvk1,CW for all u, v 2 H3/2+e(W).

Proof. Following the presentation of [98] there hold the inequalities
���
Z

∂W
(∂nu)u dx

��� 
X

wi2C∂W

Z

gi

|(∂nu)u| dx

and Z

gi

|(∂nu)u| dx  diam(gi)1/2
k∂nukL2(gi) diam(gi)�1/2

kukL2(gi),

so that with the Cauchy–Schwarz inequality we obtain
���
Z

∂W
(∂nu)u dx

��� 
X

wi2C∂W

diam(gi)1/2
k∂nukL2(gi) diam(gi)�1/2

kukL2(gi)



⇣ X

wi2C∂W

diam(gi)k∂nuk2
L2(gi)

⌘1/2⇣ X

wi2C∂W

diam(gi)�1
kuk2

L2(gi)

⌘1/2

= k∂nuk�1/2,CWkuk1/2,CW .

For any e > 0 we infer

|aCW ,t(u, u)| � kruk2
L2(W) � 2k∂nuk�1/2,CWkuk1/2,CW + tkuk2

1/2,CW

� kruk2
L2(W) � ek∂nuk2

�1/2,CW
� e�1

kuk2
1/2,CW

+ tkuk2
1/2,CW

� kruk2
L2(W) � eC2

invkruk2
L2(W) + (t � e�1)kuk2

1/2,CW

3The underlying assumption is ∂nu 2 H�1/2(∂W) is meaningful, i.e. ∂nu 2 L2(∂W).
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due to the inverse assumption (3.29). Since (t � e�1) > 0 and t > 2C2
inv, we choose e�1 = 2C2

inv
to establish

|aCW ,t(u, u)| �
1
2
kruk2

L2(W) + (t � 2C2
inv)kuk2

1/2,CW
.

Finally, we apply the inverse estimate (3.29) again to obtain

|aCW ,t(u, u)| �
1
4
kruk2

L2(W) +
1
4

C�1
invk∂nuk�1,2,CW + (t � 2C2

inv)kuk2
1/2,CW

.

The second estimate is a direct consequence of (3.28) and the trace theorem. ut
Hence, the problem

aCW ,t(u, v) = hlCW ,t , vi for all v 2 VPU (3.30)

is well-defined and leads to a symmetric positive definite stiffness matrix — if Assumption 3.1
is satisfied and the regularization parameter t is chosen sufficiently large, i.e. t > 2C2

inv. This
however requires a good estimate of C2

inv from Assumption 3.1. Thus we need to be concerned
with the automatic computation of a reliable estimate of CN for our PUM space VPU [125]. To this
end, we consider (3.29) as a sequence of generalized eigenvalue problem

Awi x = liBwi x (3.31)

where
�
Awi

�
k,m :=

X

wj2C∂W\Ci

diam(gi)�1
Z

∂W\wi

(jiJ
m)n(jiJ

k
i )n ds

and
�
Bwi

�
k,m :=

Z

W\wi

r(jiJ
m
i )r(jiJ

k
i ) dx

for patches wi with ∂W\wi 6= ∆. Solving (3.31) for the maximal eigenvalues li,max we get a good
estimate for C2

N := maxN
i=1 li,max.

The advantage of this formulation thus is that the parameter t is invariant under uniform
h-refinement (provided that the inverse assumption holds) and t is only weakly effected by local
h-refinement whereas b strongly depends on any h-refinement. Hence, (3.26) in some sense ac-
counts for local variations in the support sizes via the local weighting factors

P
wi2C∂W

diam(gi)�1

(e.g. in adaptive discretizations).
Note that in the case of a PDE with coefficients this automatic computation of the appropri-

ate regularization parameter must be generalized. To this end let us consider the model problem

� div s(u) = f in W ⇢ RD,
s(u) · n = gN on GN ⇢ ∂W,

u · n = gD,n on GD = ∂W \ GN ,
(s(u) · n) · t = 0 on GD = ∂W \ GN ,

(3.32)

of linear elasticity with

s(u) := C · e(u), and e(u) :=
1
2

⇣
ru + (ru)T

⌘
,

where s(u) denotes the symmetric stress tensor and e(u) the symmetric strain tensor. According
to the construction steps of Nitsche’s method we first test the PDE with a sufficiently smooth func-
tion v and integrate by parts. Next we eliminate natural boundary conditions and symmetrize the
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bilinear form exploiting the information about essential boundary conditions. Finally we consis-
tently add a regularization term to the bilinear form to ensure its definiteness.

Integrating by parts and utilizing the symmetry of s(u), we obtain

�

Z

W
div s(u) · v dx =

Z

W
s(u) : e(v)�

Z

∂W
s(u)n · v ds =

Z

W
f v dx.

Decomposing the boundary ∂W into the Neumann GN and Dirichlet parts GD = ∂W \ GN we can
bring the Neumann boundary conditions to the right-hand side. On the left hand side only the
consistency term on the Dirichlet boundary GD remains.

Z

W
s(u) : e(v) dx�

Z

GD

s(u)n · v ds =
Z

W
f v dx +

Z

GN

gNv ds

On GD we have essential boundary conditions in normal direction but vanishing natural bound-
ary conditions in tangential direction. Therefore, we split the integrand of the consistency term
on the left hand side into normal and tangential parts.

Z

GD

s(u)n · v ds =
Z

GD

�
(n · s(u)n)n + (t · s(u)n)t

�
· v ds

With (3.32) we obtain
Z

W
s(u) : e(v) dx�

Z

GD

(n · s(u)n)n · v ds =
Z

W
f v dx +

Z

GN

gNv ds

Now we are in a position to symmetrize the bilinear form consistently using available boundary
values only.

Z

W
s(u) : e(v) dx�

Z

GD

�
(n · s(u)n)n · v + (n · s(v)n)n · u

�
ds

=
Z

W
f v dx +

Z

GN

gNv ds�
Z

GD

gD,n(n · s(v)n) ds

Finally, we introduce the regularization term which again may only involve available boundary
information. Hence, the regularization for this model problem employs information in normal
direction only, e.g.

ab(u, v) :=
Z

W
s(u) : e(v) dx�

Z

GD

�
(n · s(u)n)n · v + (n · s(v)n)n · u

�
ds + b

Z

GD

u · nv · n ds

and

hlb, vi :=
Z

W
f v dx +

Z

GN

gNv ds�
Z

GD

gD,n(n · s(v)n) + b

Z

GD

gD,nv · n ds.

The respective discrete cover-dependent forms are given by

aCW ,t(u, v) :=
Z

W
s(u) : e(v) dx�

Z

GD

�
(n · s(u)n)n · v + (n · s(v)n)n · u

�
ds +

t
X

wi2CGD

diam(gi)�1
Z

gi

u · nv · n ds
(3.33)
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and
hlCW ,t , vi :=

Z

W
f v dx +

Z

GN

gNv ds�
Z

GD

gD,n(n · s(v)n) ds +

t
X

wi2CGD

diam(gi)�1
Z

gi

u · nv · n ds.
(3.34)

The inverse assumption (3.29) then becomes

k(n · s(u)n)k2
�

1
2 ,CW

 C2
inv

Z

W
s(u) : e(v) dx

= C2
inva(u, u)

 C2
invCcontke(u)k2

L2(W,RD)

(3.35)

and we can estimate the regularization parameter that automatically accounts for the material
parameters by

Awi x = lBwi x

where �
Awi

�
k,m :=

X

wj2C∂W\Ci

diam(gi)�1
Z

∂W\wi

(n · s(u)n)n · (n · s(u)n)n ds

and �
Bwi

�
k,m :=

Z

W\wi

s(u) : e(u) dx.

Observe that the left-hand side essentially involves the square of the coefficients of the PDE
whereas on the right-hand side the coefficients enter linearly only. Thus, the eigenvalues (and
thereby also our regularization parameter) are implicitly weighted by the coefficients of the PDE.
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Chapter 4

Particle–Partition of Unity
Method

The PUM presented in the previous chapter is a general procedure for the construction of an ap-
propriate approximation space VPU for the Galerkin discretization of a partial differential equa-
tion (PDE). The fundamental assumption for the PUM introduced above is the availability of an
admissible cover CW, see Definition 3.3. The cover CW of the PUM is in some sense the meshfree
analogue of a computational mesh in the FEM or other mesh-based methods. The generation of
an appropriate computational mesh in the FEM is a rather challenging problem and one of the
main reasons which lead to the advent of meshfree methods. Hence, the construction of an ad-
missible cover must be simpler than mesh-generation. So how can we construct an admissible
cover CW for an arbitrary input of sampling points XN = {xi 2 W | i = 1, . . . , N} efficiently?

In this chapter we now focus on this very critical issue of constructing an admissible cover
CW for a general given point set XN . Hence, we construct a specific PUM from particle posi-
tions only. The resulting numerical method is hence denoted particle-partition of unity method
(PPUM). Here, we need to consider not only the construction of patches wi which cover the do-
main W but also the fast computation of the respective neighborhoods Ci. Both are not trivially
computed for a general point set XN = {xi 2 W}. The computation of the neighborhoods Ci
is essentially a geometric search problem [120]. Hence, tree-based techniques which have been
used successfully for searching and sorting problems in many areas [83, 119] can be used to tackle
this problem. For instance, there are several tree-based implementations of particle methods for
astrophysics applications [35, 91, 146, 147]. In the context of meshfree Galerkin methods a tree-
algorithm for finding the patches wi covering a single point x; i.e. for the computation of N (x) of
Definition 2.2, was also proposed in [75], however, the cover CW was still assumed to be given.

In the PPUM we employ a hierarchical cover construction algorithm for general domains
W ⇢ RD based only on a given set of irregularly spaced points XN = {xi 2 W | i = 1, . . . , N}
which was first proposed in [61, 125].1 Here, we partition the domain into overlapping D-
rectangular axis-aligned patches wi which we assign to the points xi 2 XN to cover the complete
domain. We use D-binary trees (binary trees, quadtrees, octrees) for the construction of these
patches wi. Other patch geometries like spheres [36] are of course possible but non-rectangular
patches pose additional challenges in the Galerkin discretization, i.e. in numerical integration.

A cover CW generated by the presented hierarchical algorithm is minimal in the sense that
card(N (x)) ⌧ card(CW) is small for all x 2 W and that card(CW) = O(N) [21]. In essence,
we construct covers for general domains that stay close to k-irregular grids. A k-irregular grid
is completely sufficient for a PUM, since the PU functions ji will smoothen the jump within the
spatial resolution and ensure the global regularity conditions imposed on the approximation uPU.

1 A similar approach was also proposed by Klaas and Shepard [80].
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Unlike in the FEM, there is no need for a special treatment of so-called hanging nodes in the PUM.

4.1 Cover Construction
The cover construction algorithm we employ in the PPUM is essentially a sub-division technique.
The starting point of our approach is the construction of a bounding box RW � W of the domain
W. Obviously, the bounding box provides an initial (coarse) cover of the domain. Hence, any sub-
division of the bounding box will also yield a cover of the domain. To this end, we recursively
sub-divide the bounding box based on the particle positions xi 2 XN and scale the resulting cells
to obtain an overlapping covering of the domain W, see Figure 4.1. The complete algorithm reads
as follows, compare [125].

Algorithm 4.1 (Hierarchical Cover Construction).

1. Given the domain W ⇢ RD and a bounding box RW =
QD

d=1[ld
W, ud

W] � W.

2. Given the sampling points XN = {xi | xi 2 W, i = 1, . . . , N} and a scaling parameter a > 1.

3. Build a D-binary tree over RW such that per leaf L at most one xi 2 XN lies within the
associated cell CL :=

QD
d=1[ld

L, ud
L]; see Figure 4.1.

4. Set CW := ∆.

5. For the root cell CL =
QD

d=1[ld
L, ud

L] = RW:

(a) If current tree cell CL is an INNER tree node and CL \W 6= ∆:

i. Descend tree for all successors CS of CL. (! 5(a))

(b) Else if CL \W 6= ∆:

i. Set patch

wL :=
DY

d=1

[xd
L � hd

L, xd
L + hd

L] � CL (4.1)

where
xd

L := ld
L +

1
2
(ud

L � ld
L), and hd

L :=
a

2
(ud

L � ld
L), (4.2)

with a > 1, i.e. wL = aCL.
ii. Set CW = CW [ {wL}.

The following lemma shows that the attained cover CW = {wi} is admissible for a PUM.

Lemma 4.1. The cover CW = {wi} constructed by Algorithm 4.1 is an admissible cover according to
Definition 3.3 for a particular choice of a 2 (1, 2) (explicitly given in the proof below) which depends on
the distribution of the sampling points XN only.

Proof. For the ease of notation let us assume hi = hd
i for d = 1, . . . , D. Then, we have hi ⇣

2�li diam(W) where li refers to the tree-level of the cell Ci associated with patch wi = aCi due to
(4.1). Furthermore, we define the maximal difference of the tree-levels of two overlapping cover
patches by

L := max
wi2CW

max
wj2Ci

|li � lj|, (4.3)



4.1. Cover Construction 35

Figure 4.1. Hierarchical cover construction in two dimensions. The cell decomposition induced
by XN (upper left, red squares: xi 2 XN) and its corresponding tree representation (upper right, white:
INNER tree nodes, gray shaded: LEAF tree nodes) after step 3 of Algorithm 4.1. Here, the leaves of the tree
correspond to the points xi 2 XN. The final cell decomposition (lower left) with the cell-centers xL (black
circles) and its tree representation (lower right) after the completion of Algorithm 4.1. Now, the leaves of
the tree correspond to the cell-centers.

compare Figure 4.2, and we obtain the comparability (3.12) of neighboring patches for CN � 2L.
Observe that for a uniform tree subdivision the covering index lCW is easily bounded by

lCW(x)  card(Ci)  3D

for all x 2 W with x 2 wi since a < 2. For an irregular tree subdivision we sum these uniform
bounds over all levels lj of wj 2 Ci where x 2 wi to attain the bound

lCW(x)  lCW(x)  3DL

and M � 3DL yields (3.9). Yet, this bound for M is rather crude. For an arbitrary x 2 W let us
define

wi := argmax wj2CW
x2wj

dist(x, ∂wj).

Then, there hold the bounds

dist(x, ∂wi) 
1
2

diam(wi), dist(x, ∂wi) �
a� 1

2
diam(wi)

which yield a 2 [1, 2]. The inequality (3.8) is equivalent in our setting to

diam(wi)  CFT diam({x 2 wi | lCW(x) = 1}). (4.4)

Observe that

(a� 1) diam(wi) <
1
2

diam(wj)
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Figure 4.2. The final cell decomposition obtained by Algorithm 4.1 for the points xi 2 XN (red
squares) with the respective cell-centers xL (black circles) and a single patch (gray shaded) wL = a CL
obtained by scaling the respective tree-cell CL with a = 1.2.

must hold for all wi \wj 6= ∆ with diam(wi) � diam(wj) to attain lCW = 1 for some point x 2 wj.
Thus, we obtain the restriction

(a� 1) <
1
2

C�1
N
 2�L�1, such that a < 1 + 2�L�1 (4.5)

from (3.12) and (4.4) follows with

CFT =
a

a� 1
� 2L+1.

ut
Remark 4.1. The underlying tree construction of Algorithm 4.1 also enables us to compute the
connectivity between the degrees of freedom of our PUM space VPU efficiently. To this end, we
only need to compute the neighborhoods Ci via a descent of the tree structure.

Recall from Lemma 3.1 that the Shepard PU (3.13) defined on an admissible cover CW sat-
isfies Definition 3.1 and has the flat top property (3.7). There we obtained the bound Cr �
(CN + 1)CWMCT(CW ,∂CS)�2 for the respective PU, with the results of Lemma 4.1 this yields

Cr � (2L + 1) 3DL CT CWC�2
W ,∂ 22(L+3) (4.6)

for the Shepard PU (3.13) with weights (3.14) defined on the admissible cover CW obtained from
Algorithm 4.1 with a scaling parameter of a = 1 + 2�L�2.

Note that we may construct more cover patches wi 2 CW than there are sampling points
xi 2 XN , i.e. card(CW) � card(XN) = N, since we define a cover patch wi not only for tree-cells
C that contain a particular point xi 2 XN but also for tree-cells that do not contain a point from
the sampling set XN . Even though this approach increases the number of degrees of freedom of
the resulting PPUM space VPU it actually reduces the computational cost of a respective Galerkin
discretization with VPU as trial and test space [125]. Furthermore, the resulting number of cover
patches wi 2 CW is of the same complexity O(N) if the input data XN are (close to) uniformly
distributed. For the ease of notation we therefore denote the number of cover patches N :=
card(CW) and refer to the input data as XN̂ with N̂  N.

Recall from §2.2 that the weight functions Wi (3.14) of the Shepard construction (3.13) can be
centered in an arbitrary point x 2 wi; i.e., there is no benefit of using the sampling points xi 2 XN
as centers for the weights Wi. Hence, we use the input data XN only for the construction of the
cover CW and assign weight functions Wi to these cover patches wi that are centered in the centers
of wi, compare (4.2). Due to this decision we obtain PU functions with simpler algebraic structure
which substantially reduces the computational effort in numerical integration [125].



4.2. Selection of Local Approximation Spaces 37

4.2 Selection of Local Approximation Spaces
Recall that the local approximation spaces Vi of a general PUM space VPU =

PN
i=1 jiVi provide

the approximation power to VPU. Since the PU functions ji yield a smooth transition between
the local approximation spaces there are no explicit compatibility conditions on the Vi as in the
FEM. The Vi are completely independent of each other and the use of problem-dependent local
approximation spaces Vi is one of the key benefits of the PUM approach. In general we assume
that the local approximation spaces Vi := spanhJn

i i are comprised of a smooth polynomial part
P

pi = spanhys
i i and a problem-dependent enrichment part Ei = spanhht

i i; i.e., we assume that

Vi := spanhJn
i i = P

pi + Ei = spanhys
i , ht

i i. (4.7)

As a basis hys
i i for the polynomial space P pi we usually employ linear transformations of tensor

products Ys of univariate Legendre polynomials, i.e.

ys
i := Ys

� Ti, with Ti : B(wi \W)! [�1, 1]D

where B(wi \W) denotes a minimal bounding box of wi \W.
Note that we do not need to assume that the system hJn

i i is a stable basis of Vi in the PPUM.
Here, we rather construct an appropriate stable basis from the generating system hJn

i i automat-
ically which allows us to select problem-dependent enrichment spaces Ei by focusing on the ap-
proximation properties only. There is no need to be concerned with the stability of the resulting
system hJn

i i = hys
i , ht

i i a priori. The stability of the PPUM will be attained automatically by our
approach while maintaining the approximation properties of Vi of (4.7).

4.2.1 Stability

We ensure the stability of the PPUM by a special local preconditioning technique [127, 130], see
also §5.3.2. Recall that we employ a flat top PU in the PPUM and hence must only be concerned
with the stability of the local systems hJn

i i for all patches wi 2 CW. Thus we need to transform
each ill-conditioned system (or generating system) hJn

i iwith Vi = spanhJn
i i to a stable basis hJ̃m

i i
of the respective local approximation space Vi. To this end, we setup the local mass matrix with
the entries

(Mi)m,n :=
Z

wi\W
Jn

i Jm
i dx for all m, n = 1, . . . , dV

i (4.8)

using all functions Jn
i of the generating system hJn

i i. From the eigenvalue decomposition

OT
i MiOi = Di with Oi, Di 2 RdV

i ⇥dV
i

of the matrix Mi where

OT
i Oi = IdV

i
, (Di)m,n = 0 for all m, n = 1, . . . , dV

i with m 6= n

we can extract a stable basis hJ̃m
i i by a simple cut-off of small eigenvalues. To this end let us

assume that the eigenvalues (Di)m,m are given in decreasing order, i.e. (Di)m,m � (Di)m+1,m+1.
Then we can easily partition the matrices OT

i and Di as

OT
i =

✓
ÕT

i
KT

i

◆
, Di =

✓
D̃i 0
0 ki

◆
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where the mth row of the rectangular matrix ÕT
i is an eigenvector of Mi that is associated with

an eigenvalue (Di)m,m = (D̃i)m,m � e (Di)0,0 and KT
i involves all eigenvectors that are associated

with small eigenvalues. Since (D̃i)m,m � e (Di)0,0 the operator

Si := D̃�1/2
i ÕT

i

is well-defined and can be evaluated stably. Furthermore, the projection Si removes the near-null
space of Mi due to the cut-off parameter e and we have

Si MiST
i = D̃�1/2

i ÕT
i MiOiD̃�1/2

i = IdP
i

where dS
i := card{(Di)m,m � e (Di)0,0} denotes the row-dimension of ÕT

i and Si. Hence, the
operator Si maps the ill-conditioned generating system hJn

i i = hys
i , ht

i i to a basis hJ̃m
i i that is

optimally conditioned — it is an optimal preconditioner.2

Remark 4.2. Note that we do not need to apply the local preconditioner Si for the evaluation
of the basis hjiJ̃

m
i i in each quadrature point during the assembly of the stiffness matrix. It is

sufficient to transform the stiffness matrix AGS which was assembled using the generating system
hjiJ

n
i i = hjiy

s
i , jih

t
i i by the block-diagonal operator S with the block-entries

(S)i,j :=
⇢

Si i = j
0 else, (4.9)

for all i, j = 1, . . . , N; i.e., we obtain the stiffness matrix A with respect to the stable basis hjiJ̃
m
i i

as the triple-product3

A = SAGSST .

Remark 4.3. Note that in the presentation above the equivalencies

Vi = spanhJn
i i = spanhJ̃m

i i

hold only up to the employed numerical cut-off parameter e > 0; i.e. we have

spanhJ̃m
i i ⇡ Vi.

For the ease of notation however we keep the notation Vi = spanhJ̃m
i i.

Remark 4.4. Note that in the discussion above we have considered the identity operator I on the
local patch wi, i.e. the mass matrix Mi. However, we can construct the respective preconditioner
also for different operators e.g. the operator �D + I which corresponds to the H1-norm. In exact
arithmetic and with a cut-off parameter e = 0 changing the operator in the above construction
has an impact on the constants only. However, due to our cut-off parameter e we may obtain a
different subspace spanhJ̃m

i i for different operators with the same e.

Now that we have a stable basis hjiJ̃
m
i i of our PPUM space VPU =

PN
i=1 jiVi let us come

back to the important issue of essential boundary conditions. Recall from §3.2 that the use of (a
priori) conforming local approximation spaces Vi is in general not trivial in the PUM so that the
non-conforming approach due to Nitsche is usually employed in the PUM. Yet, we can generalize
the above approach for the construction of a stable PPUM basis to construct a direct splitting of
the employed local approximation spaces Vi into a sub-space Vi,K with vanishing traces on the
Dirichlet boundary and a sub-space Vi,I with non-vanishing traces automatically.

2To account for the original scaling of the local mass matrix M, i.e. of the smooth function space P pi , we employ an
additional diagonal scaling based on the matrix block corresponding to the basis functions ys

i . Note that we formally need
to construct the stable basis on the flat top region wFT.

3Note however that this operation is easily parallelizable since S and ST are block-diagonal.
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4.2.2 Conformity
Even though Nitsche’s approach to the implementation of essential boundary conditions is of op-
timal complexity and provides an optimally convergent numerical scheme there are some draw-
backs. First and foremost, there is the need to construct the respective bilinear form (3.23) and
the associated linear form (3.24) analytically. Since these forms depend strongly on the configura-
tion of the boundary conditions it is not trivial to change boundary conditions in an interactive
user-driven manner. Often a change in the boundary conditions requires some amount of imple-
mentation work and a re-assembly of the stiffness matrix on the boundary. Secondly, the essential
boundary data is only weakly approximated and the error on the boundary is balanced with the
error in the interior by Nitsche’s approach. This can be inappropriate in situations where the
boundary conditions need to be enforced strictly.

Let us focus on the latter issue first. The essential boundary conditions can of course be
enforced (more) strictly in Nitsche’s approach by increasing the regularization parameter b. In
the limit b ! • the essential boundary data are strictly enforced in L2(GD) and the convergence
of the scheme is still of optimal order. However the constant, i.e. the absolute value of the error,
can increase. Moreover a large regularization parameter b has a severely adverse effect on the
condition number of the resulting stiffness matrix rendering the solution of the linear system
rather challenging.

Nevertheless let us consider the limit case b ! • in some more detail. To this end, let us
consider the model problem

L(u) := � div s(u) = f in W ⇢ RD,
BN(u) := s(u) · n = gN on GN ⇢ ∂W,
BD,t(u) := (s(u) · n) · t = 0 on GD = ∂W \ GN ,
BD,n(u) := u · n = gD,n on GD = ∂W \ GN .

(4.10)

For the ease of notation let us introduce the following short-hand notation

VW := {v 2 VPU
| supp(v) \ GD = ∆},

VD,n,K := {v 2 VPU
| supp(v) \ GD 6= ∆ and BD,n(v) = (v · n)|GD = 0},

VD,n,I := {v 2 VPU
| supp(v) \ GD 6= ∆ and BD,n(v) = (v · n)|GD 6= 0}.

(4.11)

With b ! • the bilinear form obtained by Nitsche’s method for the weak formulation of (4.10),
compare (3.23) and (3.33), becomes

a•(u, v) =

8
>>>>>>><

>>>>>>>:

Z

W
s(u) : e(v) dx v 2 VW,

Z

W
s(u) : e(v) dx�

Z

GD

(n · s(u)n)n · v ds v 2 VD,n,K,
Z

GD

(u · n)(v · n) ds v 2 VD,n,I ,

(4.12)

and we attain the respective linear form

hl•, vi =

8
>>>>>>><

>>>>>>>:

Z

W
f v dx +

Z

GN

gNv ds v 2 VW,
Z

W
f v dx +

Z

GN

gNv ds�
Z

GD

gD,n(n · s(v)n) ds v 2 VD,n,K,
Z

GD

gD,n(v · n) ds v 2 VD,n,I .

(4.13)
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Figure 4.3. Schematic of a uniform tree decomposition of an L-shaped domain W on level k = 1
(left) and level k = 2 (right). The shaded areas indicate the flat top areas wFT,i of the respective PU
functions arising from the scaling (4.1) with a = 1.25. On level k = 2 we find one patch wi which overlaps
the re-entrant corner and satisfies wi \ ∂W 6= ∆ and wFT,i \ ∂W = ∆. Thus, the respective PU function
ji does not satisfy the flat top condition on the boundary ∂W.

Obviously, in the case v 2 VD,n,K we can simplify the weak form back to the classical weak for-
mulation since BD,n(u) = gD,n and we obtain

Z

W
s(u) : e(v) dx =

Z

W
f v dx +

Z

GN

gNv ds (4.14)

for all v 2 VW + VD,n,K which involves no information about the Dirichlet boundary GD. On the
other hand, for v 2 VD,n,I we need to consider the weak formulation

Z

GD

(u · n)(v · n) ds =
Z

GD

gD,n(v · n) ds (4.15)

which involves no information about the interior W� or the Neumann boundary GN . Note that
the above consideration involves a splitting of the test space only, not the trial space. Hence, we
obtain the non-symmetric stiffness matrix A and the respective load vector f̂ in block-form

A =
✓

AK,K AK,I
0 BI,I

◆
, f̂ =

✓
f̂K
ĝI

◆
. (4.16)

where A·,· denotes the use of (4.14) and B·,· denotes the use of (4.15). Hence, the associated linear
system Aũ = f̂ with ũ = (ũK, ũi)T can (formally) be solved by block-elimination

ũI = B�1
I,I ĝI , ũK = A�1

K,K( f̂K � AK,I ũI). (4.17)

This is a standard technique in the FEM since the kernel of the trace operator BD,n (applied to the
FEM space) is known a priori so that a respective partitioning (4.11) can be obtained easily. In
meshfree methods as the PPUM, however, the kernel of the trace operator BD,n (applied to the
meshfree function space) is not known a priori. Furthermore, the computation of the kernel of
BD,n is in general a global operation and hence prohibitively expensive. Yet, for the PPUM we
can compute the (essential) kernel of the global operator BD,n by local operations only. To be more
precise we can compute a sub-space VPU

I ⇢ VPU and a localized approximation B̂I,I to the trace
operator BD,n that is invertible on VPU

I ⇢ VPU.
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For the ease of notation let us assume that the system hjiJ
n
i i denotes a stable basis of VPU,

compare §4.2.1. Then, the trace BD,n(uPU) of an arbitrary PPUM function

uPU =
NX

i=1

ji

diX

m=1

um
i Jm

i

obviously vanishes if the traces BD,n(Jm
i ) of all local approximation functions vanish, i.e.,

BD,n(uPU) = 0 (= BD,n(Jm
i ) = 0 for all (i, m) (4.18)

with i = 1, . . . , N, and m = 1, . . . , di := dim(Vi). We obtain the equivalence

BD,n(uPU) = 0 () BD,n(Jm
i ) = 0 for all (i, m) (4.19)

if we assume that the employed PU satisfies a flat top condition also for the Dirichlet boundary.
For convex domains W this is automatically satisfied by our construction. However at re-entrant
corners this boundary flat top property is not ensured by the uniform isotropic scaling of (4.1),
see Figure 4.3. Here, the introduction of a more general anisotropic scaling is necessary. The
equivalence (4.19) yet is needed only to compute the (global) inverse of BI,I in (4.17). Fortunately,
we can avoid the computation of the inverse of BI,I with respect to the global basis hjiJ

m
i i in

our PPUM. Thus our construction requires the implication (4.18) only and we can stick with the
uniform isotropic scaling (4.1) in our cover construction also for non-convex domains W.

Let us consider a patch wi \ GD,n 6= ∆ and its associated local approximation space Vi(wi) =
spanhJm

i i with di = dim(Vi). First, we discretize the trace operator BD,n locally using the basis
hJm

i i, i.e., we compute the (normal part of the) mass matrix MD,n
i on the Dirichlet boundary with

the entries
(MD,n

i )k,l =
Z

GD,n

(Jk
i · n)(Jl

i · n) ds for all k, l = 1, . . . , di. (4.20)

Then we compute the eigenvalue decomposition

OT
i MD,n

i Oi = Di with Oi, Di 2 Rdi⇥di

of the matrix MD,n
i where

OT
i Oi = Idi , (Di)k,l = 0 for all k, l = 1, . . . , di and k 6= l,

the transformation OT
i is normal and Di is diagonal. Let us assume that the eigenvalues (Di)k,k

are given in decreasing order, i.e. (Di)k,k � (Di)k+1,k+1. Then the matrices OT
i and Di are block-

partitioned as

OT
i =

✓
ÕT

i
KT

i

◆
, Di =

✓
D̃i 0
0 ki

◆

where the rows of the rectangular matrix KT
i denote those eigenvectors of the discrete local trace

operator MD,n
i that span the (numerical) kernel of MD,n

i , i.e. the near-null space. The diagonal
matrix k collects the respective dK

i vanishing (or small) eigenvalues of MD,n, i.e. (ki)k,k < e (Di)0,0.
Hence the product operators

PD,n
i,I := ÕiÕT

i =

 
IdI

i
0

0 0

!
, and PD,n

i,K := KiKT
i =

 
0 0
0 IdK

i

!
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with dI
i = di � dK

i are the projections on the image of the discrete local trace operator MD,n
i and

the kernel respectively. These projections operate on the new basis hJ̃m
i i given by the normal

transformation
OT

i : Vi = spanhJm
i i ! Vi = spanhJ̃m

i i.

Furthermore, we obtain the local sub-spaces

Vi,I := ÕT
i (Vi), and Vi,K := Ki(Vi).

Thus, the new basis hJ̃m
i i (i.e. the respective eigenfunctions of BD,n) provides a direct splitting

Vi = Vi,K �Vi,I

of the local space Vi into a sub-space Vi,I which is suitable for the approximation of the Dirichlet
boundary conditions locally on wi \ GD and a sub-space Vi,K appropriate for the approximation
of the PDE in wi \ W. Considering these local splittings for all wi \ GD 6= ∆ (for the patches
wi \ GD = ∆ we set Vi,K := Vi) we obtain the corresponding direct splitting of the global PPUM
space VPU, i.e.

NX

i=1

jiVi = VPU = VPU
K �VPU

I :=
NX

i=1

jiVi,K �

NX

i=1

jiVi,I (4.21)

and we obtain a partitioned global stiffness matrix A in the form (4.16) as the discretization of
(4.10). Yet, the global discrete trace operator BI,I (which may not be invertible) of (4.16) was
replaced by the block-diagonal operator B̂I,I = (MD,n

i ) that is by construction always invertible
on the local sub-spaces Vi,I .

Note that we do not need to assemble the stiffness matrix AC associated with the classical
bilinear form (4.14) directly with respect to the computed basis hJ̃m

i i. We can carry out the as-
sembly of the stiffness matrix using the original basis functions hJm

i i of Vi and apply the normal
block-diagonal transformation C with the entries

(C)i,j :=

8
<

:

Idi j = i and wi \ GD = ∆,
OT

i j = i and wi \ GD 6= ∆,
0 j 6= i.

(4.22)

That is we attain the stiffness matrix AC in block-form (4.16) with respect to the new basis hJ̃m
i i

as the triple-product
AC := CACT

via a simple post-processing operation, see also Remark 4.2. Furthermore, the blocks AC
K,K and

AC
K,I corresponding to (4.16) of AC can directly be computed with the help of the projections CK

and CI where we just replace OT
i in the definition (4.22) of C by KT

i and ÕT
i respectively; i.e., we

have
AC

K,K := CK ACT
K , and AC

K,I := CK ACT
I . (4.23)

The matrix BI,I of (4.16) is replaced by the block-diagonal matrix B̂C
I,I with the entries

(B̂C
I,I)i,j :=

⇢
ÕT

i MD,n
i Õi = D̃i j = i and wi \ GD 6= ∆,

0 else

This matrix however is never explicitly formed. We rather implement the action of the inverse of
B̂I,I directly by local operations on the respective patches wi, see Step 7 in Algorithm 4.2.
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Note that this purely algebraic approach which yields a conforming local treatment of essen-
tial boundary conditions also eliminates the first drawback of Nitsche’s approach. The user may
now interactively change the boundary conditions of (4.10). A change of the boundary configura-
tion only affects the transformation C and thereby requires only local operations. There is no need
to change the employed bilinear form; i.e., we do not need to derive a new weak form analytically
nor do we need to compute a new regularization parameter b. There is also no need for a direct
re-assembly of the stiffness matrix. We only need to update the respective block-entries of C in
(4.22). The entries of C are computed from the local matrices MD,n which involve only the local
approximation functions Jm

i not the PU functions ji. Moreover, MD,n is an operator of order zero
and defined on the Dirichlet boundary only. Hence, the computation of the respective integrals is
much less involved than the direct assembly of the stiffness matrix for the product functions jiJ

m
i

for patches wi overlapping the Dirichlet boundary GD.
Thus, a PPUM discretization of our model problem (4.10) using this conforming formulation

of essential boundary conditions is summarized by the following algorithm.

Algorithm 4.2 (PPUM with automatic conforming boundary treatment).

1. Discretize the classical bilinear form (4.14) using the global basis hjiJ
m
i i of the global space

VPU ignoring all boundary conditions. Denote the obtained global matrix AJ.

2. Discretize the linear form
hlW, vi :=

Z

W
f v dx

using the global basis hjiJ
m
i i of the global space VPU ignoring all boundary conditions.

Denote the obtained global vector f̂V .

3. Discretize the linear form
hlN , vi :=

Z

GN

gNv ds

associated with the Neumann boundary conditions using the global basis hjiJ
m
i i of the

global space VPU for all patches wi \ GN 6= ∆. Denote the obtained global vector ĝN .

4. Discretize the linear forms

hli,D,n, vi :=
Z

wi\GD

gD(v · n) ds

associated with the Dirichlet boundary conditions locally on each patch wi \ GD 6= ∆ using
the respective basis hJm

i i. Denote the obtained local vectors ĝi
D.

5. Discretize the bilinear forms

bi(u, v) :=
Z

wi\GD

(u · n)(v · n) ds

associated with the (restricted) trace operator locally on each patch wi \ GD 6= ∆ using the
respective basis hJm

i i of Vi with di := dim(Vi). Denote the obtained local matrices MD,n
i .

6. Compute the eigenvalue decompositions

OT
i MD,n

i Oi = Di with Oi, Di 2 Rdi⇥di
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of the local matrices MD,n
i on the respective patches wi \ GD 6= ∆. Define the sub-matrices

corresponding to the block-partitioning

OT
i =

✓
ÕT

i
KT

i

◆
, Di =

✓
D̃i 0
0 ki

◆

by ordering the eigenvalues (Di)k,k decreasingly such that D̃i is invertible.

7. Solve locally on each patch wi \ GD 6= ∆ for the essential boundary conditions in Vi,I :=
ÕT

i (Vi) via
ũi,D := ÕiD̃�1

i ÕT
i ĝi

D.

Define the vector ũI := (ũi,D) which corresponds to a function uD 2 VPU
I :=

PN
i=1 jiVi,I

with BD,n(uD) = gD on the Dirichlet boundary GD.

8. Define the transformation C according to (4.22) and the respective projections CK : VPU
!

VPU
K and CI : VPU

! VPU
I . Define the blocks AC

K,K and AC
K,I according to (4.23).

9. Solve globally for the remaining degrees of freedom, i.e. solve in VPU
K := CK(VPU) =PN

i=1 jiKT
i (Vi), via

ũK := (AC
K,K)�1(Ck( f̂V + ĝN)� AC

K,I ũI). (4.24)

10. Apply the transformation C to obtain the solution ũPU with respect to the original global
basis hjiJ

m
i i of the global space VPU, i.e. set

ũPU := CT
✓

ũK
ũI

◆
.

Observe that step 7 of Algorithm 4.2 corresponds to the solution of BI,I ũI = ĝD of (4.17).
However the discrete global trace operator BI,I is replaced by the block-diagonal matrix B̂I,I of
the discrete local trace operators MD,n

i with respect to the new basis, i.e. B̂I,I is block-diagonal
with diagonal blocks D̃i. Hence, the boundary value gD is approximated locally on each patch wi
with wi \ GD 6= ∆. Recall that the matrix AC

K,K is always invertible on VPU
K due to the use of a flat

top PU.
The proposed discretization scheme employs the classical weak formulation of the consid-

ered PDE only. Thus, there is no need for the analytical derivation of an appropriate weak form
for the particular PDE as with Nitsche’s method. The numerical treatment of a general PDE via
our PPUM with automatic conforming boundary treatment is straightforward and substantially
simplified compared with Nitsche’s method. Most importantly, the configuration of boundary
conditions can be changed efficiently by local operations only. There is no feedback into the
weak formulation of the problem, no computation of a regularization parameter, and the resulting
global linear system that needs to be solved is of smaller dimension than with Nitsche’s method.

Observe however that the Dirichlet boundary data is approximated locally only, i.e. BI,I is
replaced by the block-diagonal matrix B̂I,I of the discrete local trace operators MD,n

i . The blocks
MD,n can be computed very efficiently since they involve only the local basis functions Jm

i not the
partition of unity functions ji; i.e., we ignore the overlap of the patches in the approximation of
the Dirichlet data.
Remark 4.5. If the geometry of a particular boundary segment wi \ GD is rather complicated or the
employed local approximation space Vi on the respective patch wi is not rich enough to resolve
the geometry of wi \ GD, then the kernel of the discrete local trace operator will be empty. Thus
all degrees of freedom of Vi are used for the approximation of the Dirichlet data and the PDE is
considered on the patch wi only as a correction of the right-hand side via AK,I .
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4.3 Galerkin Discretization
Let us summarize the complete algorithmic procedure involved with the Galerkin discretization
of our model problem (4.10) via the PPUM. Here, besides the classical discretization steps we
must also compute the stability transformation/preconditioner S of §4.2.1 and the transformation
C which provides a conforming splitting of VPU.

Algorithm 4.3 (PPUM stable and conforming).

1. Compute an admissible cover CW = {wi | i = 1, . . . , N} via Algorithm 4.1.

2. Define the Shepard functions ji according to (3.13) on the admissible cover patches wi 2 CW.

3. Select a local space Vi with associated generating system hJn
i i; i.e. Vi = spanhJn

i i for each
patch wi 2 CW.

4. Define the global PPUM space VPU with global generating system hjiJ
n
i i, i.e.

VPU :=
NX

i=1

jiVi = spanhjiJ
n
i i.

5. For each patch wi 2 CW compute local transformation/preconditioner Si which maps the
local generating system hJn

i i to a stable basis hJn
i,SBi of Vi.

6. Define the global transformation/preconditioner S (4.9) which maps the global generating
system hjiJ

n
i i to a global stable basis hjiJ

m
iSBi, i.e.,

VPU = spanhjiJ
m
i,SBi.

7. For each patch wi 2 CW with wi \ GD 6= ∆ compute the local transformation Ci which maps
the stable basis hJm

i,SBi to the stable basis hJm
i,CSBi and define the respective projections Ci,K,

and Ci,I which provide the local direct splitting

Vi = Vi,K �Vi,I := Ci,K(Vi)� Ci,I(Vi) = spanhJm
i,K,CSBi � spanhJm

i,I,CSBi.

To this end discretize the trace operator locally using the generating system hJn
i i of Vi. De-

note the obtained local matrix MD,n
i . Apply the local preconditioner Si, i.e. define

MD,n
i,SB := Si M

D,n
i ST

i ,

and compute Ci, Ci,K and Ci,I from the eigenvalue decomposition of MD,n
i,SB.

8. Define global transformation C according to (4.22) and the respective global projections CK
and CI to obtain the global direct splitting

VPU = VPU
K �VPU

I := CK(VPU)� CI(VPU) =
NX

i=1

jiVi,K �

NX

i=1

jiVi,I .

9. For each patch wi with wi \ GD 6= ∆ discretize the Dirichlet data gD locally using the gen-
erating system hJn

i i. Denote the local vector ĝi,D. Apply local preconditioner Si, the local
projection Ci,I and solve

Ci,I MD,n
i,SBCT

i,I ũ
CSB
i = Ci,ISigi,D,

note that Ci,I MD,n
i,SBCT

i,I is diagonal and invertible.
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10. Define the global representation ũCSB
I 2 VPU

I of the discrete Dirichlet data by

(ũCSB
I )i := ũCSB

i for all wi \ GD 6= ∆.

11. Discretize the classical bilinear form (4.14) and the respective linear form using the global
generating system hjiJ

m
i i of the global space VPU. Denote the obtained global matrix A and

the global load vector f̂ . Apply the global preconditioner S and the global projections Ck
and CI to obtain

ACSB
K,K := CKSASTCT

K , ACSB
K,I := CKSASTCT

I , f̂ CSB
K := (CKS f̂ � ACSB

K,I ũCSB
I ).

12. Solve for ũCSB
K 2 VPU

K via
ACSB

K,K ũCSB
K = f̂ CSB

K .

13. Apply the transformation C and the preconditioner S to obtain the global solution with
respect to the generating system hjiJ

n
i i of VPU, i.e. define

ũPU := STCT
✓

ũCSB
K

ũCSB
I

◆
.

Thus, the PPUM discretization of a PDE can be split into three major steps: First, an initial
setup step, where all geometric operations, i.e. the cover construction and the computation of the
neighborhoods Ci for the definition of the PU, are completed. This step is of the computational
complexity O(N log N) if we assume that the input data XN is (close to) uniformly distributed.
The actual discretization is the second step. If we denote the number of local approximation
functions on a particular patch wi by ci := card(hJm

i i) we can bound the operation count of this
step, i.e. the assembly of the stiffness matrix A, by

O
⇣ NX

i=1

ci
X

wj2Ci

cj

⌘
< O

⇣
N( max

i=1,...,N
ci)2
⌘

.

The discretization of the load vector f̂ is of

O
⇣ NX

i=1

ci

⌘
< O

⇣
N max

i=1,...,N
ci

⌘

complexity. The computation of the preconditioner S and the transformation C requires

O
⇣ NX

i=1

c3
i

⌘
< O

⇣
N( max

i=1,...,N
ci)3
⌘

operations. Finally, we must consider the computational complexity of the solution step. For the
degrees of freedom of VPU

I we obtain the bound

O
⇣ X

wi\GD 6=∆

ci

⌘
< O

⇣
N(D�1)/D max

i=1,...,N
ci

⌘

due to the fact that the respective linear system is diagonal. The matrix ACBS
K,K however is a general

large sparse matrix so that it is not trivial to obtain an optimal operation count for the solution of
the respective linear system.
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4.4 Solution of Resulting Linear System
In the following we focus on the solution of the large sparse linear system Aũ = f̂ where A 2
Rdof⇥dof and ũ 2 Rdof denotes a coefficient vector and f̂ 2 Rdof denotes a moment vector. The
use of an inappropriate linear solver can drive up the compute time as well as the storage demand
dramatically.

Classical direct solvers (for dense matrices) like Gaußian elimination or LU-decomposition
have a storage requirement of O(dof2) and the number of operations even scales with O(dof3).
For our PUM space we have dof =

PN
i=1 ci  Ncmax where N = card(CW) denotes the number

of patches wi and cmax = maxi=1,...,N ci. Hence, the number of operations necessary to solve the
stiffness matrix with a classical direct solver is of the order O((Ncmax)3). Since the stiffness matrix
A is a sparse block-matrix with dense blocks its storage demand is of the order O(Nc2

max), yet the
storage requirement of the method would increase to O((Ncmax)2) if we apply a direct solver. The
use of a more advanced direct solver for sparse matrices can cure this dramatic increase in com-
pute time and storage requirements to some extent only. The minimal complexity of O(Nc2

max)
would still be lost and we experience a significant rise in the demand for computing resources
due to the use of a direct solver (for dense or sparse matrices).

Another class of linear solvers are the classical iterative schemes like the Jacobi- or Gauß–
Seidel method. Here, we do not have a significant increase in the storage requirements, but the
number of operations necessary to obtain the solution of the linear system does also not scale
with the optimal complexity. A very sophisticated class of iterative methods which not only
show an optimal scaling in the storage demand but also in the operation count are so-called
multilevel iterative solvers or multigrid methods [26, 27, 50, 69, 70, 152]. These solvers, however,
are not general algebraic methods but involve a substantial amount of information about the
discretization and possibly the PDE.4 Hence, we cannot expect an existing multilevel solver which
was designed for a completely different type of discretization to solve our linear system from a
meshfree PPUM discretization. We rather need to translate the key ideas and ingredients to our
meshfree setting [32, 34, 62, 125, 153].

For the efficient solution of linear systems derived from grid-based discretizations multigrid
[70] and multilevel methods [152] have been developed since the late 1970s. Here, we usually deal
with nested grids W0 ⇢ W1 ⇢ . . . ⇢ WJ where J denotes the finest level of discretization. In a
finite element setting we have the associated nested function spaces Vk

V0⇢V1⇢V2⇢ · · ·⇢VJ�1⇢VJ ,

with nodal basis functions fi,k 2 Vk that satisfy the Kronecker property fi,k(xj,k) = di,j. These two
properties contribute significantly to the optimal convergence of multigrid methods and they are
also the standard prerequisites in the respective convergence proofs.

The fundamental observation which led to the development of multigrid methods was that
classical iterative schemes like the Jacobi- or the Gauß–Seidel method reduce oscillatory error
components very efficiently but their convergence behavior breaks down for smooth errors. Such
smooth errors, however, can be approximated very well on a coarser mesh. Furthermore, these
formerly smooth functions (with respect to the original mesh-width) are now again more oscilla-
tory (with respect to the coarser mesh-width). Hence, a classical iterative scheme on the coarser
mesh will again start to converge very efficiently. Now, we can either apply this idea recursively
or we can use a direct solver on the coarser mesh since the number of degrees of freedom is
smaller than on the original mesh. Finally, we need to correct only the current iterate on the orig-

4 There are algebraic multigrid (AMG) methods [142] but their construction is (in general) based on the assumption
of a nodal linear basis. These methods are very involved and a generalization of AMG to meshfree discretizations is not
an easy task. Another class of iterative algebraic solvers based on so-called H matrices [72, 73] may also be applied to
meshfree methods to construct (close to) optimal solvers.
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inal mesh by the computed solution on the coarse mesh to obtain a better approximation to the
solution of the linear system on the fine level. Hence, a multigrid method essentially consist of
two operations: the application of a classical iterative method (the so-called smoother) on the cur-
rent mesh and the transfer of information between two successive meshes (the so-called interlevel
transfer). Let us shortly look at how multilevel methods work. To this end we introduce the
standard prerequisites and basic assumptions for a multilevel algorithm.

1. Let V0, . . . ,VJ with dofk := dim(Vk) be a sequence of (nonnested) finite dimensional vector
spaces with Vk ⇢ V for all k = 0, . . . , J and let VJ denote the finest discretization space.

2. Assume that we have a symmetric positive definite bilinear form a (·, ·) on the function
space V and its respective representation Ak 2 Rdofk⇥dofk on the discretization spaces Vk for
k = 0, . . . , J with nnz(Ak) = O(dofk) non-zero entries.

3. Assume that we have a linear prolongation operator Ik
k�1 : Vk�1 ! Vk for k = 1, . . . , J with

nnz(Ik
k�1) = O(dofk) non-zero entries.

4. Assume that we have a linear restriction operator Ik�1
k : Vk ! Vk�1 for k = 1, . . . , J with

nnz(Ik�1
k ) = O(dofk) non-zero entries.

5. Assume that we have linear smoothing operators Spre
k : Vk ⇥ Vk ! Vk and Spost

k : Vk ⇥ Vk !
Vk on the spaces Vk for k = 1, . . . , J which require no more than O(dofk) operations.

With these spaces and operators we can define an abstract multiplicative multilevel algorithm:

Algorithm 4.4 (Multilevel Algorithm Mn1,n2
g (k, xk, bk)).

If k > 0:

1. For l = 1, . . . , n1: Set xk = Spre
k (xk, bk).

2. Set dk�1 := Ik�1
k (bk � Akxk).

3. Set ek�1 := 0.
4. For i = 1, . . . , g: ek�1 = Mn1,n2

g (k� 1, ek�1, dk�1).

5. Set xk = Ck (xk, ek�1) := xk + Ik
k�1 ek�1.

6. For l = 1, . . . , n2: Set xk = Spost
k (xk, bk).

Else:

Set xk = A�1
k bk.

Note that a single iteration of the multilevel algorithm Mn1,n2
g is of linear complexity O(dof J)

if the series
JX

k=0

gk dof J�k
dof J

< • for J ! • (4.25)

converges [71, 125]. Let us now assume that we want to solve the linear system AJ xJ = bJ up to
machine precision. Then, the multilevel iteration Mn1,n2

g gives an optimal solver, i.e. returns the
solution xJ after O(dof J) operations, if (4.25) holds and if the asymptotic error reduction rate

ra :=
kx⇤J � xi

Jk

kx⇤J � xi�1
J k

with i! •, (4.26)



4.4. Solution of Resulting Linear System 49

where x⇤J denotes the exact solution to AJ xJ = bJ and xi
J is the ith iterate, is bounded away from

one independent of the number of degrees of freedom dof J ; i.e., ra 6= ra(dof J) < 1.
However, it is usually not necessary to solve the linear system up to machine precision.

Recall that AJ xJ = bJ is a representation of a discretized PDE. Hence, there is already an error
involved, the discretization error. Thus, it is sufficient to solve the discrete linear system up to
the discretization error only. A more accurate solution of the linear AJ xJ = bJ will not improve
the overall error of the approximation. Thus, the stopping criterion is now dependent on the
number of degrees of freedom dof. Hence, even though the asymptotic error reduction rate of
our multilevel iteration is bounded independent of dof we do not have an optimal solver if we
compute the solution xJ of the linear system up to discretization error only. Here, we need an
increasing number of iterations for finer discretization spaces since their finer resolution requires
a more accurate solution of the resulting system AJ xJ = bJ . Here, so-called nested iteration
techniques [85] can help to overcome the resulting logarithmic complexity.

Algorithm 4.5 (Nested Multilevel Iteration).

1. If k > 0, then set the initial guess
x0

k := Ik
k�1xnl�1

k�1 .

Else, set the initial guess
x0

k := 0.

2. Apply nk iterations of the multilevel iteration Mn1,n2
g

xnk
k  Mn1,n2

g (k, xk, bk)

to compute the approximate solution xnk
k on level k.

Again, we exploit the multilevel construction by using a coarser approximation to compute
a more suitable initial guess for the iteration on a finer level. Hence, we reduce the number of
operations on the finer and more expensive level by shifting as many operations as possible to
the coarser level. Then, the solution of the linear system on a coarser level is transferred to a
finer level where we now need to apply less iterations of our multilevel iteration (Algorithm 4.4)
to reduce the (algebraic iteration) error to the finer discretization error. One instance of such a
nested iteration multilevel scheme is the so-called full multigrid V-cycle [28, 29].

Assume that the employed discretization spaces Vk admit error estimates of the form

ku� ukkV  C2�kp
kukV 0 (4.27)

for all levels k = 0, . . . , J. Then, it is sufficient to employ a single iteration (nk = 1) of the multilevel
iteration Mn1,n2

g in step 2 of Algorithm 4.5 for all k = 1, . . . , J if the asymptotic convergence rate
(4.26) is bounded by 2�p. The obtained discrete solutions uk obviously satisfy the bounds (4.27)
if we solve the respective linear system on level k = 0 up to machine precision. In general we
can estimate the number of inner iterations nk on level k by enforcing rnk

a < ek where ek denotes
the respective error reduction factor from level k� 1 to level k obtained from the respective error
bounds for the discretization error.
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Chapter 5

Multilevel
Particle–Partition of Unity
Method

To setup a fast iterative multilevel solver according to Algorithm 4.4 or Algorithm 4.5 for our
PPUM discretization we need to generalize our PPUM construction to the multilevel setting. To
this end, we need to construct a sequence of PPUM spaces VPU

k with k = 0, . . . , J and with appro-
priate transfer operators

Ik
k�1 : VPU

k�1 ! VPU
k , Ik�1

k : VPU
k ! VPU

k�1

which connect the spaces VPU
k . Moreover, we need to specify suitable smoothing operators

Spre/post
k : VPU

k ⇥VPU
k ! VPU

k

on levels k = 1, . . . , J. For the ease of notation we limit ourselves at the beginning to the use of
polynomial local approximation spaces Vi = P

pi only. The incorporation of problem-dependent
local enrichment spaces Ei in the multilevel context is the subject of §5.3. Finally, we consider the
adaptive refinement of a sequence of general PPUM spaces VPU

k in §5.4.

5.1 Cover Coarsening
The hierarchical construction of a (fine level) cover CW = CJ

W with Algorithm 4.1 enables us to
define a sequence of admissible covers Ck

W := {wi,k} for k = 0, . . . , J with similar properties at
no significant extra costs. This sequence of covers Ck

W can then be used to define a sequence of
PPUM spaces VPU

k which is the foundation for the construction of a fast multilevel solver like
Algorithm 4.4 for the PPUM. To this end, we extend Algorithm 4.1 to obtain a sequence of covers
Ck

W rather than just a single fine level cover. In this extended algorithm we allow that a patch
wL is part of multiple covers of the sequence Ck

W. Thus, we introduce the notion of active levels
[kmin

L , kmax
L ] of a particular patch wL where wL 2 Ck

W for all k = kmin
L , . . . , kmax

L . On each active level
k = kmin

L , . . . , kmax
L we can employ a different local approximation space, i.e. a different polynomial

degree pL,k. The respective multilevel cover construction algorithm then reads as follows, see also
[125].

Algorithm 5.1 (Multilevel Cover Construction).

1. Given the domain W ⇢ RD and a bounding box RW =
QD

d=1[ld
W, ud

W] � W.

2. Given the sampling points XN = {xi | xi 2 W, i = 1, . . . , N} and a scaling parameter a > 1.

51
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3. Build a D-binary tree over RW such that per leaf L at most one xi 2 XN lies within the
associated cell CL :=

QD
d=1[ld

L, ud
L]; see Figure 4.1.

4. Set J to the finest refinement level of the tree.

5. For all k = 0, . . . , J set Ck
W := ∆.

6. For the root cell CL =
QD

d=1[ld
L, ud

L] = RW:

(a) If current tree cell CL is an INNER tree node and CL \W 6= ∆:
i. Descend tree for all successors CS of CL. (! 6(a))

ii. Set patch

wL :=
DY

d=1

[xd
L � hd

L, xd
L + hd

L] � CL

where xL := 1
2D
P

xS is the center of its successor points xS and hi
L := 2 maxS hi

S is
twice the maximum radius of its successors hi

S.
iii. Set active levels to [kmin

L , kmax
L ] with

kmin
L = kmax

L = min
CS⇢CL

kmin
S � 1

and update for all successors kmin
S0 = minCS⇢CL kmin

S .
iv. Set polynomial degrees pL,k = pmin for all k 2 [kmin

L , kmax
L ] where

pmin := min
CS⇢CL

min
q2[kmin

S ,kmax
S ]

pq,S.

(b) Else if CL \W 6= ∆:
i. Set patch

wL :=
DY

d=1

[xd
L � hd

L, xd
L + hd

L] � CL, and hd
L :=

a

2
(ud

L � ld
L) (5.1)

where
xd

L := ld
L +

1
2
(ud

L � ld
L) with a > 1. (5.2)

ii. Set active levels to [kmin
L , kmax

L ] with kmin
L = kmax

L = J.
iii. Set polynomial degrees pL,k = p to some given value p for all k 2 [kmin

L , kmax
L ].

iv. Set CW = CW [ {wL}.

7. For k = 0, . . . , J � 1:

Set Ck
W = {wL | kmin

L  k  kmax
L }.

In the above algorithm we define a coarser cover Ck�1
W = {wi,k�1 | i = 1, . . . , Nk�1} essentially

from a finer cover Ck
W = {wi,k | i = 1, . . . , Nk} via an agglomeration strategy applied to the respec-

tive tree-cells. To this end we collapse those leaves of the tree (with respect to level k) into the
associated parent tree-cell if all siblings are also leaf cells (with respect to level k), compare Figure
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Figure 5.1. Multilevel cover construction with Algorithm 5.1 in two dimensions. The cell decom-
positions (left, red squares: xi 2 XN, black circles: cell-centers xL) and its respective tree representation
(right, white: INNER tree nodes, gray shaded: LEAF tree nodes) for the given fine level point set XNJ = XN
(upper row), and two coarser point sets XNJ�1 (center row) and XNJ�2 (lower row) attained by a local
center-of-mass approach.

5.1. Note that this coarsening scheme is quite different from the usual level-oriented coarsening
employed in the FEM, see Figure 5.2.

The coarse cover patches wi,k�1 on level k� 1 are then obtained by scaling of the respective
tree-cells, i.e. wi,k�1 = aCL. Note that the scaling parameter a can in principle be changed from
level to level (or even from patch to patch), yet we have to keep in mind that a has a major impact
on the constant Cr of Definition 3.1 which is involved in the error bounds of Theorem 3.1. Thus,
we keep the scaling parameter constant on all levels k = 0, . . . , J to obtain a uniform bound of the
gradients rji,k on all levels.

Due to this decision however the agglomeration of the tree-cells does not translate into an
agglomeration of the cover patches. A coarser cover patch wi,k�1 is not the union of the respective
finer cover patches wj,k. Thus the supports of the PU functions ji,k�1 and jj,k obtained by Shep-
ard’s construction (3.13) do not align so that it is highly unlikely that we obtain a nested sequence
of PPUM function spaces VPU

k , i.e., in general there holds

VPU
k�1 :=

Nk�1X

i=1

ji,k�1Vi,k�1 6⇢ VPU
k :=

NkX

i=1

ji,kVi,k.

The sequence of covers Ck
W attained from Algorithm 5.1 however inherits a hierarchical

property from the underlying tree-decomposition which is essential for the construction of an
appropriate interlevel transfer operator in §5.2.1.
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Lemma 5.1. For each cover patch wi,k 2 Ck
W with k > 0 there exists exactly one cover patch wĩ,k�1 2 Ck�1

W
such that

wi,k ✓ wĩ,k�1. (5.3)

Another important property of the constructed sequence Ck
W with k = 0, . . . , J is summarized

in the following lemma, compare Figure 5.1.

Lemma 5.2. Let li,k denote the tree-level of the tree-cell C ⇢ wi,k. For all levels k = 0, . . . , J there holds
li,k  k for all wi,k 2 Ck

W and there exists at least one patch wi,k 2 Ck
W such that li,k = k is satisfied.

Thus, the sequence Ck
W with k = 0, . . . , J employs a minimal number of levels J and there

holds
min

i=1,...,Nk
diam(wi,k) ⇣ O(2�k)

for all k = 0, . . . , J. In general however the active levels k = kmin
L , . . . , kmax

L of a particular patch wL
are independent of the respective tree refinement level lL of the associated tree-cell CL, i.e. kmax

L is
independent of lL.

Observe that the property wL = wi,k�1 = wj,k does not imply that the respective Shepard
functions ji,k�1 and jj,k are identical. Recall that the PU function jii, k on level k employs infor-
mation from the neighborhood

Ci,k := {wl,k 2 Ck
W |wl,k \wi,k 6= ∆}

with respect to level k. These neighborhoods however may change, i.e. Ci,k 6= Cj,k�1, even if
wi,k�1 = wj,k.
Remark 5.1. The use of the minimal polynomial degree pL = min pS of the successor patches wS
on a particular patch wL is motivated by the fact that our transfer operators from level k � 1 to
level k are exact for polynomials of degree pk�1 := minj pj,k�1, see §5.2.1.

5.2 Multilevel Solver
In addition to the fact that coarser shape functions ji,k�1Jn

i,k�1 cannot be represented exactly on
finer levels, i.e.

ji,k�1Jn
i,k�1 6=

NkX

i=1

jj,k

di,kX

m=1

bm
j,kJm

j,k for all bm
j,k 2 R (5.4)

due to the nonnestedness of the spaces VPU
k , we also have to deal with shape functions ji,k�1Jn

i,k�1
and jj,kJm

j,k that do not satisfy the Kronecker property. Therefore, the two classical approaches
to the interlevel transfer problem, natural injection and interpolation, are not available for our
multilevel PPUM. Obviously, these issues render the design of appropriate interlevel transfer
operators

Ik
k�1 : VPU

k�1 ! VPU
k and Ik�1

k : VPU
k ! VPU

k�1

a challenging task. In [62, 125] we have developed prolongation operators Ik
k�1 for our nonnested

sequence of PPUM spaces VPU
k based on L2-projections Pk

k�1

Ik
k�1 := Pk

k�1 : VPU
k�1 ! VPU

k

from VPU
k�1 onto VPU

k .1 Let us shortly summarize this construction.

1In the context of nonconforming FEM discretizations L2-projections are also used for the interlevel transfer, e.g. for
the Crouzeix–Raviart element [23].
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Figure 5.2. Comparison of a tree-based maximal coarsening (left) and level-oriented coarsening
(right). Depicted are three successive levels starting at the top with the finest level (white, solid lines:
INNER tree nodes; gray shaded, solid lines: LEAF tree nodes; white, dashed lines: tree cells eliminated from
finer level).

5.2.1 Interlevel Transfer
In general an L2-projection P eW

W : W ! eW from W ⇢ L2(W) onto eW ⇢ L2(W) can be defined with
the help of two moment matrices

(M eW
eW )ij := hf eW

j , f
eW
i iL2(W) and (M eW

W )ij := hfW
j , f

eW
i iL2(W)

where hfW
j i denotes a basis for W and hf eW

j i a basis for eW. The discrete L2-projection P eW
W : W !

eW can then be defined as
P eW

W := (M eW
eW )�1(M eW

W ). (5.5)

The projection P eW
W maps coefficients euW to coefficients eu eW . Its transpose (P eW

W)T obviously trans-
ports moment vectors f̂ eW to moment vectors f̂W . Hence, if we use an L2-projection P as the
prolongation it is legitimate to use the transposed projection PT as the respective restriction op-
erator.

The selection of W = VPU
k�1 with the PPUM basis hfW

j i = hji,k�1Jn
i,k�1i and eW = VPU

k with

hf
eW
j i = hji,kJn

i,ki leads to the mass matrix Mk
k on VPU

k and the interlevel mass matrix Mk
k�1 from

VPU
k�1 to VPU

k . The global L2-projection Pk
k�1 is then given by

Pk
k�1 = (Mk

k)
�1(Mk

k�1) (5.6)
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Figure 5.3. Uniform cells on level l and support of a single shape function (dark gray shaded) on
level l which overlaps 3d cells (left). The support of a coarser shape function (gray shaded) on level l � 1
overlaps 4d cells on level l (right).

where the storage requirement of Pk
k�1 is given by the sparsity patterns of Mk

k and Mk
k�1. Thus,

we need to be concerned with the number of interlevel neighbors card(Cj,k�1,k), where

Cj,k�1,k := {wi,k 2 Ck
W |wi,k \wj,k�1 6= ∆}.

These neighborhoods however are rather large, e.g. card(Cj,k�1,k) = 4D for uniform covers Ck
W

and Ck�1
W , compare Figure 5.3. Furthermore, the projection (5.6) involves the inverse of the mass

matrix. Thus, the use of the global L2-projection Pk
k�1 as prolongation in a multilevel PPUM is

too expensive in practice. We need to find a way to avoid the inversion of the mass matrix Mk
k and

we also have to reduce the overall storage demand associated with the interlevel transfer. Let us
first consider the mass matrix Mk

k and how we can avoid its involvement in the transfer operator.
Then, in a second step we replace Mk

k�1 to obtain the so-called local-to-local PPUM L2-projection.
From the basic PUM error estimate (3.5) in L2(W)

kv� vPU
k

2
L2 (W)  C

NX

i=1

kv� vik
2
L2 (wi\W), (5.7)

where vPU :=
PN

i=1 ji
Pdi

n=1 un
i Jn

i and vi :=
Pdi

n=1 un
i Jn

i where di := dim(Vi), we know that it is
sufficient to control the local errors kv� vikL2 (wi\W) on each cover patch wi. In the context of our
projection problem we have v = uPU

k�1 and vPU = Ik
k�1uPU

k�1 and (5.7) yields the estimate

kuPU
k�1 � Ik

k�1uPU
k�1k

2
L2 (W)  C

X

i

kuPU
k�1 � ui,kk

2
L2 (wi,k\W) (5.8)

for the interlevel transfer problem. Hence, we can localize the approximation of the coarse func-
tion uPU

k�1 to the fine patches wi,k without a significant loss of accuracy. Instead of the approxima-

tion of the global coarse function uPU
k�1 =

PNk�1
j=1 jj,k�1

Pdi,k�1
m=1 um

j,k�1Jm
j,k�1 by the global fine shape

functions ji,kJn
i,k we approximate uPU

k�1 locally on the fine cover patches wi,k using the local basis
functions Jn

i,k of Vi,k only. The moment matrices associated with this localized projection are

(fMk
k)(i,n),(i,m) := hJm

i,k, Jn
i,kiL2 (wi,k\W) and

(cMk
k�1)(i,n),(j,m) := hjj,k�1Jm

j,k�1, Jn
i,kiL2 (wi,k\W).

(5.9)
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The respective projection is given by

bPk
k�1 = (fMk

k)
�1(cMk

k�1). (5.10)

Here, the localized moment matrix fMk
k is block-diagonal, but the sparsity pattern of the localized

interlevel moment matrix cMk
k�1 is identical to that of the global interlevel mass matrix Mk

k�1 since
we still approximate the global coarse function uPU

k�1.
Recall from Lemma 5.1 that we find exactly one coarse patch wĩ,k�1 for every fine patch wi,k

such that wi,k ✓ wĩ,k�1 holds. Consider the right-hand side of our PUM error estimate (5.8). We
can introduce the coarse local function uĩ,k�1 associated with the unique coarse patch wĩ,k�1 into
each term kuPU

k�1 � ui,kkL2 (wi,k\W) and obtain the estimate

kuPU
k�1 � ui,kkL2 (wi,k\W)  kuPU

k�1 � uĩ,k�1kL2 (wi,k\W)+
kuĩ,k�1 � ui,kkL2 (wi,k\W)

(5.11)

by the triangle inequality. This estimate allows us to approximate each coarse local function uĩ,k�1,
independent of all other local components uj,k�1 of uPU

k�1, on the respective fine cover patch wi,k
with wi,k ⇢ wĩ,k�1 since the first term of (5.11) is small by definition of uPU

k�1. Hence, we need to
consider the so-called hierarchical neighbors

CH
j,k�1,k := {wi,k 2 Ck

W |wi,k ✓ wj,k�1},

CH
i,k,k�1 := {wj,k�1 2 Ck�1

W |wi,k ✓ wj,k�1}

only in the construction of the projection

ePk
k�1 = (fMk

k)
�1(fMk

k�1) (5.12)

where the respective moment matrices are defined by

(fMk
k)(i,n),(i,m) := hJm

i,k, Jn
i,kiL2 (wi,k\W) and

(fMk
k�1)(i,n),(j,m) := hJm

j,k�1, Jn
i,kiL2 (wi,k\W).

(5.13)

The sparsity pattern of fMk
k�1 is now given by the hierarchical condition wi,k ✓ wj,k�1 instead

of the geometric neighbor relation wi,k \ wj,k�1 6= ∆. Therefore, the storage requirement for
the projection ePk

k�1 is reduced to one block-entry (ePk
k�1)ij per fine level patch wi,k without a

(significant) loss of accuracy of the approximation, i.e., we have

card(CH
i,k,k�1) = 1

independent of the dimension D.
Note that the local-to-local L2-projection is exact for polynomials of degree minNk

i=1 pi,k and
that the assembly involves only integrals of the local approximation functions Jm

i,k which can be
computed very efficiently. Hence, the local-to-local transfer operators are very cheap with respect
to compute time and storage demand.
Remark 5.2. In general when the local approximation functions Jm

i,k are just a generating system
of Vi,k the local mass matrix fMk

k is not invertible. Here, we need to apply the preconditioner Sk to
obtain a stable L2-projection. Then, the local-to-local L2-projection becomes

ePk
k�1 = (SkfMk

kST
k )�1(SkfMk

k�1ST
k�1) (5.14)

where SkfMk
kST

k is block-diagonal and invertible. In fact, if the preconditioner Sk of §4.2.1, see also
§5.3.2, is based on the L2-norm SkfMk

kST
k is a (scaled) identity matrix.
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5.2.2 Smoothing Operators
The smoothing operators Spre/post employed in our multilevel PPUM [59, 62, 125] can be conve-
niently interpreted in the framework of subspace correction methods (SCM) [25, 33, 67, 71, 110,
123, 132, 152, 154]. Hence, let us shortly review the abstract setting of an SCM.

The general idea is as follows: First, we write the employed discretization space V =P
N

j=1 Vj as the sum2 of subspaces Vj ⇢ V with maps Pj : Vj ! V .3 Then, we choose sym-
metric positive definite bilinear forms bj(·, ·) on each Vj represented by operators Bj such that
solutions to the systems of linear equations Bjuj = f j on Vj are easily computable, and B�1

j can
be considered as an approximate inverse to the restriction of A to Vj. Finally, we combine these
local approximate inverses B�1

j appropriately to define a global approximate inverse to A on the
discretization space V . There are essentially two approaches to the definition of an approximate
inverse of A by the B�1

j , the additive approach and the multiplicative approach.
In the so-called parallel subspace correction (PSC) or additive Schwarz method we set up an

iterative solution process via the operator

MPSC := I�w
NX

j=1

PjTj = I�w
⇣ NX

j=1

PjB�1
j Rj

⌘
A, (5.15)

where w is a relaxation parameter and the involved operators are defined by

a(u, v) = hAu, viV , bj(uj, vj) = hBjuj, vjiVj ,

hRju, vjiV = hu, PjvjiV , bj(Tju, vj) = a(u, Pjvj).

The iteration operator of the successive subspace correction (SSC) or multiplicative Schwarz method
is given by

MSSC :=
NY

j=1

�
I�PjTj

�
=

NY

j=1

�
I�PjB�1

j Rj A
�
. (5.16)

Note that the PSC operator (5.15) can also be interpreted as a preconditioned Richardson iteration
where the preconditioner is given by

CPSC :=
NX

j=1

PjB�1
j Rj. (5.17)

For the construction of appropriate smoothing operators in our multilevel PPUM we restrict our-
selves to the case of Bj := A|Vj which means that we consider exact subspace solvers only. Then,
we have essentially two degrees of freedom in the design of our smoothing scheme: The splitting
of the discretization space and the type of the iteration, namely the additive scheme (5.15) or the
multiplicative scheme (5.16). To define an appropriate splitting of our PUM space VPU (we omit
the level index k in the following), let us consider the specific structure of the PUM shape func-
tions. The product structure of the shape functions jiJ

n
i implies two natural subspace definitions.

For instance, we can define the subspaces

Vn := spanihjiJ
n
i i = {v 2 VPU

| v =
NX

i=1

jivn
i Jn

i }.

2 Note that we do not assume that the splitting is a direct sum.
3 Actually, it is sufficient to require V =

P
j PjVj, i.e., the condition Vj ⇢ V is not necessary.
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Figure 5.4. Subdomains (light gray shaded) associated with the subspaces Vn (left), Vi (center),
and eVl (right) and the support of the a single shape function jiJ

n
i (dark gray shaded) based on a cover with

a = 1.5.

These subspaces, however, contain functions with global support on the domain W, see Figure
5.4 (left), and the dimension of each subspace is of the order O(N). Therefore, a direct solution
of A|Vn is not feasible. We would need to resort to fast iterative solution techniques for these
subspace problems. Furthermore, we are interested in smoothing schemes Sk for Algorithm 4.4
based on our multilevel construction. Hence, there is no additional benefit from the fact that
the solutions to A|Vn contain global information and the computational cost associated with the
solution of the subspace problems make this splitting unsuitable for our construction.

A more appropriate subspace definition is given by

Vi := jiVi = spannhjiJ
n
i i = {v 2 VPU

| v =
diX

n=1

jivn
i Jn

i }, (5.18)

where di := dim(Vi). These contain functions with local supports only, see Figure 5.4 (center).
Furthermore, the dimension of the subspace Vi is given by the dimension di of the local approxi-
mation spaces Vi. Hence, we can compute the inverse (A|Vi )

�1 of each of the subspace problems
with acceptable complexity of O(d3

i ); i.e., one iteration of a PSC or SSC iteration based on this
splitting is of the order

O(
NX

i=1

d3
i ) < O(Nd3

max) with dmax := max
i=1,...,N

di.

Note that both subspace definitions lead to a direct splitting of our PUM function space
VPU =

P
i Vi =

P
n Vn; i.e., every basis function jiJ

n
i is contained in exactly one subspace. In

terms of the index pairs (i, n) we have a disjoint decomposition of the index set {(i, n)} which
induces a specific partitioning of the PUM stiffness matrix A = (A(i,n),(j,m)). Using the subspaces
Vi we obtain the so-called polynomial block-form [125]. Here, a single block Ai,j = (A(i,n),(j,m))
corresponds to a local discretization of the PDE on the domain wi \wj \W.

Note that a PSC iteration (5.15) based on the direct splitting VPU =
PN

i=1 Vi of (5.18) corre-
sponds to the classical block-Jacobi iteration and the SSC iteration (5.16) corresponds to the block-
Gauss–Seidel iteration (BGS) where we have only a small overlap of the supports of functions
from different subspaces, see Figure 5.4 (center). In general the SSC iteration can be implemented
by Algorithm 5.2 where Pl denotes the discrete extension operator which embeds the subspace Vl
in the global discretization space V .
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Algorithm 5.2 (Successive Subspace Correction Method).

1. For all l = 1, . . . , N:

(a) Compute local residual f̂l := PT
l ( f̂ � Aũ).

(b) Solve subspace problem (PT
l A Pl)ũl = Al,l ũl = f̂l .

(c) Update global iterate ũ = ũ + Plũl .

Even though we consider a direct splitting and employ an exact solver (A|Vi )
�1 within a

specific subspace Vi there are still couplings between the subspaces due to the overlap of the sup-
ports via the global problem A. The quality of the PSC and SSC iterations is obviously determined
by the strength of these couplings. The two parameters within our PUM which can influence the
strength of the couplings between two different subspaces Vi and Vj, and hence the quality of
the iterations, are the overlap parameter a used in our cover construction and the specific local
approximation spaces Vi. The results of [125] clearly show that the multilevel iteration given in
Algorithm 4.4 with the local-to-local transfer operators of §5.2.1 and the BGS smoother yields
a convergence rate (4.26) that is independent of the number N = card(CW) of cover patches
wi 2 CW. However, the convergence behavior deteriorates with increasing polynomial degree
p = maxi=1,....N pi where Vi � P

pi . The convergence rate is dependent on p. Since the local error
bounds of the local-to-local transfer operators are of order pi + 1 this reduction in efficiency can
be attributed to the smoother; i.e., we observe a deterioration of the smoothing property of the
BGS iteration with increasing p.

One approach to overcome this limitation is the use of more involved smoothing schemes
as it is proposed in [59]. Instead of employing a direct splitting into disjoint subspaces (5.18) we
can consider overlapping subspaces. Here, a basis function jiJ

n
i may belong to several subspaces

eVl . Consider for instance the overlapping subspace definition

eVl :=
X

wi2Cl

Vi = span(i,n),i2Cl
hjiJ

n
i i = {v 2 VPU

| v =
X

wi2Cl

ji

diX

n=1

vn
i Jn

i } (5.19)

where Cl ⇢ CW denotes the neighborhood (2.6) of the cover patch wl , see Figure 5.4 (right).
The subspace eVl contains all functions jiJ

n
i whose support wi has a non-vanishing intersection

with the patch wl . Hence, when we solve the subspace problem A|eVl
we resolve all couplings

involving the basis functions jlJ
q
l . Thus, for each patch wl there is one subspace problem A|eVl

which resolves all couplings involving the associated basis functions jlJ
q
l independent of the

overlap parameter a. In the following we refer to this iteration as a multiplicative overlapping
Schwarz (MOS) smoother. Note that the splitting (5.19) is similar to the one employed in [112]
where the issue of robustness with respect to the polynomial degree p is studied for higher order
FEM.

The convergence rate of the resulting multilevel iteration is robust with respect to the poly-
nomial degree p according to the results of [59]. However, the robustness is attained at a rather
high price. Since the subspaces (5.19) involve all local approximation spaces Vi associated with
the neighbors wj 2 Cl their dimension is exponentially dependent on the space dimension D; i.e.

dim(eVl) = O(3D pD) = O((3p)D)

even for a uniform cover CW.
Hence, the direct solution of A|eVl

requires CMOS
op = O((3p)3D) operations and CMOS

mem =
O((3p)2D) storage. Compared with the respective complexities CBGS

op = O(p3D) and CBGS
mem =
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O(p2D) of the BGS scheme we find an increase by a factor of 33D in the number of operations and
a factor of 32D with respect to storage demands. In essence, this means that the application of
33D iterations of the BGS smoother involves roughly the same number of operations as a single
smoothing step of the MOS iteration; yet with 3�2D times the storage cost. Thus, the question
arises if the smoothing property of the BGS scheme and the overall convergence rate of our mul-
tilevel solver is robust with respect to the polynomial degree p (at least for a practical range of p)
if we employ multiple iterations of the BGS smoother. The results presented in [125] indicate that
this is the case. In fact we already obtain an optimal convergence rate of ra < 2�p�1, compare
§4.4, with much less than 33D smoothing iterations.
Remark 5.3. A theoretical study closely related to the presented multiplicative multilevel iteration
above is given in [34]. Our multilevel cover construction presented in §5.1 satisfies the assump-
tions of a sparse cover of [34]. The multilevel solvers presented in [32, 153] for the GFEM however
are fundamentally different from our approach since they are based on classical finite element
spaces.

Summary
Let us shortly summarize the complete construction of our multilevel iterative solver for the
PPUM. Based on the sequence of covers Ck

W obtained by Algorithm 5.1 we define the respec-
tive sequence of PPUM space VPU

k . For the transfer of information between these non-nested
spaces we discretize the local-to-local L2-projection of §5.2.1. As smoothing operators Spre/post

for the multilevel iteration of Algorithm 4.4 we employ the BGS iteration of Algorithm 5.2 with
the splitting (5.18).

To further improve the speed of convergence we usually employ a Krylov method like the
conjugate gradient (CG) or the generalized minimal residual (GMRES) method; i.e., we use our
multilevel iteration as a preconditioner for the respective Krylov method. We obtain a good initial
guess for our iterative solver via the nested iteration approach of Algorithm 4.5. Note that the
outer Krylov iteration furthermore dampens the deterioration of the smoothing property with
increasing polynomial degree p.

5.3 Hierarchical Enrichment
Let us now come back to the question of selecting problem-dependent local approximation spaces
Vi,k in the multilevel setting of our PPUM. Recall that the use of smooth polynomial local approx-
imation spaces Vi,k = P

pi,k in our PPUM is optimal only for the approximation of a smooth solu-
tion u. For the approximation of a discontinuous and singular solution u we augment a smooth
local approximation space P pi,k by a problem-dependent enrichment space Ei; i.e., we consider
the local approximation spaces

Vi,k = spanhJm
i,ki = P

pi,k + Ei,k = spanhys
i,ki+ spanhht

i,ki.

We include problem-adapted enrichment functions ht
i,k in our PPUM space VPU for two reasons:

On the one hand, certain behavior (e.g. discontinuities) of the solution can be explicitly modeled
by the functions ht

i,k. More importantly, we can improve the asymptotic convergence behavior of
our PPUM by completely resolving singular behavior of the solution u by the enrichment func-
tions ht

i,k. This property can also improve the robustness of a multilevel iterative solver since the
corrections from level to level are essentially smooth functions.

Thus, we must be concerned with the approximation properties of the enriched spaces Vi
and the stability of system hji,kJm

i,ki = hji,kys
i,k, ji,kht

i,ki which span the resulting PPUM space
VPU; i.e., with the condition number of the resulting stiffness matrix.
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Figure 5.5. Schematic of domain with center crack.

Note that an enrichment approach is also pursued (in a similar way) in other meshfree meth-
ods [19, 109], the XFEM [16, 20, 100] or the GFEM [42, 44, 45]. Most of these enrichment schemes
however focus on modeling issues only and are not concerned with the stability and the asymp-
totic convergence behavior of the respective numerical method or the impact on iterative solvers.

5.3.1 Enrichment Indicator
In this section we introduce an automatic hierarchical enrichment scheme for our multilevel
PPUM that provides optimal convergence properties independent of the regularity of the solu-
tion and avoids an ill-conditioning of the resulting stiffness matrix due to enrichment. To this
end, we consider a reference problem from linear elastic fracture mechanics

� div s(u) = f in W = (�1, 1)2,
s(u) · n = gN on GN ⇢ ∂W [ C,

u = gD on GD = ∂W \ GN .
(5.20)

The internal traction-free segment

C := {(x, y) 2 W | x 2 (�0.5, 0.5) and y = 0}

is referred to as a crack, see Figure 5.5. The crack C induces a discontinuous displacement field u
across the crack line C with singularities at the crack tips cl := (�0.5, 0) and cu := (0.5, 0). Hence,
the local approximation spaces Vi,k employed in our PPUM must respect these features to provide
good approximation.

A commonly used enrichment strategy employs simple geometric information only. Here,
a patch wi,k (or an element in the XFEM or GFEM) is enriched by the discontinuous Heaviside
function

HC
±(x) =

⇢
1 if x · nC > 0
�1 else , (5.21)

where nC denotes the normal to the crack C, if the patch is (completely) cut by the crack C, i.e.

Ei,k := HC
±P

pi,k and Vi,k := P
pi,k + HC

±P
pi,k . (5.22)

Note that in fact most other enrichment procedures employ Ei,k = HC
±

only. If the patch wi,k
contains a crack tip xtip, i.e. cl 2 wi,k or cu 2 wi,k, then the patch is enriched by the respective
space of singular tip functions

Wtip := spanh
p

r cos
q

2
,
p

r sin
q

2
,
p

r sin q sin
q

2
,
p

r sin q cos
q

2
i (5.23)
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Figure 5.6. Surface plots of the first two crack tip functions (5.23).

given in local polar coordinates with respect to the tip xtip, i.e. Ei,k = Wtip|wi,k , compare Figures
5.6 and 5.7. This yields the local approximation space

Vi,k := P
pi,k + Wtip

for a patch wi,k that contains the tip xtip. Let us summarize this geometric modeling enrichment
scheme in the following classifier function eM : Ck

W ! {lower_tip, upper_tip, jump, none}

eM(wi,k) :=

8
>><

>>:

lower_tip if cl 2 wi,k and cu 62 wi,k,
upper_tip if cl 62 wi,k and cu 2 wi,k,
jump if {cl , cu} \wi,k = ∆ and C \wi,k 6= ∆,
none else.

(5.24)

The respective enrichment spaces are then given by

E(eM(wi,k)) :=

8
>><

>>:

Wcl if lower_tip = eM(wi,k),
Wcu if upper_tip = eM(wi,k),
HC
±
P

pi,k if jump = eM(wi,k),
0 else.

(5.25)

Even though this enrichment scheme is sufficient to model a crack and captures the asymptotic
behavior of the solution at the tip, this strategy suffers from various drawbacks. With respect
to the discontinuous enrichment the main issue is that very small intersections of a patch with
a crack cause an ill-conditioned stiffness matrix which can compromise the stability of the dis-
cretization; e.g. when the volumes of the sub-patches induced by the cut with the crack differ
substantially in size. This is usually circumvented by a predefined geometric tolerance param-
eter which rejects such small intersections. In the case of a one-dimensional enrichment space
Ei,k = HC

±
this approach is sufficient—if the tolerance parameter is chosen relative to the diame-

ter of the patch. For a multi-dimensional enrichment space Ei,k = HC
±
P

pi,k as we employ in the
PPUM, this simple geometric approach can be too restrictive to obtain optimal results or it may
be too weak to maintain the stability.

The crack tip enrichment space Wtip given in (5.23) models the essential behavior of the solu-
tion at the tip. However, the singularity at the tip has a substantially larger zone of influence than
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Figure 5.7. Contour plots of the four crack tip functions (5.23) (upper left to lower right).

just the containing patch wi,k. Therefore, the simple geometric modeling enrichment (5.24) is not
sufficient to improve the asymptotic convergence behavior of the employed numerical scheme.

With the help of our multilevel sequence of covers Ck
W we can easily generalize this enrich-

ment scheme to overcome these issues and obtain a hierarchical enrichment scheme that yields
enriched patches wi,k in an appropriate vicinity of the tips cl and cu of the crack C. To this
end, we introduce the hierarchical enrichment classifier eH(wi,k) for all cover patches wi,k with
i = 1, . . . , Nk and k = 0, . . . , J by the following algorithm. Note that we again make use of Lemma
5.1; i.e, of the geometric hierarchy of our cover patches, in Algorithm 5.3.

Algorithm 5.3 (Hierarchical Enrichment Classifier).

1. Set eH(wi,k) := ∆.

2. If k = 0:

(a) Set EH
i,k := {eM(wi,k)}.

(b) Set Ei,k := E(eM(wi,k)).
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Else:

(a) Get the unique wĩ,k�1 2 Ck�1
W with wĩ,k�1 ◆ wi,k 2 Ck

W.

(b) Set EH
i,k := EH

ĩ,k�1 \ {jump}.

(c) Set Ei,k := Eĩ,k�1 \ HC
±
P

pi,k .

(d) If jump 2 EH
ĩ,k�1, {cl , cu} \wi,k = ∆ and C \wi,k 6= ∆:

i. Set EH
i,k = EH

i,k [ {jump}.

ii. Set Ei,k = Ei,k + HC
±
P

pi,k .

3. Set Vi,k := P
pi,k + Ei,k.

4. Set eH(wi,k) = EH
i,k.

Observe that eH(wi,k) ⇢ {lower_tip, upper_tip, jump, none} is a subset of the set of enrich-
ment markers rather than a single marker as eM(wi,k). Thus, the respective enrichment spaces Ei,k
constructed by Algorithm 5.3 are larger spaces than the modeling enrichment spaces of (5.25). For
instance, we obtain the enrichment space

Ei,k := Wtip + HC
±P

pi,k so that Vi,k := P
pi,k + Wtip + HC

±P
pi,k (5.26)

for all patches wi,k with eH(wi,k) = {jump, lower_tip} or eH(wi,k) = {jump, upper_tip}. Note
that the recursive enrichment process defined in Algorithm 5.3 yields a constant enrichment zone

Etip :=
J!•\

k=0

Etip,k where Etip,k :=
Nk[

i=1
Ei,k�Wtip

wi,k (5.27)

around each tip at cl and cu of the crack C. Hence, the singularities of the solution u are not
only resolved by a constant number of patches wi,k on each level k but by an increasing num-
ber of patches on each level k. The singularities of the solution are resolved in the enrichment
zones (5.27) on all levels k. Thus, our PPUM will converge with a rate that is independent of the
regularity of the solution (i.e. regularity with respect to enrichment zones Etip), see Theorem 5.1
below. However, this approach amplifies the ill-conditioning of the stiffness matrix due to enrich-
ment since a large number of enrichment functions ht

i,k away from the singularities at cl and cu is
employed.

5.3.2 Stability of Enriched Local Approximation Spaces
Observe that there are two sources of ill-conditioning in an enriched PPUM using the local ap-
proximation spaces Vi,k = P

pi,k + Ei,k with P
pi,k = spanhys

i,ki and Ei,k = spanhht
i,ki. First of all,

the restrictions ht
i,k := ht

|wi,k of the global enrichment functions ht to the local patches wi,k may
be (almost) linearly dependent locally on wi,k \W even though the global enrichment functions ht

are linearly independent (well-conditioned) globally on W. Furthermore, on patches wi,k \ C = ∆
the restrictions ht

i,k are regular functions and thus some elements ei,k 2 Ei,k may be approximated
well by local polynomials ys

i,k; i.e. ei,k 2 P
pi,k . Hence, the condition number associated with the

system of functions hys
i,k, ht

i,ki can deteriorate very rapidly.
In the following we present an efficient algebraic approach to overcome the ill-conditioning

of the local basis (generating system) hys
i,k, ht

i,ki (and ultimately of the resulting stiffness matrix)
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due to enrichment where we drop the level subscript k for the ease of notation. The overall goal
of our construction is to attain a direct splitting of a local approximation space

Vi = P
pi + Ei = P

pi �Di

into the smooth sub-space P pi and a pure enrichment space Di := Ei \ P
pi . To this end let us

introduce some short-hand notation and the spaces

P
pi := spanhys

i i, with dPi := dim(P pi ) = card({ys
i }),

Ei := spanhĥt
i i , with dEi := dim(Ei)  card({ĥt

i }) =: cEi ,

Vi := P
pi + Ei , with di := dim(Vi)  dPi + cEi =: ci;

(5.28)

i.e., we assume that we have a stable basis hys
i i for P pi and only a generating system hĥt

i i for
Ei. Thus, we also have a generating system hĴm

i i := hys
i , ĥt

i i for the local approximation space
Vi on the respective patch wi only. Observe that this is a generalization of the situation consid-
ered in §4.2.1. Thus the preconditioner SE\P constructed below serves as a replacement for the
preconditioner S of §4.2.1.

With respect to the generating system hĴm
i i = hys

i , ĥt
i iwe obtain the singular (ill-conditioned)

local mass matrix Mi with entries (Mi)n,m on a particular patch wi by

(Mi)n,m :=
Z

wi\W
Ĵn

i Ĵm
i dx for all m, n = 1, . . . , ci (5.29)

which can be written in the block-form

Mi =

 
Mi
P ,P Mi

P ,E
Mi
E ,P Mi

E ,E

!

due to the additive representation Vi = P
pi + Ei. For the ease of notation we furthermore drop the

sub- and superscript i in the following; i.e., we consider the local mass matrix M on a particular
patch wi in block-form

M :=
✓

MP ,P MP ,E
ME ,P ME ,E

◆
(5.30)

where the blocks satisfy

MP ,P 2 RdPi ⇥dPi , ME ,E 2 RcEi ⇥cEi , ME ,P = MT
P ,E 2 RcEi ⇥dPi . (5.31)

Note that the linear dependencies among the enrichment functions ĥt
i lead to a deterioration of

the condition number of the block ME ,E ; i.e., the matrix ME ,E has a non-zero (numerical) kernel
or (near-)null space. The elements of the (near-)null space are not necessary to construct any
element of the function space Ei and hence can be eliminated. Thus, we look for a system of
functions hh̃t

i i that spans the space Ei and at the same time allows for a simple elimination of the
kernel elements of ME ,E . The eigenfunctions (eigenvectors) of ME ,E provide such a system hh̃t

i i.
Hence, let us consider the eigenvalue decomposition

OT
E

ME ,EOE = DE with OE , DE 2 RcEi ⇥cEi (5.32)

of the matrix ME ,E with the normal transformation OT
E

and the diagonal matrix DE , i.e.,

OT
E

OE = IcEi
, and (DE )r,q = 0 for all r, q = 1, . . . , cEi , and r 6= q.
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From (5.32) we can easily identify the (numerical) kernel of ME ,E if we assume that the eigenval-
ues (DE )r,r are given in decreasing order, i.e. (DE )m,m � (DE )m+1,m+1. Then the matrices OT

E
and

DE are partitioned as

OT
E

=
✓

ÕT
E

KT
E

◆
, and DE =

✓
D̃E 0
0 kE

◆
(5.33)

where the rth row of the rectangular matrix ÕT
E
2 RdEi ⇥cEi is an eigenvector of ME ,E that is as-

sociated with an eigenvalue (D̃E )r,r satisfying (DE )r,r = (D̃E )r,r � e (D̃E )0,0 = (DE )0,0 and KT
E

involves all eigenvectors that are associated with small eigenvalues, i.e. (kE )q,q < e (D̃E )0,0. Thus,
the inverse of D̃E can be computed stably and the operator

D̃�1/2
E

ÕT
E

: E = spanhĥt
i i ! E = spanhh̃t

i i

gives a stable basis hh̃t
i i of the enrichment space Ei and there holds dEi = dim(Ei) = card({h̃t

i }) 
cEi = card({ĥt

i }). With respect to the basis hh̃t
i i the block ME ,E of the local mass matrix M is given

as
M⇤
E ,E := D̃�1/2

E
ÕT
E

ME ,E ÕE D̃�1/2
E

= IdEi
;

i.e., the operator D̃�1/2
E

ÕT
E

yields an optimally conditioned orthonormal basis hh̃t
i i for the enrich-

ment space Ei on the patch wi. Applying the block-transformation

SE :=
✓

IdPi 0
0 D̃�1/2

E
ÕT
E

◆

to the local mass matrix M of (5.30) we obtain

ME := SEMST
E

=
✓

MP ,P M⇤
P ,E

M⇤
E ,P M⇤

E ,E

◆
(5.34)

the local mass matrix with respect to the collection of functions hys
i , h̃t

i i with the blocks

M⇤
P ,E := (M⇤

E ,P )T , M⇤
E ,P := D̃�1/2

E
ÕT
E

ME ,P , and

M⇤
E ,E := D̃�1/2

E
ÕT
E

ME ,E ÕE D̃�1/2
E

= IdEi
.

Even though both bases hys
i i of P pi and hh̃t

i i of Ei are stable their simple merger hys
i , h̃t

i imay
not be stable. That is we currently have a representation of the local approximation space

Vi = P
pi + Ei = spanhys

i i+ spanhh̃t
i i

which is not a direct splitting; i.e., the spaces P pi and Ei overlap in general. In the following we
construct a stable direct splitting of Vi where we separate the enrichment degrees of freedom from
the polynomials completely; i.e., we derive the direct splitting

Vi = P
pi �Di := P

pi �

⇣
Ei \ P

pi
⌘

and compute an appropriate basis hi for the space Di := Ei \ P
pi automatically. That is we elimi-

nate all polynomial components in the enrichment space.4 This is achieved by a block-elimination
approach; i.e. the Schur complement.

4Since the matrix M⇤
E ,E = IdEi

is invertible due to our construction we can also eliminate the enrichment functions from
the polynomials.
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To this end, we consider the local mass matrix ME in block-form (5.34) and since the basis
of P pi is stable we can compute (MP ,P )�1. Therefore the transformation

SS :=

 
IdPi

0
�M⇤

E ,P (MP ,P )�1 IdEi

!

from the system hys
i , h̃t

i i to hys
i , h̄t

i i is stable and we obtain the block-diagonal local mass matrix

MS := SS MEST
S =

✓
MP ,P 0

0 MD,D

◆

with
MD,D := M⇤

E ,E �M⇤
E ,P (MP ,P )�1M⇤

P ,E .

The matrix MD,D , i.e. the Schur complement matrix, is of dimension dEi ⇥ dEi . However the di-
mension dDi := dim(Di) of the space Di = Ei \ P

pi = spanhh̄t
i i may be smaller. This is the case

if a non-vanishing linear combination of the local restrictions ht
i of the global enrichment func-

tions ht can be represented (or well-approximated) by polynomials. Thus, MD,D in general has a
(numerical) kernel and we need to eliminate these kernel elements to obtain a stable local mass
matrix on wi. To this end, we employ the same approach as for the block ME ,E . We compute the
eigenvalue decomposition

OT
D

MD,DOD = DD with OD , DD 2 RdEi ⇥dEi (5.35)

of the Schur complement matrix MD,D where

OT
D

OD = IdEi
, (DD)r,q = 0 for all r, q = 1, . . . , dEi , and r 6= q.

Again, we can easily identify the (numerical) kernel in the eigenbasis. Analogously to (5.33) we
partition the matrices OT

D
and DD of (5.35) as

OT
D

=
✓

ÕT
D

KT
D

◆
, and DD =

✓
D̃D 0
0 kD

◆
(5.36)

where D̃D 2 RdDi ⇥dDi is invertible with maximal dDi . Thus, we obtain the respective transforma-
tion to the eigenbasis hht

i i of the Schur complement MD,D by

D̃�1/2
D

ÕT
D

: Di = spanhh̄t
i i ! Di = spanhht

i i.

Hence, the block-diagonal transformation

SD :=

 
IdPi

0

0 D̃�1/2
D

ÕT
D

!

yields a symmetric positive definite local mass matrix MD

MD := SDMSST
D

=
✓

MP ,P 0
0 M⇤

D,D

◆
,

with M⇤
D,D = IdDi

; i.e., the system of functions hys
i , ht

i i is a stable and well-conditioned basis of the
local approximation space Vi = P

pi + Ei = P
pi �Di. The condition number of MD is given by
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the condition number of MP ,P . There is no ill-conditioning due to enrichment and the presented
construction yields an optimal local preconditioner. Moreover, there holds the representation

Vi = P
pi �Di

as a direct sum, where the space Di = Ei \ P
pi consists of pure enrichment degrees of freedom

that cannot be represented (or well-approximated) by polynomials.
The final local preconditioner SE\Pi : Vi ! Vi which maps the original ill-conditioned local

generating system hĴm
i i = hys

i , ĥt
i i to an optimally conditioned local basis hJm

i i = hys
i , ht

i i of Vi is
given by the product of the constructed transformations and projections

SE\Pi := SD � SS � SE .

The respective global preconditioner SE\P is given by

(SE\P )i,j :=

(
SE\Pi j = i,
0 j 6= i.

(5.37)

Due to the use of a flat top PU in our PPUM this local stability of hJm
i i already yields stability of

the global basis hjiJ
m
i i of VPU.5

Remark 5.4. Note that in the presentation above the equivalencies

Vi = P
pi �Di = P

pi + Ei

hold only up to the employed numerical cut-off parameter e > 0; i.e. we have

Vi := P
pi �Di ⇡ P

pi + Ei and Di ⇡ Ei \ P
pi .

Remark 5.5. Even though we considered the identity operator I on the local patch wi, i.e. the
local mass matrix Mi, we can construct the respective preconditioner for an arbitrary (definite)
operator. A change of this operator impacts the absolute value of the constant condition number
associated with the constructed basis only—in exact arithmetic and with e = 0. However, due
to the employed cut-off parameter e > 0 we may obtain a (slightly) different space spanhJm

i,ki for
different operators with the same e.

Let us summarize the presented local preconditioning approach on a particular patch wi 2
CW by the following algorithm. Here, we include also a transformation for the space P

pi =
spanhys

i i to obtain an orthonormal polynomial basis hys
i i. Thus, we use Algorithm 5.4 for all

patches wi,k not only the enriched patches. Observe that due to this preconditioning we also
eliminate the stability problems encountered due to very small intersections wi \W. Note further
that the constructed preconditioner SE\P here replaces the preconditioner S of §4.2.1.

Algorithm 5.4 (Local Enrichment Preconditioning).

1. Assemble the local matrix M on wi using the generating system hĴm
i i = hys

i , ĥt
i i analogously

to (5.29) using the weak formulation of the considered operator, see Remark 5.5. Define the
respective sub-matrices MP ,P , ME ,E , ME ,P of (5.31) due to the partitioning (5.30).

2. Compute the eigenvalue decomposition (5.32) of the block ME ,E and define the respective
sub-matrices ÕT

E
and D̃E according to (5.33) such that D̃E is invertible.

5Formally, we need to compute the entries (5.29) with respect to wFT,i .
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3. Compute the eigenvalue decomposition

OT
P

MP ,POP = DP with OP , DP 2 RdPi ⇥dPi (5.38)

of the block MP ,P with the normal transformation OT
P

and the invertible diagonal matrix
DP .

4. Define the block-diagonal transformation

SP ,E :=

 
D�1/2
P

OT
P

0
0 D̃�1/2

E
ÕT
E

!

from Vi = spanhŷs
i , ĥt

i i to Vi = spanhys
i , h̃t

i i.

5. Define the sub-matrix
M⇤
E ,P := D̃�1/2

E
ÕT
E

ME ,POPD�1/2
P

(5.39)

of the transformed local matrix TT
B MTB.

6. Define the block-triangular transformation

SS :=

 
IdPi

0
�M⇤

E ,P IdEi

!

from Vi = spanhys
i , h̃t

i i to Vi = spanhys
i , h̄t

i i.

7. Define the Schur complement matrix

MD,D := IdEi
�M⇤

E ,PM⇤
P ,E

= IdEi
� D̃�1/2

E
ÕT
E

ME ,POPD�1
P

OT
P

MP ,E ÕE D̃�1/2
E

.

8. Compute the eigenvalue decomposition (5.35) of the Schur complement matrix MD,D and
define the respective sub-matrices ÕT

D
and D̃D according to (5.36) such that D̃D is invertible.

9. Define the block-diagonal transformation

SD :=

 
IdPi

0

0 D̃�1/2
D

ÕT
D

!

from Vi = spanhys
i , h̄t

i i to Vi = spanhys
i , ht

i i.

10. Define the local preconditioner SE\Pi on wi as SE\Pi := SD � SS � SP ,E , i.e.,

SE\Pi :=

 
D�1/2
P

OT
P

0
�D̃�1/2

D
ÕT
D

M⇤
E ,PD�1/2

P
OT
P

D̃�1/2
D

ÕT
D

D̃�1/2
E

ÕT
E

!
(5.40)

with M⇤
E ,P given in (5.39), which maps the ill-conditioned generating system hŷs

i , ĥt
i i to the

optimally conditioned basis hys
i , ht

i i.
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The respective global preconditioner SE\P is then obtained by (5.37) and the stiffness matrix
with respect to the computed stable global basis hjiJ

m
i i = hjiy

s
i , jih

t
i i is obtained as the triple-

product
AE\P := SE\PAST

E\P

where A denotes the stiffness matrix with respect to the generating system hjiy
s
i , jiĥ

t
i i. The

computational complexity CP of this preconditioning scheme is given by

CP := O
⇣

N
�
(dPi )3 + (cEi )3 + (dEi )3�

⌘
.

The presented approach scales linearly in the number of patches N and with respect to the number
of operations per patch wi the presented preconditioner is cheaper than that of §4.2.1 which scales
as O(N(dPi + cEi )3). Moreover, the preconditioner SE\P preserves the separability of the degrees
of freedom into smooth approximation functions ys

i and pure enrichment functions ht
i which

simplifies the error analysis of our hierarchically enriched PPUM summarized in Theorem 5.1
below.

Recall that we assumed the availability of analytical (singular) enrichment functions a pri-
ori in the construction above. Note however that we may also employ numerical enrichment
functions often referred to as handbook functions [136, 137] which are e.g. pre-computed discrete
approximations to certain reference problems. Since the solutions of such reference problems are
singular functions we need to employ an adaptive numerical scheme for their approximation.
The construction of an hp-adaptive PPUM which is suitable for the efficient computation of nu-
merical enrichment functions is the subject of §5.4. But before we focus on the important issue of
adaptivity for the PPUM let us close this section on enrichment with a refined error analysis for
the presented hierarchically enriched PPUM.

5.3.3 Error Analysis
One of the goals of the presented enrichment scheme was to obtain a numerical method which
converges with a rate that is independent of the regularity of the solution u. The following the-
orem shows that we achieve this goal with our hierarchical enrichment scheme. Moreover, we
attain a kind of superconvergence in the enrichment zone (5.27). The local error in the enrichment
zone E which contains all singularities of u decays faster than the global error on W.

Theorem 5.1. Let W ⇢ RD with Lipschitz boundary ∂W be given. Let {ji | i = 1, . . . , N} with wi :=
supp(ji) and diam(wi) ⇣ h be a partition of unity which satisfies Definition 3.1 and the flat top property
according to Definition 3.2. Let a collection of local approximation spaces Vi := P

p
�Di ⇢ H1(W \wi)

with a stable basis hys
i , ht

i i be given for all i = 1, . . . , N such that Di = {0} for i = 1, . . . , M� 1. Assume
that the spaces Di = spanhht

i i for i = M, . . . , N resolve all singularities of the solution u 2 H1(W); i.e.,
there holds the decomposition

u = up + c̃Eus with up 2 Hk(W) with k > 1 (5.41)

and a mollified characteristic function c̃E 2 C
• of the enrichment zone

E :=
N[

i=M

wi such that c̃E

M�1X

i=1

ji ⌘ 0 (5.42)

and Ẽ := supp(c̃E) ⇢ E. Then the basis hjiy
s
i , jih

t
i i of the space

VPU :=
NX

i=1

jiVi
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is stable and there hold the estimates

kuPU
� ukH1(W)  O(hmin{p,k}),

kuPU
� ukH1(W\Ẽ)  O(hmin{p,k}),

kuPU
� ukH1(E)  O(hmin{p,k}+d),

for the unique best approximation uPU
2 VPU

uPU :=
NX

i=1

jivi =
NX

i=1

ji

dPiX

s=1

vs
i ys

i +
dDiX

t=1

vt+dPi
i ht

i

with d = d({Di}) > 0.

Proof. Multiplication of the splitting (5.41) with 1 ⌘
PN

i=1 ji yields

u =
NX

i=1

jiup +
NX

i=1

jic̃Eus

and since an arbitrary PPUM function uPU is given as

uPU =
M�1X

i=1

jivi +
NX

i=M

ji(vi + ei)

with vi 2 P
pi and ei 2 Di we obtain the error between the analytic solution u and our PPUM

approximation uPU by

uPU
� u =

M�1X

i=1

ji(vi � up) +
NX

i=M

ji((vi + ei)� (up + c̃Eus)). (5.43)

Appealing to the triangle inequality we obtain the estimate

ku� uPU
k  k

M�1X

i=1

ji(vi � up)k

+k
NX

i=M

ji((vi + ei)� (up + c̃Eus))k.
(5.44)

The first term on the right-hand side corresponds to the error of a PPUM approximation of the
regular function up 2 Hk with polynomial local approximation spaces Vi = P

p. According to
Theorem 3.1 we can bound this error-term by O(hmin{p,k}) in the H1-norm, i.e.

k

M�1X

i=1

ji(vi � up)kH1  O(hmin{p,k}). (5.45)

To obtain an upper bound for the second term of the right-hand side of (5.44)

JE := k
NX

i=M

ji((vi + ei)� (up + c̃Eus))k
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we consider the equality

up + c̃Eus = up + (c̃E � 1)us + us.

Here the triangle inequality yields an upper bound of JE by

JE = k

NX

i=M

ji((vi + ei)� (up + (c̃E � 1)us + us))k

 k

NX

i=M

ji(vi � (up + (c̃E � 1)us))k

+k
NX

i=M

ji(ei � us)k.

Observe that the function up + (c̃E � 1)us is regular since c̃E = 1 in the vicinity of the singular
points of us. Hence, we can bound the first term on the right-hand side again by O(hmin{p,k}), i.e.,

k

NX

i=M

ji(vi � (up + (c̃E � 1)us))kH1  O(hmin{p,k}).

Assuming that the enrichment functions resolve the singular part us of the solution u we can
choose ei = us so that the second term vanishes and we obtain the upper bound

k

NX

i=M

ji((vi + ei)� c̃E(up + us))kH1  O(hmin{p,k}) (5.46)

for the error in supp(c̃E) ⇢ E. Together with (5.45) this yields the error bound

ku� uPU
kH1  O(hmin{p,k})

for the global error on the domain W. Within the enrichment zone Ẽ however we can obtain a
better estimate. To this end, consider the case us = 0, i.e., the approximation of a regular solution
u = up by an enriched PPUM. Then, JE becomes

JE = k
NX

i=M

ji((vi + ei)� up))k (5.47)

and the standard error bound O(hmin{p,k}) ignores all degrees of freedom collected in ei which
are associated with the enrichment functions ht

i 2 Di. Outside of the singular points of u these
functions are regular and cannot be well-approximated by the polynomials ys

i 2 P
p due to our

construction. Hence, the functions ht
i 2 Di provide additional approximation power to Vi =

P
p
�Di even for the approximation of smooth functions. Therefore, (5.47) can in fact be bounded

by O(hmin{p,k}+d) in the H1-norm with d > 0 for regular solutions u = up.
For a singular solution u, i.e. us 6= 0, we can utilize this observation by considering the

splitting of the enrichment part ei on a particular patch wi in two local components ei = es
i + ep

i .
On each patch wi with i = M, . . . , N this splitting can be chosen to balance the two error terms on
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the right-hand side of the inequality

JE = k

NX

i=M

ji((vi + ep
i + es

i )� (up + c̃Eus))k

 k

NX

i=M

ji((vi + ep
i )� (up + (c̃E � 1)us))k

+k
NX

i=M

ji(es
i � us)k.

(5.48)

This can yield a much smaller error bound since the regular function up + (c̃E � 1)us is now
approximated by more degrees of freedom, i.e., by all polynomials and a number of enrichment
functions ht

i on wi. Yet, at the expense that es
i � us 6= 0. Hence, the Galerkin solution which

minimizes JE (i.e. minimizes (5.43) with respect to the energy-norm) shows a better convergence
of O(hmin{p,k}+d) with d > 0 in the enrichment zone than the global O(hmin{p,k}) behavior. ut

The absolute value of d is of course dependent on the specific original enrichment func-
tions ht and the polynomial degree p employed since the constructed pure enrichment space is
Di = Ei \ P

pi . Note that d is not related to the capability of the global enrichment functions ht to
resolve a specific singularity but rather to the approximation property of the localized enrichment
functions ht

i for regular solutions. The approximation property of the enrichment functions with
respect to the singularities of the solution is required to bound the second term of the right-hand
side of (5.48) and for the validity of the decomposition (5.41) with c̃E satisfying (5.42).

The impact of this improved convergence in the enrichment zone is that we can extract the
coefficients of the asymptotic expansion of the singular solution u, the so-called stress intensity
factors [140], with higher accuracy in the enrichment zone E and therefore near the singularities
of u than the global error evolution implies.

5.4 Adaptive Refinement
If no analytical enrichment information is available a priori we must resort to a more classical
approach to make the convergence behavior of our PPUM independent of the regularity of the
solution u—adaptive hp-refinement. The fundamental prerequisite of any adaptive computation
is local error estimation [10, 13, 111, 138, 145, 157] to determine the part of the domain W where
the resolution of the approximation space VPU is not sufficient to provide a uniform distribution
of the error on W. Within our PPUM such estimates allow us to identify the cover patches wi and
the respective local approximation spaces Vi which should be refined. Here the question arises
whether it is more appropriate to refine the cover patch wi (h-refinement) or if it is more efficient
to refine the local approximation space Vi (p-refinement). To answer this question, we employ a
simple extrapolation technique for the local error estimates [99]. Thus, we construct a refinement
indicator function

rS : {(wi, Ci, Vi)}! {null, h, p, hp} (5.49)

which marks the respective component(s) of our PPUM space on the finest level J

VPU
J =

NJX

i=1

ji,JVi,J ,

where NJ := card(CJ
W) and wi,J = supp(ji,J), for refinement from a single local error estimate,

see also [65, 128]. To maintain the usefulness of the error bounds of Theorem 3.1 and Theorem 5.1
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it is essential that the constructed sequence of refined PPUM spaces admit uniform bounds of the
constants of Definition 3.1.

In the following we drop the level subscript k, since the adaptive refinement will always be
carried out for the currently finest level J of our sequence VPU

k with k = 0, . . . , J.

5.4.1 Error Estimation
A very natural approach to error estimation in a PUM is the so-called subdomain estimator [9,
10, 65, 128, 138]. Here, the error equation is localized to certain subdomains Wi ⇢ W and then
(approximately) solved. The energy-norm of such a local solution on Wi provides a good estimate
of the energy-norm with respect to Wi of the error. For a detailed construction of this subdomain
error estimator let us consider the simple Poisson problem

�Du = f in W ⇢ RD,
u = gD on GD ⇢ ∂W,

∂u
∂n

= gN on GN = ∂W \ GD.
(5.50)

Due to our algebraic construction of conforming local approximation spaces Vi presented in §4.2.2
we can discretize (5.50) via the classical weak formulation

a(u, v) = hru,rviL2(W) = hl, vi = h f , viL2(W) � hgN , viL2(GN)

for all v 2 H1
GD ,0(W) := {v 2 H1(W) | v = 0 on GD}. Thus, our conforming PPUM approximation

uPU satisfies
a(uPU, v) = hl, vi for all v 2 CK(VPU) ⇢ H1

GD ,0(W) (5.51)

with the projection CK : VPU
! VPU

K of §4.2.2. For each patch wi let us introduce the local
problem: Find ePU

i 2 Ti,GD ,gD such that

a(ePU
i , wi) = a(u� uPU, wi) = a(ePU, wi) holds for all wi 2 Ti,0(wi \W) (5.52)

where Ti,0 : {wi 2 H1(wi \W) |wi = 0 on ∂(wi \W) \ GN}. The respective strong formulation of
(5.52) is given by

�DePU
i = ( f + DuPU)|wi in wi \W ⇢ Rd,

ePU
i = 0 on ∂(wi \W) \ GN \ GD,

ePU
i = (gD � uPU)|wi on wi \ GD,

∂ePU
i

∂n
= (gN �

∂uPU

∂n
)|wi on wi \ GN ,

(5.53)

compare [9–11, 65, 111, 128, 138].
The following theorem from [9] shows that we obtain a reliable and efficient error estimator

from the local solutions ePU
i of (5.53) for each wi 2 CW.

Theorem 5.2. Let W ⇢ RD with Lipschitz boundary ∂W be given. Let {ji | i = 1, . . . , N} with wi :=
supp�(ji) be a partition of unity which satisfies Definition 3.1 and the flat top property according to
Definition 3.2. Let a collection of local approximation spaces Vi with a respective direct splitting Vi =
Vi,K � Vi,I such that v|GD = 0 for all v 2 Vi,K. Furthermore, assume that the tuples {(wi, Vi,K)} satisfy
the uniform Poincaré property of Definition 5.1. Then there hold the estimates

C�1
⇣ NX

i=1

kePU
i k

2
H1(wi\W)

⌘1/2
 ku� uPU

kH1(W)  C
⇣ NX

i=1

kePU
i k

2
H1(wi\W)

⌘1/2
(5.54)
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for a constant C > 0 where uPU is the approximate solution to (5.50) in VPU =
PN

i=1 jiVi and ePU
i is the

solution to (5.53), i.e. uPU satisfies (5.51) and ePU
i (5.52).

Definition 5.1. A collection of tuples {(wi, Vi)} with i = 1, . . . , N has the uniform Poincaré prop-
erty with respect to W, GD ⇢ ∂W, and GN = ∂W \ GD if there exists a constant CP > 0 independent
of i such that for wi \ GD = ∆ the inequality

inf
l2R
kv� lkL2(wi\W)  CP diam(wi)kvkH1(wi\W)

holds for all v 2 H1(wi \W) and 1 2 Vi. In the case wi \ GD 6= ∆ there holds the inequality

kvkL2(wi\W)  CP diam(wi)kvkH1(wi\W)

for all v 2 H1(wi \W) with v = 0 on GD.

For the proof of Theorem 5.2 we refer to [9] where also the constant C of (5.54) is explicitly
given. The uniform Poincaré property of Definition 5.1 is essentially a geometric condition on the
intersections wi \W.

In practice, however, we can only approximate the solution ePU
i of (5.53) on each patch wi

and the bounds (5.54) are not guaranteed for an approximation of ePU
i . Here, we choose the local

approximation spaces

Wi,q := jiV⇤i,q with V⇤i,q := P
pi+q
� (Ei \ P

pi+q) (5.55)

with q > 0 for the approximate solution of (5.53). Observe that due to our hierarchical enrichment
scheme and the multiplicative construction of the enrichment spaces (5.22) the spaces V⇤i,q have
better approximation properties than Vi not only for regular errors ePU

i but also for discontinuous
ePU

i .
We discretize the operators on the right-hand side of (5.53) via a Petrov-Galerkin approach

using VPU as the trial space and Wi,q as the test space. Thus, (5.52) becomes

a(ePU
i,q , jiv⇤i,q) = hl, jiv⇤i,qi � a(uPU, jiv⇤i,q)

for all v⇤i,q 2 V⇤i,q and the essential boundary conditions of (5.53) on GD are implemented with
respect to V⇤i,q via

bD(ePU
i,q , v⇤i,q) = hgd, v⇤i,qi � bD(uPU, v⇤i,q),

compare §4.2.2. The vanishing essential boundary conditions on ∂(wi \W) \ GN \ GD are trivially
satisfied in Wi,q (5.55) due to the multiplication with ji which vanishes on ∂wi.

Finally, we define our computable local error estimator (indicator) ei,q and the respective
global estimate eq via

e2
i,q := a(ePU

i,q , ePU
i,q ), eq :=

⇣ NX

i=1

e2
i,q

⌘1/2
. (5.56)

Remark 5.6. If we assume that the employed PU functions ji satisfy ji 2 C
2(W), for instance by

choosing a cubic B-spline W 2 C2(W) in (3.14), we can directly evaluate�DuPU on the right-hand
side of (5.53).
Remark 5.7. Note that the presented subdomain estimator can also be employed with Nitsche’s
method [65, 128]. Here, however we need to compute an appropriate regularization parameter
for the error estimation. Note that the regularization parameter employed in the discretization
does not ensure the solvability of the local problems (5.53).
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5.4.2 Refinement Indicator
To attain our refinement indicator function (5.49) from (5.56) we first define a Boolean indicator

b : CW ! {true, false}

by simple thresholding

b(wi) :=
⇢

true if ei � sbeavg,
false else,

with e2
avg := N�1e2 = N�1PN

i=1 e2
i as it is done in many adaptive procedures. Note that we drop

the subscript q of (5.56) in the following for the ease of notation. The second component of (5.49)
is an assumed error reduction classifier

t : CW ! {constant, algebraic, exponential}

defined by

t(wi) :=

8
<

:

constant if b(wi) = false,
algebraic if b(wi) = true and ei � ei,⇤,
exponential else,

(5.57)

where ei,⇤ is a predicted error based on the estimator (5.56) from the previous refinement step,
i.e., we employ an extrapolation of a one-level history for the prediction ei,⇤.

If a particular patch wi was h-refined, i.e. r(wi) = h, we anticipate that the error with respect
to the energy-norm on wi is reduced by a factor 2�pi . Furthermore, we assume that the error is
distributed uniformly among the 2d successor patches, so that we predict the error on a successor
patch wl ⇢ wi to be el,⇤ := sh2�d2�pi ei with sh > 0. In the case of a p-refined patch wi we
anticipate an exponential convergence on wi and set ei,⇤ := spei with 0 < sp < 1. For patches wi
that are not refined we set ei,⇤ := sconstei with sconst > 0 and we obtain the overall definition for
a patch wi after refinement of CW

ei,⇤ :=

8
<

:

sconstei if wi 2 CW and t(wi) = constant,
spei if wi 2 CW and t(wi) = exponential,
sh2�d2�pj ej if wj 2 CW with t(wj) = algebraic and wj � wi.

(5.58)

Obviously, this prediction assumes that the respective refinement yields an optimal error reduc-
tion. Hence, if ei < ei,⇤ the refinement reduced the error more efficiently than predicted which
indicates a higher regularity of the solution on the respective patch wi and that an exponential
convergence may be achieved. If on the other hand ei � ei,⇤, we infer that the smoothness of the
solution u is limited on wi and only an algebraic convergence is attainable. This consideration
motivates the definition (5.57).

If there is no local refinement of the patch wi or the local approximation space Vi, i.e.

r((wi, Vi)) = null,

we assume an almost constant error on the patch wi which disregards effects due to the overlap
of the patches. Note however that we can account for variation in the local error due to a change
of the respective PU function ji stemming from the h-refinement of neighboring patches wj 2 Ci
by using a local parameter sconst,i in the definition (5.58).

With these components in place, we define a completely local refinement indicator function

r((wi, Vi)) :=

8
<

:

null if t(wi) = constant,
h if t(wi) = algebraic,
p if t(wi) = exponential,

(5.59)
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Figure 5.8. Cell decomposition corresponding to an initial cover (left). Cell decomposition with
cells of neighborhood Ci (light gray) and cell corresponding to the patch wi (dark gray) marked for re-
finement by (5.59) (center). Cell decomposition with cells (gray) marked for refinement by (5.63) (right).

which may be used to steer the refinement of the PPUM space VPU defined on the cover CW.
The refinement of the p-components of VPU is straightforward. In the case of r((wi, Vi)) = p

we simply increase the current polynomial degree pi of the polynomial part P pi of Vi on wi; i.e.

Vi = P
pi � (Ei \ P

pi ) �! Vi = P
pi+1
� (Ei \ P

pi+1) (5.60)

(after the application of the respective local preconditioner SE\Pi of §5.3).
If r((wi, Vi)) = h we refine the respective h-component of our PPUM space VPU; i.e., we

refine the PU function ji. To this end, we refine the respective cover patch wi by subdividing its
associated tree-cell to obtain the respective successor patches wj ⇢ wi by (5.1). Since we employ
the cell-centers (5.2) in the definition of the weight functions (3.14) for the Shepard construction
(3.13) this procedure is already sufficient for our PPUM. However, we may also consider the
refinement of the sampling set XN ; i.e., the creation of new particles. Here, we can for instance
use a center of mass approach [65] or we can define new particles in the (local) maxima of the
respective local error approximation ePU

i .
Note however, that (5.59) does not allow to bound the maximal level difference

L := lim
J!•

max
k=0,...,J

Lk, with Lk := max
wi,k2Ck

W

max
wj,k2Ci,k

|li,k � lj,k|. (5.61)

of the resulting cover sequence Ck
W a priori, see Figure 5.8. Therefore, with a level-independent

choice of a we cannot satisfy (4.5) a priori to ensure the flat top property (3.8) for all cover patches
wi,k 2 Ck

W with i = 1, . . . , Nk on all levels k = 0, . . . , J. Recall however that the flat top property
of the PU functions is a sufficient condition for the linear independence of the employed shape
functions only. It is not a necessary condition and in practice we observe no stability problems if
(3.8) is violated for a few cover patches wi,k.

More importantly, the constants (Cr,k, CFT,k, Mk, CS,k, CN,k) of Definitions 3.1 and 3.3 cannot
be uniformly bounded independently of the level k. Recall that Cr,k and Mk are involved in the
error estimates (3.5) and (3.6) of Theorem 3.1. Hence, let us consider the impact on the error bound
(3.6)

kr(u� uPU
k )kL2(W) 

p
2Mk

⇣ NkX

i=1

� Cr,k
diam(wi,k)

�2
ê2

i,k + C2
•,k ẽ2

i,k

⌘1/2
,
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where ẽi,k and êi,k denote local error bounds in Vi,k, if Lk increases with finer levels k. Since
C•,k  1 holds independently of the level difference Lk it is sufficient to focus on the term

E2
r,k := Mk

NkX

i=1

� Cr,k
diam(wi,k)

�2
ê2

i,k

only. According to Lemma 4.1 and (4.6) the constant Cr,k is given by

Cr,k = (2Lk + 1) Mk CT CWC�2
W ,∂

a� 1
2

for a level-independent scaling parameter a 2 (1, 2). Hence, Cr,k grows exponentially with in-
creasing Lk and therefore may completely compensate the convergence of the local error bounds
êi,k. Then, the error term Er,k is constant on all levels (or may even grow with increasing level k)
and the convergence of our hp-adaptive PPUM may stall.

Thus, we need to generalize the local refinement indicator (5.59). To this end, we introduce
a smoothness indicator

s(Ci) :=
⇢

true if for all wj 2 Ci there holds lj � li < Lmax
false else (5.62)

which determines if a patch wi,k is too coarse with respect to its neighbors wj 2 Ci,k to bound the
maximal level difference by Lmax � 0. With the help of (5.62) we define our smoothed refinement
indicator, compare Figure 5.8, as

rS((wi, Ci, Vi)) :=

8
>>>><

>>>>:

null if t(wi) = constant and s(Ci) = true,
h if t(wi) = algebraic and s(Ci) = true,
p if t(wi) = exponential and s(Ci) = true,
h if t(wi) = constant and s(Ci) = false,
hp if t(wi) = exponential and s(Ci) = false.

(5.63)

Since we now allow for simultaneous hp-refinement rS((wi, Ci, Vi)) = hp of a patch wi and its
associated approximation space Vi and enforce additional h-refinements with (5.63) we need to
generalize the error prediction of (5.58) appropriately. To this end, we define the error prediction
on a refined patch wi 2 RC(CW) for the smoothed refinement scheme (5.63) as

ei,⇤ :=

8
>><

>>:

sconstei if wi 2 CW and rS((wi, Ci, Vi)) = null,
spei if wi 2 CW and rS((wi, Ci, Vi)) = p,
sh2�d2�pj ej if wj 2 CW with rS((wj, Cj, Vj)) = h,
spsh2�d2�pj ej if wj 2 CW with rS((wj, Cj, Vj)) = hp and wj � wi.

(5.64)

Let us now consider the incorporation of the refined PPUM space in our sequence VPU
k with

k = 0, . . . , J. For the ease of notation we denote the cover resulting from the above refinement
as RC(CJ

W) and the refined PPUM space as RV(VPU
J ) in the following. In a naive approach we

simply extend our sequences Ck
W and VPU

k by RC(CJ
W) and RV(VPU

J ) respectively; we define

CJ+1
W := RC(CJ

W), VPU
J+1 := RV(VPU

J ).

This procedure however yields a new level J + 1 for every refinement step which might spoil the
overall complexity of our multilevel PPUM and can lead to a dramatic increase in the storage
requirements; i.e., the attained sequence of covers Ck

W with k = 0, . . . , J + 1 violates the minimal
property of Lemma 5.2.
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To ensure that our sequence of covers Ck
W satisfies Lemma 5.2 after refinement we use the

following replacement strategy

(CJ+1
W , VPU

J+1) :=

8
<

:

(RC(CJ
W), RV(VPU

J )) if wi,J 2 CJ
W with li,J = J

and r((wi,J , Vi,J)) = h,
(∆, spanh0i) else,

(5.65)

and

(CJ
W, VPU

J ) :=

8
><

>:

(CJ
W, VPU

J ) if wi,J 2 CJ
W with li,J = J

and r((wi,J , Vi,J)) = h,
(RC(CJ

W), RV(VPU
J )) else,

(5.66)

Here, we generate a new level J + 1 of the sequence Ck
W and VPU

k only if a patch wi,J 2 CJ
W with

li,J = J, i.e., with minimal diameter, is h-refined. If no such patch wi,J exists we replace the
currently finest level J with its refined version. Obviously, the attained covers satisfy Lemma 5.2
so that Ck

W and VPU
k employ a minimal number of levels.

Let us summarize the properties of our hp-adaptive refinement scheme using the refinement
indicator (5.63) in the following lemma.

Lemma 5.3. Assume that the sequence of covers Ck
W generated by Algorithm 5.1 satisfies Lk  Lmax for

some Lmax � 0 on all levels k = 0, . . . , J. Then the adaptive refinement RC(CJ
W) of CJ

W due to (5.63)
satisfies LRC  Lmax where LRC denotes the maximal level difference (5.61) of the refined cover RC(CJ

W).
The constants of Definition 3.1 for the Shepard functions (3.13) with weight functions satisfying

(3.14) defined on Ck
W for all k = 0, . . . , J and RC(CJ

W) are uniformly bounded. Assuming that a <

1 + 2�Lmax�1 the covers Ck
W for all k = 0, . . . , J and RC(CJ

W) are admissible and the respective Shepard
functions (3.13) have the flat top property according to Definition 3.2. The covers Ck

W for all k = 0, . . . , J
and RC(CJ

W) employ a minimal number of levels.

Proof. It is sufficient to show that the maximal level difference LRC of RC(CJ
W) satisfies LRC 

Lmax. The remaining propositions then follow from Lemma 3.1 and Lemma 4.1, (5.65) and (5.66).
Consider wi,J 2 CJ

W and wj,J 2 Ci,J with li,J � lj,J = Lmax such that s(Ci) = false. Therefore,
rS((wi,J , Ci,J , Vi,J)) 2 {h, hp} and the respective level difference LRC will decrease if there holds
rS((wj,J , Cj,J , Vj,J)) = null} or it stays constant at LRC = Lmax if rS((wj,J , Cj,J , Vj,J)) 2 {h, hp}.

If there holds li,J � lj,J < Lmax for a particular patch wi,J 2 CJ
W and all wj,J 2 Ci,J the refine-

ment step can at most increase the maximal LRC level difference to Lmax. ut
Finally, we employ the hierarchical enrichment classifier eH of Algorithm 5.3 to transfer the

enrichment information of VPU
J to its refined version RV(VPU

J ). Note that due to our multiplica-
tive enrichment approach (5.22) not only the resolution of the smooth polynomial part P pi,J of a
p- or hp-refined patch wi,J is increased but also the resolution of the enrichment space Ei,J . In the
case of an h-refined patch wi,J Algorithm 5.3 enriches all its successor patches such that the reso-
lution of the global enrichment space is again improved. Hence, the combination of the multilevel
approach of §5, Algorithm 5.3 and the hp-refinement scheme presented above yields a multilevel
ehp-adaptive PPUM.

The optimal operation count of the multilevel iteration Mn1,n2
g for our ehp-adaptive PPUM

has to be ensured employing similar strategies as in multigrid for adaptive grids, see [158] and
the references cited therein for details. In general the global series (4.25) may not converge for an
adaptively refined sequence of PPUM spaces. This would lead (at least) to a logarithmic complex-
ity of the global multilevel iteration Mn1,n2

g . However, we can still achieve an optimal complexity
implementation. The basic idea is to restrict the iteration on each level to a subset of patches in
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such a way that the respective series converges yet without deterioration in the quality of the
iteration; i.e., we define a partitioning of the degrees of freedom into an active subset and an in-
active subset. To this end we introduce an Boolean activity classifier a(Ci,J , Vi,J) which indicates
if the degrees of freedom associated with the local approximation space Vi,J or the partition of
unity function ji,J of the respective cover patch wi,J were affected by the latest refinement step,
see Algorithm 5.5.
Remark 5.8. Note that we can utilize the activity classifier information in the discretization to
reduce the computational costs. We can re-use the entries of the load vector which are associated
with the degrees of freedom of wi,J with a(Ci,J , Vi,J) = false. Similarly, the entries of the stiffness
matrix corresponding to a pair of patches wi,J and wj,J 2 Ci,J such that a(Ci,J , Vi,J) = a(Cj,J , Vj,J) =
false are not affected by the refinement and can be re-used from the previous discretization.
Thus, if all neighbors wj,J 2 Ci,J of a particular patch wi,J are inactive the complete block-row
associated with wi,J can be re-used.
Remark 5.9. Similarly we can also reduce the computational cost associated with the error esti-
mation with the help of the activity classifier. Observe that if all neighbors of a particular patch
wi,J are inactive, i.e. there holds a(Cj,J , Vj,J) = false for all wj,J 2 Ci,J , then the right-hand side of
(5.53) is not affected by the latest refinement. Thus, the respective error estimate (5.56) is constant
and does not have to be re-computed.

Summary
We close this chapter with a summary of the resulting multilevel ehp-adaptive PPUM approxi-
mation in algorithmic form. Here, we include the construction of the respective stability precon-
ditioner of §5.3.2 and the direct splitting of §4.2.2 for completeness.

Algorithm 5.5 (Multilevel hp-Adaptive PPUM with Hierarchical Enrichment).

Compute covers Ck
W via Algorithm 5.1 with Nk := card(Ck

W), define respective Shepard
functions (3.13) with weight (3.14) and global PPUM spaces VPU

k for k = 0, . . . , J with maxi-
mal level difference Lmax. Choose q > 0 and etol � 0.

For all levels k = 0, . . . , J:

1. If k = 0, define uPU
k := 0, eJ

i,⇤ := �1, and a(Ci,J , Vi,J) = true for all all i = 1, . . . , NJ .

2. Apply hierarchical enrichment classifier eH of Algorithm 5.3.
3. Discretize boundary value problem via steps 5–13 of Algorithm 4.3 using VPU

k as trial
and test space and the preconditioner SE\P of Algorithm 5.4. Re-use entries of stiffness
matrix, load vector, and transfer operators based on activity classifier, see Remark 5.8.
In step 12 of Algorithm 4.3 employ the iterative solver of Algorithm 4.5 with initial
guess uPU

k�1 (use local-to-local transfer operator if necessary) and Algorithm 4.4 as in-
terior iteration using the local-to-local transfer operators of §5.2.1 and the smoothers
of §5.2.2 to compute the approximate solution uPU

k . Iterate over all patches wi,J 2 CJ
W

with a(Ci,J , Vi,J) = true only.
4. If k = J:

(a) For all patches wi,J 2 CJ
W with a(Cj,J , Vj,J) = true for all neighbors wj,J 2 Ci,J ,

compute local error estimates eJ
i,q of (5.56) for all patches wi,k 2 CJ

W. For all patches

wi,J with a(Ci,J , Vi,J) = false, set eJ
i,q = eJ�1

n,q where wi,J = wn,J�1.

(b) Compute global error estimate eJ
q of (5.56). If eJ

q  etol, stop computation.
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(c) Define refinement indicator rS of (5.63) based on the local estimates eJ
i,q and the

respective predictions eJ
i,⇤.

(d) Define refined cover RC(CJ
W) and respective PPUM space RV(VPU

J ). Initialize

a(CR
i , VR

i ) = false for all neighborhoods CR
i ⇢ RC(CJ

W) and local approxima-
tion spaces VR

i . For the refined patches wR
i 2 RC(CJ

W) define the activity classifier
a(CR

i , VR
i ) = true and the respective error prediction eR

i,⇤ according to (5.64).

(e) Extend the sequences of covers Cl
W and PPUM spaces VPU

l for l = 0, . . . , J accord-
ing to (5.65) and (5.66).

(f) If (CJ+1
W , VPU

J+1) 6= (∆, spanh0i), set J = J + 1.
(g) Else:

i. Compute local-to-local approximation of uPU
J in refined PPUM space RV(VPU

J )
and set initial value uPU

J�1 = uPU
J . (Observe that uPU

J�1 62 VPU
J�1 and the local-to-

local transfer must not be applied in step 3.)
ii. Delete all computed data on level J that cannot be re-used, compare Remark

5.8.

In the next chapter we focus on the implementation of the above algorithm and all of its re-
spective components. Here, the most important aspect is numerical integration since our PPUM
shape functions are non-polynomial. The PU functions (3.13) with spline weights (3.14) are in
general piecewise rational functions and the enrichment functions hi,k 2 Ei,k ⇢ Vi,k are by def-
inition discontinuous or even singular functions. Thus, the numerical integration of our PPUM
shape functions is in general more challenging than the numerical integration of e.g. classical FEM
shape functions.
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Chapter 6

Implementation

In the previous sections we presented the specific ingredients and analytic properties of meshfree
methods and the PPUM in particular. In the following we are concerned with the efficient imple-
mentation of the PPUM. Yet, many of the presented concepts and techniques can be applied to
other meshfree or even mesh-based methods.

Even with the rapid growth of processing speed it is necessary to employ parallel computers
for large scale simulations to reduce the computing time to an acceptable range. Another issue to
keep in mind is that the amount of local memory of a computer is limited. Thus, very large prob-
lems demand the use of parallel computers with distributed memory. Here, the data necessary
for the local computations in a single processing core must be explicitly exchanged between par-
ticipating processors by the programmer which renders the implementation more challenging. In
[63, 125, 126] we presented a detailed discussion of the parallelization of the PPUM and therefore
give a compact summary of the key concepts and most important aspects only.

But before we come to the parallelization of our PPUM let us first consider the single most
challenging task in the implementation of a meshfree Galerkin method, the construction of an
appropriate integration scheme [15, 30, 31, 39, 60, 61, 124] for the efficient and reliable assembly
of the stiffness matrix. Since the meshfree shape functions are in general not piecewise polyno-
mial the integration in meshfree methods must be more involved than in the FEM. Another issue
which complicates the assembly of the stiffness matrix is the fact that there is no fixed connec-
tivity among the degrees of freedom and the supports of the meshfree shape function overlap in
a rather arbitrary fashion. Finally, it is time to be concerned with the geometry of the computa-
tional domain W and its boundary ∂W. Recall that the construction of the shape function does not
employ any information about W or its boundary. In the FEM the shape functions align with the
discrete approximation to the boundary of the domain. So far we do not even have an approxi-
mation to the domain or the boundary and the supports of our shape functions wi are allowed to
overlap W [ ∂W. In the assembly of the stiffness matrix however we must carry-out the integra-
tion of the weak form of the operator on the domain W and its boundary ∂W so that we need to
restrict the evaluation of our shape functions to the intersections wi \W and wi \ ∂W. Due to the
complex algebraic structure of our meshfree shape functions and the possibly complicated geom-
etry of wi \W these integrals cannot be computed analytically in general and we must resort to
numerical integration.

85



86 Chapter 6. Implementation

6.1 Numerical Integration and Geometry Approximation
In the FEM the (numerical) integration of the weak form of the considered PDE is simpler than in
meshfree methods due to the availability of a mesh. This fact often leads to the perception that a
mesh is required for numerical integration also in meshfree methods and that therefore meshfree
Galerkin methods are not truly meshfree. However, a mesh is not required for the reliable and
stable numerical integration of the weak form — neither in the FEM nor in meshfree methods.
We only need an appropriate decomposition of the integration domain into cells with pairwise
disjoint interiors (a far more general partitioning of the domain than a mesh). It is just due to the
specific construction of FE shape functions that the resulting decomposition in the FEM is in fact
the employed mesh itself.

To see this let us quickly review how (numerical) integration of the weak form actually
works for a Poisson problem in the FEM. In general the entries Ai,j of the stiffness matrix A =
(Ai,j) are given by

Ai,j := a(fj, fi) =
Z

W
rfjrfi dx =

Z

W\supp(fj)\supp(fi)
rfjrfi dx

where fi and fj denote FEM shape functions. Let Ta denote the cells of the considered mesh T ,
i.e. there holds

W =
[

a

Ta, T�a \ T�b = ∆ for all a 6= b

and
supp(fj) =

[

a(j)

Ta(j), supp(fi) =
[

a(i)

Ta(i).

Therefore, the supports of the shape functions are perfectly aligned to each other and to the
(respective approximation of the) domain. Hence, the computation of the integration domains
W \ supp(fj) \ supp(fi) is trivial in the FEM and there holds

W \ supp(fj) \ supp(fi) =
[

a(i,j)

Ta(i,j)

so that
Ai,j =

Z

W\supp(fj)\supp(fi)
rfjrfi dx =

X

a(i,j)

Z

Ta(i,j)

rfjrfi dx.

Observe that the integrand rfjrfi is smooth on each cell since fi|Ta 2 P
p for all Ta 2 T and

some p > 0. Thus, the integrals can be well approximated on Ta(i,j). Since the cells Ta(i,j) come
from a valid globally consistent mesh T and W \ supp(fj) \ supp(fi) is connected we do in fact
integrate the entries of the stiffness matrix over a local mesh. Yet, the above line of argument does
not rely on the fact that the Ta(i,j) provide a mesh topology. We make use of the following two
properties only:

1. Each integration domain W\ supp(fj)\ supp(fi) is given by the union of unique cells Ta(i,j)
with pairwise disjoint interiors.

2. The integrands of the weak form restricted to the interiors of these cells are smooth.

Observe for instance that we can in principle allow for hanging nodes of arbitrary order in the
union of the cells Ta(i,j) a property that is usually not acceptable for FE meshes. It is only due to
the fact that we started with a valid mesh T and the specific structure of classical finite element
shape functions that the integration domains are decomposed by a local mesh.
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Thus, there is absolutely no need for a so-called background mesh in meshfree Galerkin
methods. In fact the use of a background mesh which violates the above properties will spoil the
accuracy and the stability of the resulting numerical scheme. Hence, the integration cells cannot
be chosen a priori in meshfree methods. We must construct the cells Ta(i,j) explicitly within our
implementation with respect to the algebraic structure of the employed shape functions and the
geometry of the domain W. Yet, this construction is a much simpler task than full-blown mesh-
generation.

Recall that the global regularity of the our PPUM shape functions jiJ
m
i 2 VPU is dominated

by the regularity of the PU functions ji of (3.13), i.e.

ji(x) =
Wi(x)P

wk2Ci
Wk(x)

=
Wi(x)

PN
k=1 Wk(x)

.

Thus, let us first focus on the PU functions ji and how we can construct a decomposition {ici,a ⇢
wi} of its support wi such that jj|ici,a is smooth for all wj 2 Ci ⇢ CW. To this end, we carry out the
differentiation in

Z

W
r(jiJ

n
i )r(jjJ

m
j ) dx =

Z

W\wi\wj

r(jiJ
n
i )r(jjJ

m
j ) dx.

With the notation

S :=
NX

k=1

Wk, T :=
NX

k=1

rWk, and Gi := rWiS�WiT

we end up with the integrals

a(jjJ
m
j , jiJ

n
i ) =

Z

W\wi\wj

S�4GiJ
n
i GjJ

m
j dx +

Z

W\wi\wj

S�2WirJn
i WjrJm

j dx+
Z

W\wi\wj

S�3GiJ
n
i WjrJm

j dx +
Z

W\wi\wj

S�3WirJn
i GjJ

m
j dx

(6.1)

for the stiffness matrix and the integrals

h f , jiJ
n
i iL2 =

Z

W\wi

S�1WiJ
n
i f dx (6.2)

for the right-hand side. Thus, we need to assess the regularity of the functions S, T, Wj and Gj for
all wj 2 Ci to construct a decomposition {ici,a} of the patch wi such that their restrictions to the
interiors of the cells ici,a are smooth functions. In essence this means that the weight functions Wj
must be smooth functions on the cells ici,a.

In a first step we initialize our decomposition of the patch wi by the tree-cells Cj that are
intersected by wi

eici,j := Cj for all aCj = wj 2 Ci ⇢ CW.

The union of these cells for all i = 1, . . . , N corresponds to a very crude initial approximation to
the domain W, see Figures 6.1 and 6.7.

Since the supports of the PU functions jj are not aligned with these cells due to the em-
ployed scaling, i.e. due to the overlap of the supports, we need to refine the decomposition {eici,j}

by considering the intersections of the cells eici,j with the supports wk for all wk 2 Ci \ Cj, see
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Figure 6.1. Initial decomposition based on
the tree-cells Cj only (top: level 7, bottom: level 5).
The respective tree decomposition was generated by
sampling with Halton points.

Figure 6.2. Refined decomposition respect-
ing the supports wk (top: level 7, bottom: level 5).

Figures 6.2 and 6.7. Observe that we decompose the cells eici,j into a set of sub-cells eici,j,l such that
every intersection

eici,j \wk =
[

l2L(k)

eici,j,l

is the union of these sub-cells. Such a decomposition resolves the piecewise constant covering
index lCW of (3.3) and contains so-called hanging nodes.

However, the PU functions jj are in general not smooth on the cells eici,j,l since the weight
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Figure 6.3. Refined decomposition using
all spline decompositions {sci,n} (top: level 7, bot-
tom: level 5).

Figure 6.4. Refined decomposition using
the necessary spline decompositions {sci,n} only
(top: level 7, bottom: level 5).

functions Wj are usually products of splines and therefore defined in a piecewise fashion. Hence,
we need to refine the cells eici,j,l further to resolve the regularity of the weight functions. To this
end, we consider the decomposition {sck,n} of wk such that the tensor product spline Wk is smooth
on sck,n. In a naive approach we decompose all cells eici,j,l by the decompositions {sck,n} to obtain
the cells ici,j,l,s, see Figure 6.3. Yet, this yields a large number of unnecessary integration cells.
Recall that fi ⌘ 1 holds on all cells eici,j,l with lCW |eici,j,l

= 1 independently of the employed weight
functions. Hence, the jumps of S, T, Wi, and Gi cancel out on this cell and must not be considered
in its decomposition, see Figures 6.4 and 6.7. Obviously, the decompositions depicted in Figure 6.4
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employ a much smaller number of cells than those of Figure 6.3. Moreover, for each i = 1, . . . , N
there is a (rather large) cell ici,j,a,W on which ji is constant. For the ease of notation we denote the
cells ici,j,l,s in the following as ici,a.

The constructed decompositions {ick,a} with k = 1, . . . , N satisfy

wi \wj =
[

ici,a(j) =
[

icj,a(i), with icj,a(i) \ ici,a(j) 6= ∆) icj,a(i) = ici,a(j) (6.3)

and
jj|ici,a(j)

is smooth for all wj 2 Ci.

Thus the algebraic structure of our PU functions is resolved by the constructed decomposition.
Let us now consider the local approximation spaces Vj. If there is no enrichment there holds
Vj = P

pj so that all local approximation functions ys
j are smooth on the cells ici,a. Therefore, the

restrictions of our PPUM shape functions jjy
s
j to the cells are smooth functions and no further

refinement is required. In the presence of enrichment functions, i.e. Vj = P
pj + Ej, however we

need to refine the above decomposition appropriately.1
To this end, let us assume that each enrichment function ht is equipped with a decomposi-

tion {eck,n} of its support such that the integrals
Z

supp(ht)
(ht)2 dx, and

Z

supp(ht)
(rht)2 dx

can be approximated well by some numerical integration rule defined on the cells eck,n. For ana-
lytical enrichment functions we can construct such a decomposition for instance by an adaptive
sub-division integration scheme a priori. If the enrichment functions ht are pre-computed nu-
merically then the respective decomposition is automatically provided by the respective decom-
positions of the basis functions employed in their approximation. We obtain our PPUM decom-
position from the intersection of the cells ici,a with the cells of the decomposition eci,n of the local
enrichment functions ht

j for all wj 2 Ci, see Figures 6.5 and 6.7.
Observe that the presented construction utilizes information from VPU only and the number

of integration cells depends on the local neighborhoods Ci only. Thus, we can use the construction
on each level k = 1, . . . , J of our multilevel sequence VPU

k and maintain the optimal complexity of
our multilevel PPUM.

Finally, we need to consider the domain W and its boundary ∂W. To this end, let us first
consider the case when the computation domain W is given as a volumetric mesh. Obviously,
such an assumption would destroy the meshfree character of our PPUM however it provides a
fair amount of insight into the challenges arising from the consideration of general domains W in
our multilevel context. With W =

S
T we trivially obtain an appropriate decomposition of the

PPUM integration domains W\wi \wj by the intersections of the cells ici,a with the domain cells
T. Observe though that this yields a number of integration cells that cannot be bounded by the
the number of degrees of freedom of the respective PPUM space VPU

k on level k. Hence, we loose
the optimal complexity of our multilevel PPUM by this approach. The numerical integration is
(almost) equally expensive on all levels k = 1, . . . , J. In a first step to overcome this limitation
we can restrict the computation of these intersections only to those patches wi with intersect the
domain boundary ∂W. This somewhat reduces the number of integration cells yet the overall
optimal complexity may still be lost.

Hence, we must approximate the domain W on each level k independently so that the num-
ber of integration cells can be bounded by the number of degrees of freedom on level k to maintain

1Note that an appropriate refinement of the mesh for the integration of the non-smooth enrichment functions must
also be employed in the GFEM and XFEM.
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Figure 6.5. Refined decomposition using
the enrichment decompositions {eci,n} (top: level 7,
bottom: level 5).

Figure 6.6. Refined decomposition with
parametric cells at the boundary (top: level 7, bot-
tom: level 5).

the optimal complexity of our multilevel PPUM. To this end we make the assumption that we can
compute the intersections of the boundary ∂ici,a of an integration cell ici,a (an axis-aligned D-
rectangle) with the boundary ∂W of the domain W. Note that this operation is available for far
more general input data than a volumetric mesh and hence the meshfree character of our PPUM
is not compromised by this assumption.

With the help of the intersections ∂ici,a \ ∂W we refine the integration cell ici,a such that
the boundaries of the refined cells intersect with the boundary ∂W of the domain only in corners
of the refined cells. Observe that this assumption does not imply that the complete boundary
∂W is resolved (unlike in the above situation). The boundary segment ∂W \ ici,a covered by an
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Figure 6.7. The construction of the integration decomposition on level 3. Starting from tree-cells
(upper left), refining by the supports wj (upper right), refining by the decompositions {sci,n} associated
with the weight functions (center; left: all weights, right: necessary weights), refining by the decomposi-
tions {eci,m} associated with the enrichment functions (lower left), finally approximating the domain and
boundary by parametric cells (lower right).
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integration cell can still be arbitrarily complex. We only enforce that ∂W \ ∂ici,a is a subset of the
corners of ici,a. Therefore the number of integration cells is not dominated by the complexity of
the input data on all levels and we maintain the optimal complexity of our multilevel PPUM.
From the corner configuration of an integration cell ici,a with ici,a \ ∂W 6= ∆ we can construct an
appropriate parametric mapping2 to approximate the domain W and its boundary ∂W locally, see
Figures 6.6 and 6.7. Therefore, we obtain a level-dependent approximation to the domain.

The above construction is based on the assumption that we need to integrate the product
functions jiJ

m
i ; i.e. a bilinear form involving the global PPUM shape functions. Recall, however,

that not all weak forms that we must consider in our PPUM Galerkin scheme are evaluated for
the global shape functions jiJ

m
i . A major advantage of the the local-to-local transfer operator of

§5.2.1 over the global transfer operators is the fact that it involves the local approximation func-
tions Jm

i only. The PU functions ji do not need to be considered in the assembly. Hence, in the
construction of the numerical integration scheme for such bilinear forms we can skip the refine-
ment steps associated with the resolution of the algebraic structure of the PU functions ji and
obtain less integration cells. Furthermore, on most of these integration cells we now deal with
polynomial integrands (if there are no enrichment functions involved) so that these integrals can
be computed very efficiently. Note that we find this situation not only in the assembly of the
transfer operators but also in the construction of the direct splitting for our conforming bound-
ary treatment, compare §4.2.2, and the computation of the stability preconditioners of §4.2.1 and
§5.3.2.

Thus, we employ different decompositions of the same integration domains in our PPUM
and storing these decompositions would drive-up the storage requirements of the method. Fur-
thermore, the above decomposition approach can be implemented rather efficiently so that a com-
putation of the required local decomposition of a patch wi can be carried out on the fly.

It remains to select appropriate integration rules on the constructed integration cells to ob-
tain a complete numerical integration scheme for our PPUM. The first observation that guides us
is the fact that jumps of the derivatives of our PU functions can occur only across the boundaries
of the integration cells. Hence, we opt for the use of so-called open integration rules that em-
ploy integration nodes away from the boundary of the integration cells only. Recall that we can
assume that all integrands are smooth on each integration cell. Hence, higher order integration
rules can yield exponential convergence on each cell ici,a of our decomposition. For reasons of
computational efficiency we are of course interested in the selection of the cheapest integration
rule on each cell which does not compromise the overall convergence behavior of our PPUM. In
essence we look for a result analogous to the Lemmata of Strang, see e.g. [22], in the FEM. Yet this
is an open question for all meshfree Galerkin methods and we must rely on heuristic arguments
to select the order of our integration rule a priori. Similarly, we can use heuristics only for the
selection of appropriate stopping criteria for adaptive integration schemes on each integration
cell.

Since all interior integration cells ici,a are axis-aligned D-rectangular, i.e. they are tensor
product domains, we propose the use of sparse grid integration schemes [54] based on the uni-
variate Gauß–Patterson rules, see Figure 6.8. These integration rules show exponential conver-
gence for smooth integrands yet employ a substantially smaller number of integration nodes than
respective tensor product rules especially in higher dimensions. Yet, on cells which involve only
polynomial integrands (i.e. no enrichment functions and ji ⌘ 1) we may also use an optimal
order tensor product Gauß-Legendre scheme or we can easily compute the integrals analytically.

Observe however that it is of great importance that the overall numerical integration pro-
cedure is consistently applicable to the discretization of the operator and the discretization of
the right-hand side. Furthermore, the assembly of the discrete operator must preserve key prop-

2Observe that the construction presented here is somewhat different from that of [47] where the authors are concerned
with the approximation of the domain on a single level only and hence use additional refinements of the cover itself.
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Figure 6.8. Quadrature nodes of two sparse grid Gauß–Patterson rules, level l = 6 with 769
nodes in two dimension (left) and level l = 5 with 1023 nodes in three dimension (right).

erties of the differential operator in its weak form. To this end let us consider the weak form
hr·,r·iL2(W) of the Laplacian �D. Obviously, the constant functions c are in its kernel since
rc ⌘ 0, i.e. hrc,r·iL2(W) ⌘ 0. This property of the exact operator must be preserved for the
discrete operator; i.e. for the stiffness matrix A. Thus, we must ensure that the entries

A(i,n),(j,m) = IW(r(jjJ
m
j )r(jiJ

n
i )) ⇡

Z

W
r(jjJ

m
j )r(jiJ

n
i ) dx

of our stiffness matrix A satisfy the condition

NX

j=1

A(i,n),(j,0) = 0 for all (i, n) with i = 1, . . . , N and n = 1, . . . , dim(Vi) (6.4)

where we assume that J0
j ⌘ 1 holds and IW denotes the employed numerical integration scheme.

If we compute each entry of the stiffness matrix independently the entries are in fact given by

A(i,n),(j,m) = I(i,n),(j,m)
W (r(jjJ

m
j )r(jiJ

n
i )) =

NIX

q=1

si,j
q (r(jj(xi,j

q )Jm
j (xi,j

q ))r(ji(xi,j
q )Jn

i (xi,j
q )))

where the integration nodes xi,j
q and weights si,j

q depend on i, n, j and m (for the ease of notation
we only employ the superscript i, j). Observe that the sums

NX

j=1

A(i,n),(j,0) =
NX

j=1

I(i,n),(j,0)
W (rjj)r(jiJ

n
i )) =

NX

j=1

NIX

q=1

si,j
q (rjj(xi,j

q ))r(ji(xi,j
q )Jn

i (xi,j
q ))

not necessarily vanish since each PU function jj is now evaluated at different locations xi,j
q . Thus,

the property
PN

j=1rji(x) ⌘ 0 cannot be utilized to infer the validity of (6.4). To overcome this
limitation it was suggested in [6, 12] that (6.4) is strictly enforced a posteriori by some algebraic
manipulations of the assembled stiffness matrix. However it was also observed that such a pro-
cedure can have an adverse effect on the convergence behavior of the overall numerical method.
Thus, we pursue a different approach to ensure the validity of (6.4) for the assembled stiffness
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matrix. To this end, we enforce that the numerical integration scheme employed for the computa-
tion of the entries A(i,n),(j,0) is independent of j. Then, all jj are evaluated at the same location and
(6.4) follows directly from the PU property

NX

j=1

rji(x) = r
NX

j=1

ji(x) ⌘ r1 ⌘ 0.

Hence, all integrals involving a particular PU function jj must employ the same integration nodes
and weights. Since our decomposition {ici,a} satisfies (6.3) we only need to ensure that on a
specific integration cell ici,a we always use the same integration rule. This of course can be easily
ensured if we select the integration rule a priori. Then, each entry of the stiffness matrix can be
computed independently. However, if we use an adaptive integration scheme on each cell we
must check if the restrictions of all entries to that cell satisfy the employed stopping criteria for
the same set of integration nodes and weights.

Therefore, we carry-out the assembly of the stiffness matrix not in an element-by-element
fashion but rather by block-row operations. For an arbitrary but fixed patch wi we compute all
entries

A(i,n),(j,m) = IW\wi (r(jjJ
m
j )r(jiJ

n
i )) =

NIX

q=1

sq(r(jj(xq)Jm
j (xq))r(ji(xq)Jn

i (xq)))

with wj 2 Ci simultaneously for all j, m, and n as well as the respective block of the right-hand
side using the same integration nodes and weights. Observe that this block-row assembly also
yields a substantial reduction of operations since we evaluate all non-vanishing PU functions
jj simultaneously. Recall that the evaluation of a single PU function ji at a particular point x
assumes the availability of all values Wj(x) for all j 2 Ci and the evaluation in principle requires
card(Ci) operations. Thus, a naive element-by-element assembly approach employs

Cee = O(card(Ci) dim(Vi) card(Cj) dim(Vj))

operations per integration node. Since we now compute all entries involving non-vanishing
weights Wj and all respective local basis functions Jm

j simultaneously we can re-use the values Wj
to evaluate all jj with a minimal number of operations. Here, each weight function must be eval-
uated only once for the complete block-row and we obtain an optimal operation count of Cbr = 1
per entry and integration node.

6.2 Visualization and Post-Processing
Another important aspect of numerical simulation in general is the visualization of the computed
results and the extraction of relevant quantities from the discrete solution. There exist many
visualization tools some even with a post-processing engine, however, they are usually based on
low-order piecewise polynomial interpolation. Hence, the data must be imported together with
a mesh or cell-complex structure.

Therefore, the accurate visualization of our meshfree solution is in general not straightfor-
ward. But with the decomposition {ici,a} of the previous section we have an unstructured col-
lection of cells which can be processed by a fair number of visualization tools. Some care in the
interpretation of the displayed results however is necessary. Due to the hanging nodes in our
cell decomposition the visualization may show discontinuities at cell boundaries which are not
present in the computed solution. Another fact to keep in mind is that the gradients of our PPUM
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Figure 6.9. Wireframe representation of PPUM approximation based on the decomposition {ici,a}
(left), respective surface visualization (center), and a particle visualization (right).

Figure 6.10. Domain representation based on the decomposition {ici,a} using scaled disjoint cells.

shape functions may have discontinuities across cell boundaries, yet unlike linear finite elements
they are not constant within the cells.

Thus, we propose to use some additional refinements of the decomposition {ici,a} of the pre-
vious section (depending on the employed polynomial degrees pi and the enrichment functions
ht

i ) for visualization. But still we need to remind ourselves in the interpretation of the visualiza-
tion that the displayed results do not agree with the computed results exactly, compare Figures
6.9 and 6.10.

Another approach to visualization which avoids some of these issues is a simple particle
visualization. Here, only the values of the computed solution at particular points e.g. xi 2 XN
are displayed without interpolation between these discrete values, compare Figure 6.9. Therefore,
the displayed results agree exactly with the computed data. Observe however that a PPUM space
employed many more degrees of freedom than there are points xi 2 XN so that the visualization
gives only a coarse impression of the true result and possible oscillations between the data sites
xi 2 XN are not visible. To overcome this issue to some extent we may use the decomposition
{ici,a} and the respective integration nodes employed on each cell for visualization.
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Similarly we must be rather careful in the numerical post-processing of our computed re-
sults and should not only rely on the post-processing capabilities of the employed visualization
tool. Error measurement (assuming we know the analytic or a good reference solution u) for
instance requires the evaluation of the integrals

e2
H1 :=

kr(u� uPU)kL2

krukL2
=

Z

W
|r(u� uPU)|2 dx
Z

W
|ru|2 dx

which in general cannot be evaluated analytically. From the relative errors el,H1 and el�1,H1 on two
consecutive levels of refinement we then compute the algebraic convergence rate of our PPUM
via

rH1 := �
log
⇣ el,H1

el�1,H1

⌘

log
⇣

dof l
dof l�1

⌘ , where dofk :=
NkX

i=1

dim(Vi,k).

In a naive approach we use the constructed numerical integration scheme IW,l of the previous
section on the respective level l for the computation of el,H1 , i.e.

e2
H1 =

IW,l(|r(u� uPU
l )|2)

IW,l(|ru|2)
⇡

Z

W
|r(u� uPU

l )|2 dx
Z

W
|ru|2 dx

.

This however may be a crude approximation to the error since the construction of IW,l was based
on the assumption of integrating uPU

l only. Even more problematic is the fact that the convergence
rates cannot be computed reliably from these data since

el,H1

el�1,H1
=

IW,l(|r(u� uPU
l )|2)

IW,l�1(|r(u� uPU
l�1)|2)

IW,l�1(|ru|2)
IW,l(|ru|2)

with IW,l�1(|ru|2) 6= IW,l(|ru|2). Observe that even if uPU
l = uPU

l�1 holds we analogously find

IW,l(|r(u� uPU
l )|2) 6= IW,l�1(|r(u� uPU

l�1)|
2).

Thus, we see that it is very much important to employ the same integration scheme to compute
the convergence rate rH1 in a reliable fashion. Obviously, it is necessary to compute el,H1 at least
by the numerical integration scheme IW,l on level l to obtain an acceptable approximation to the
error. Hence, we always use the decomposition on the finest level J of our sequence of PPUM
space VPU

k with k = 0, . . . , J to compute the errors el,H1 and the respective convergence rates rH1

on all levels l = 0, . . . , J.

6.3 Parallelization and Dynamic Load Balancing
With the algorithms given in the previous sections we can carry out simulations with several
hundred thousand degrees of freedom efficiently on a single processor. However, the storage
limitations of a single processor machine in general render a simulation with millions of degrees
of freedom not feasible. For very large simulations we must resort to distributed memory parallel
computers. Hence, we need to parallelize the algorithms given above to be able to deal with large
scale problems.
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Our parallelization follows the data decomposition approach. Here, the main ingredients
are a parallel key-based tree implementation and a space filling curve load balancing scheme.
The overall method can be split into three major steps: The initial tree construction and load bal-
ancing step, the assembly step where we set up the stiffness matrices Ak on all levels k = 0, . . . , J
and the interlevel transfers Ik�1

k and Ik
k�1, and finally the solution step where we use a multiplica-

tive multilevel iteration to solve the linear system AJũJ = f̂ J . The load balancing step as well as
the assembly step require some information about the neighboring patches. The neighbor search
in parallel computations is the most challenging task since we need to determine the communi-
cation pattern and have to exchange the appropriate data between the processors. This is further
complicated by our multilevel construction and the necessary increase in the support sizes on
coarser levels.

6.3.1 Parallel Data Decomposition
In general there are two main tasks associated with the efficient parallelization of any numerical
computation on distributed memory computers. The first is to evenly split up the data among the
participating processors; i.e., the associated computational work should be well-balanced. The
second is to allow for an efficient access to data stored by another processor; i.e. on distributed
memory parallel computers also the amount of remote data needed by a processor should be
small.

In a data decomposition approach we partition the data, e.g. the computational domain or
mesh, among the participating processors [116]. Then, we simply restrict the operations of the
global numerical method to the assigned part of the data/domain. A processor has read and
write access to its local data but only read access to remote data it may need to complete its
local computation. On distributed memory machines these required data have to be exchanged
explicitly in distinct communication steps.

The quality of the partition of the domain/data essentially determines the efficiency of the
resulting parallel computation. The local parts of the data assigned to each processor should in-
duce a similar amount of computational work so that each processor needs roughly the same time
to complete its local computation. Here, a processor may need to access the data of the neighbor-
ing sub-domains to solve its local problem. Hence, the geometry of the sub-domains should be
simple to limit the number of communication steps and the communication volume. The num-
ber of neighboring processors (which determines the number of communication steps) should
be small and the geometry of the local boundary (which strongly influences the communication
volume) should be simple, i.e. its size should be small.

Key Based Tree Implementation

In a classical tree implementation the topology of the tree is explicitly encoded via pointers from
a tree node to its successors. Such a pointer based implementation, however, is not easily paral-
lelized especially on distributed memory machines. Hence, we use a different implementation of
a D-binary tree [58, 125, 146, 147]. Here, the tree is realized with the help of a hashed associative
container. To this end, a unique label is assigned to each possible tree cell and instead of linking
a cell directly to its successor cells, the labeling scheme implicitly defines the topology of the tree
and allows for the easy access to successors and ancestors of a particular tree cell. Furthermore,
we can randomly access any cell of the tree via its unique label. This allows us to catch accesses
to non-local data in parallel computations and we can easily compute the communication pattern
and send and receive all necessary data to complete the local computation.

The labeling scheme must encode the topology of the tree. To this end, the labeling scheme
maps a particular tree cell CL =

QD
i=1[ci

L, ci
L + hi

L] ⇢ RD to a single integer value kL 2 N0, the
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Table 6.1. Path key values for the successor cells of a tree cell CL =
QD

i=1[ci
L, ci

L + hi
L] with

associated key kL in two dimensions.

successor cell binary key value integer key value
[c1

L, c1
L + 1

2 h1
L] ⇥ [c2

L, c2
L + 1

2 h2
L] kL00 4kL

[c1
L, c1

L + 1
2 h1

L] ⇥ [c2
L + 1

2 h2
L, c2

L + h2
L] kL01 4kL + 1

[c1
L + 1

2 h1
L, c1

L + h1
L] ⇥ [c2

L, c2
L + 1

2 h2
L] kL10 4kL + 2

[c1
L + 1

2 h1
L, c1

L + h1
L] ⇥ [c2

L + 1
2 h2

L, c2
L + h2

L] kL11 4kL + 3

key. For instance, we can use the D-binary path as the key value kL associated with a tree cell CL.
The D-binary path kL is defined by the search path that has to be completed to find the respective
cell in the tree. Starting at the root of the tree, we set kL = 1 and descend the tree in the direction
of the cell CL. Here we concatenate the current key value kL (in binary representation) and the d
Boolean values 0 and 1 associated with the decisions to which successor cell the descent continues
to reach the respective tree cell CL. In Table 6.1 we give the resulting path key values kL for a two
dimensional example. Note that the key value kL = 1 for the root cell is essentially a stop bit
which is necessary to ensure the uniqueness of the key values.

Parallel Key Based Tree Implementation

The data structure which describes the computational domain in our PUM is a D-binary tree
(quadtree, octree) used for the cover construction and the fast neighbor search for the evaluation
of the Shepard PU functions (3.13). The use of a global unique integer key for each cell of the
tree allows for a simple description of a partitioning of the computational domain. The set of all
admissible3 keys {0, 1, . . . , kmax} is simply split into } subsets which are then assigned to the }
processors. We subdivide the range of keys into } intervals

0 = r0  r1  · · ·  r} = kmax

and assign the interval [rq, rq+1) to the qth processor, i.e. the set of tree cells assigned to the qth
processor is {CL | kL 2 [rq, rq+1)}. With this very simple decomposition each processor can iden-
tify which processor stores a particular tree cell CL. A processor has to compute only the key value
kL for the tree cell CL and the respective interval [rq, rq+1) with kL 2 [rq, rq+1) to determine the
processor q which stores this tree cell CL. The question now arises if such a partition of the do-
main with the path keys kL is a reasonable choice? Obviously the partitioning of the tree should
be done in such a fashion that complete sub-trees are assigned to a processor to allow for efficient
tree traversals. But the path key labeling scheme given above orders the tree cells rather horizon-
tally (see Figure 6.11) instead of vertically. Therefore, we need to transform the path keys kL to
so-called domain keys kD

L .
A simple transformation which leads to a vertical ordering of the tree cells is the following:

First, we remove the leading bit (the initial root key value) from the key’s binary representation.
Then we shift the remaining bits all the way to the left so that the leading bit of the path informa-
tion is now stored in the most significant bit.4 Assume that the key values are stored as an 32 bit
integer and that we are in two dimensions. Then this simple transformation of a path key value

3 The maximal key value kmax is a constant depending on the architecture of the parallel computer.
4 This transformation needs O(1) operations if we assume that the current refinement level of the tree is known,

otherwise it is of the order O(J), where J denotes the number of levels of the tree.
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1

4 5 6 7

16 17 18 19 28 29 30 31

Figure 6.11. Horizontal ordering of a tree induced by the path key values k.

Figure 6.12. Common global tree (dashed, gray shaded) for a partition onto three processors. Local
sub-tree roots (dark gray shaded) and the local sub-tree cells (white) for the first (left), second (center) and
third processor (right).

kL to a respective domain key value kD
L e.g. yields

kD
L = 01110010| {z }

path

000000000000000000000000 for

kL = 000000000000000000000001 01110010| {z }
path

. (6.5)

With these domain keys kD
L the tree is now ordered vertically and we can assign complete sub-

trees to a processor using the simple interval domain description [rq, rq+1).
Remark 6.1. Note that the transformed keys are no longer unique and cannot be used as the key
value for the associative container to store the tree itself. Obviously, a successor cell CS of a tree cell
CL can be assigned the same domain key as the tree cell, i.e. kD

S = kD
L . Hence, we use the unique

path keys kL for the container and the associated domain keys kD
L for the domain description,

i.e. for the associated interval boundaries [rq, rq+1).
Note that the description of the data partition via the intervals [rq, rq+1) defines a minimal

refinement stage of the tree which has to be present on all processors to insure the consistency of
the tree. In the following we refer to this top part of the tree as the common global tree. The leaves
CL of the common global tree are characterized by the fact that they are the coarsest tree cells for
which all possible successor cells are stored on the same processor, see Figure 6.12. The domain
key values kD

S of all possible successor cells CS lie in the same interval [rq, rq+1) as the domain key
kD

L . We therefore refer to the leaves of the common global tree as local sub-tree roots.
The order of the tree cells induced by the domain keys kD

L given above is often referred to as
bit-interleaving, the Morton-order, the Z-order or the N-order. The curve induced by mapping the
domain keys to the associated cell centers corresponds to the Lebesgue curve (Figure 6.13 (upper
left)) which is a space filling curve [118]. There are many space filling curves with different
properties which might be more suitable for our needs; e.g. the sub-domains generated by the
Lebesgue curve may be not connected [159] even for a D-rectangle, see Figure 6.13 (upper right).
This increases the size of the local boundary and thereby the communication volume and possibly
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Figure 6.13. The Lebesgue curve (upper left) and the constructed sub-domains (upper right) for a
partition onto three processors. The sub-domains are not connected since the curve does not have the locality
property. The Hilbert curve (lower left) and the constructed sub-domains (lower right) for a partition onto
three processors. The sub-domains are connected due to the locality property of the curve.

the number of communication steps.

6.3.2 Load Balancing with Space Filling Curves
The properties of space filling curves with respect to partitioning data for parallel computations
have been studied in [158, 159]. Here, it turns out that the Hilbert curve (Figure 6.13 (lower
left)) is more suitable for partitioning irregular data than the Lebesgue curve, see Figure 6.14. It
provides a better data locality, e.g. the constructed sub-domains for a D-rectangle are connected
(Figure 6.13 (lower right)) and the size of the local boundaries is of optimal order. Hence, we use
the Hilbert curve instead of the Lebesgue curve to order the tree in our implementation; i.e., we
use a different transformation than (6.5) to map the path keys kL to domain keys kD

L . This trans-
formation of the path key values to Hilbert curve keys is more involved than the transformation
(6.5) to Lebesgue curve keys, but it can also be realized with fast bit manipulations, see [125, Ap-
pendix B] for details.5 By changing the interval boundaries {rq | q = 0, . . . , }}, which describe the
decomposition of our tree, we can balance the load among the processors. To this end we assign
estimated work loads wL as weights to the leaves CL of the tree. Then we compute the current

5 In general the transformation of a given key kL to its associated Hilbert domain key kD
L requires O(J) operations,

even if the current tree level J is known. But since we are interested in the domain keys kD
L keys for all cells (or at least

for all leaves) of the tree we can merge the transformation with the tree traversal which reduces the complexity of the
transformation of a single key to O(1).
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Figure 6.14. A partition of the point set PJ onto four processors (color coded) using the domain
keys kD

L based on the Lebesgue curve (left), and the domain keys kD
L based on the Hilbert curve (right).

load estimate wq̂ =
P

wL on every processor q̂ and gather all remote load estimates wq with
q 6= q̂. In the next step, the global load estimate w =

P}�1
q=0 wq, and the balanced load distribution

wq
b = qw

} are computed. Then, every processor q̂ iterates over its current set of leaves CL of the
tree in ascending order of the domain keys kD

L and sets new (intermediate and inconsistent) local
interval boundaries {r̃q̂

q | q = 0, . . . , }} accordingly. Finally, a reduction operation over all (local
intermediate) sets {r̃q̃

q | q = 0, . . . , }} of the } participating processors q̃ gives the new (global and
consistent) interval boundaries {rq | q = 0, . . . , }} which balance the estimated load w. Note that
this load balancing scheme itself is completed in parallel.

Algorithm 6.1 (Load Balancing).

1. For all local leaves CL of the tree:
Assign estimated work load wL.

2. Compute local estimate wq̂ =
P

L wL (on processor q̂).

3. Gather remote estimates wq with q = 0, . . . , }� 1 and q 6= q̂.

4. Compute global load estimate w =
P}�1

q=0 wq.

5. Set local estimate wq̂
g =

Pq<q̂
q=0 wq (on processor q̂).

6. Set balanced load distribution wq
b = qw

} for q = 0, . . . , }.

7. For all local leaves CL (in ascending order of domain keys kD
L ):

Set local intermediate interval boundary r̃q̂
q = kD

L (on processor q̂) where q 2 {0, . . . , }}
is the smallest integer with wq̂

g  wq
b and update estimate wq̂

g = wq̂
g + wL.

8. Set (global) interval boundaries rq = maxq̃ r̃q̃
q for all q 2 {0, . . . , }} by reducing the set of all

(local) intermediate boundaries {r̃q̃
q} over all processors q̃, force r0 = 0 and r} = kmax.
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The quality of the load balancing scheme is essentially determined by the local load estimate wL.
With respect to the finest level J we can estimate the computational work associated with a par-
ticular patch wi,k for instance by the number of degrees of freedom assigned to the patch. Such an
estimate is very cheap to compute, however, its quality is rather poor. We can obtain a very ac-
curate estimate of the local computational work by considering the number of integration points
employed on a particular patch. Such an estimate however cannot be attained with reasonable
effort in general. The next best local load estimate on a patch wi is the number of the integration
cells ici,a 2 wi which is still rather expensive to compute. If the local approximation spaces Vi
employ only polynomials we can estimate the number of integration cells (at least away from the
boundary) by the number of neighbors wj 2 Ci. Thus, if we assume that the integration of all
nonzero entries of the stiffness matrix can be computed with a similar amount of work, we can
use the number of nonzeros per block-row as our load estimate, i.e.,

wL = wi,J = dim(Vpi,J
i,J )

X

wk2Ci,J

dim(Vpk,J
k,J ).

Hence, to balance the load with this work load estimate, we need to compute all neighborhoods
Ci,J (in parallel) on the finest level J (in the un-balanced tree). Thus, the computation of an accurate
load estimate for parallel simulations is already a challenging task.

Remark 6.2. The computational cost associated with the estimation of the current load can of-
ten be reduced. In a time-dependent setting or in adaptive refinement we usually have a pretty
good load estimate from a previous time step or a coarser level without extra computations. This
estimate can either be used directly to partition the data or it can be updated with a few opera-
tions only. Furthermore, we typically have to re-distribute only a small amount of data in these
situations.

Remark 6.3. With the load balancing scheme given in Algorithm 6.1 we balance the load with
respect to the finest level J only. For our PUM discretization this is sufficient, since the largest
amount of work is due to the finest level and we already assume that we coarsen the number of
patches at a constant rate from level to level to obtain an optimal complexity multilevel iteration.
However, sometimes it might be necessary to balance the load with respect to all levels simulta-
neously. Then, we need to modify the load balancing scheme in such a way that we consider all
nodes of the tree rather than only the leaves. Note, however, that the design of an appropriate
load estimate is somewhat more involved in such cases.

Remark 6.4. In the case of a PDE with (piecewise) constant coefficients we can employ a caching
technique in some regions of the domain. Hence, not all integrals associated with the stiffness
matrix are computed explicitly, many entries are computed only once and re-used in the assembly.
Thus, when this caching technique is employed we need to update our load estimate to account
for this change in computational work. Yet, we must be aware that the load has to balanced also
with respect to the solution phase, i.e., the scalability of a single matrix-vector product should be
retained.

6.3.3 Parallel Cover Construction
Now that the computational domain is partitioned in an appropriate fashion among the proces-
sors we turn to the algorithmic changes for our parallel implementation, e.g. the computation of
the communication pattern. The first task in our PUM is the multilevel cover construction which
is essentially a post-order tree operation. Due to our tree decomposition which assigns complete
sub-trees to processors most work can be done completely in parallel. When we reach elements
of the common global tree we need to gather the respective tree cells from remote processors.



104 Chapter 6. Implementation

Then, all processors can complete the cover construction on the common global tree. The parallel
version of the multilevel cover construction algorithm (compare Algorithm 5.1) reads as:

Algorithm 6.2 (Parallel Multilevel Cover Construction).

1. Given the domain W ⇢ RD and a bounding box RW =
QD

i=1[li
W, ui

W] � W.

2. Given the interval boundaries {rq | q = 0, . . . , }} and the local part XN,q̂ of the initial point
set XN = {xj | xj 2 W, j = 1, . . . , Ñ}, i.e. kD

j 2 [rq̂, rq̂+1) for all xj 2 XN,q̂.6

3. Initialize the common global D-binary tree (quadtree, octree) according to the } intervals
[rq, rq+1).

4. Build parallel D-binary sub-trees over local sub-tree roots, such that per leaf L at most one
xi 2 XN,q̂ lies within the associated cell CL :=

QD
i=1[li

L, ui
L].

5. Set J to the finest refinement level of the global tree.

6. For all local sub-tree root cells CL =
QD

d=1[ld
L, ud

L] = RW:

(a) If current tree cell CL is an INNER tree node and CL \W 6= ∆:
i. Descend tree for all successors CS of CL. (! 6(a))

ii. Set patch

wL :=
DY

d=1

[xd
L � hd

L, xd
L + hd

L] � CL

where xL := 1
2D
P

xS is the center of its successor points xS and hi
L := 2 maxS hi

S is
twice the maximum radius of its successors hi

S.
iii. Set active levels to [kmin

L , kmax
L ] with

kmin
L = kmax

L = min
CS⇢CL

kmin
S � 1

and update for all successors kmin
S0 = minCS⇢CL kmin

S .
iv. Set polynomial degrees pL,k = pmin for all k 2 [kmin

L , kmax
L ] where

pmin := min
CS⇢CL

min
q2[kmin

S ,kmax
S ]

pq,S.

(b) Else if CL \W 6= ∆:
i. Set patch

wL :=
DY

d=1

[xd
L � hd

L, xd
L + hd

L] � CL, and hd
L :=

a

2
(ud

L � ld
L) (6.6)

where
xd

L := ld
L +

1
2
(ud

L � ld
L) with a > 1. (6.7)

6 An initial partition can easily be constructed by choosing uniform interval boundaries {rq} and partitioning the initial
point set P̃ according to the domain keys on the finest possible tree level.
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ii. Set active levels to [kmin
L , kmax

L ] with kmin
L = kmax

L = J.
iii. Set polynomial degrees pL,k = p to some given value p for all k 2 [kmin

L , kmax
L ].

7. For k = 0, . . . , J � 1:

Set Ck
W,q̂ = {wL | kmin

L  k  kmax
L }.

8. Broadcast patches wL associated with local sub-tree roots CL to all processors.

9. For the common global root cell CL =
Qd

i=1[li
L, ui

L] = RW:

(a) If current tree cell CL is not the root of any complete processor sub-tree, and an INNER
tree node with CL \W 6= ∆:

i. Descend tree for all successors CS of CL. (! 9(a))
ii. Set patch

wL :=
DY

d=1

[xd
L � hd

L, xd
L + hd

L] � CL

where xL := 1
2D
P

xS is the center of its successor points xS and hi
L := 2 maxS hi

S is
twice the maximum radius of its successors hi

S.
iii. Set active levels to [kmin

L , kmax
L ] with

kmin
L = kmax

L = min
CS⇢CL

kmin
S � 1

and update for all successors kmin
S0 = minCS⇢CL kmin

S .
iv. Set polynomial degrees pL,k = pmin for all k 2 [kmin

L , kmax
L ] where

pmin := min
CS⇢CL

min
q2[kmin

S ,kmax
S ]

pq,S.

10. For k = 0, . . . , J � 1:

Set Ck
W,q̂ = {wL | kmin

L  k  kmax
L and kD

L 2 [rq̂, rq̂+1)}.

Note that the main difference between this parallel cover construction algorithm and Algorithm
5.1 is the use of different entry points for insert operations into the (global) tree. With Algorithm
5.1 we always insert points starting at the (global) root of the tree whereas in parallel each proces-
sor will essentially insert points into one of its local sub-tree roots only. Therefore, Algorithm 6.2
will yield the same sequence of covers Ck

W as Algorithm 5.1 only if the initial common global tree
of step 3 (which is induced by the interval boundaries of step 2) is reasonable, compare section
6.3.1. Otherwise there can be slight differences in the constructed covers using different processor
numbers } for small initial point sets XN .

6.3.4 Parallel Discretization
After the sequence of covers Ck

W with k = 0, . . . , J is constructed in a distributed fashion we can
formally define the respective PPUM spaces

VPU
k =

NkX

i=1

ji,kVi,k =
NkX

i=1

ji,kP
pi,k +

NkX

i=1

ji,kEi,k
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by local operations only. On each processor q̂ we define the sub-space

VPU
k,q̂ =

X

wi,k2Ck
W,q̂

ji,kVi,k =
X

wi,k2Ck
W,q̂

ji,kP
pi,k +

X

wi,k2Ck
W,q̂

ji,kEi,k

associated with the local part Ck
W,q̂ of the cover Ck

W. This partitioning of the PPUM space VPU
k is

then used to partition the stiffness matrix Ak on level k in block-rows; i.e. via the test space. To
this end, we simply restrict the assembly of the stiffness matrix (and the transfer operators) on
each of the } processors to the block-rows associated with its assigned patches wi,k. A processor
q̂ computes all block-entries

(Ak)i,j = (Ak(i,n),(j,m)) , with Ak(i,n),(j,m) = a (jj,kJm
j,k, ji,kJn

i,k) 2 R , (6.8)

where ji,k is the PU function associated with one of its assigned patches wi,k, i.e., the domain key
kD

i,k = kD
i associated with the patch wi,k is element of [rq̂, rq̂+1).

However, the evaluation of a PU function ji,k on a processor q̂ requires the availability of its
neighboring patches wj,k 2 Ci,k. Although most neighbors wj,k of a patch wi,k are stored on the
same processor due the locality of the employed data partition, the patch wi,k may well overlap
patches which are stored on a remote processor. Hence, a processor may need copies of certain
patches from a remote processor for the computation of the neighborhoods

Ci,k,k̃ = {wj,k̃ 2 Ck̃
W |wi,k \wj,k̃ 6= ∆}.

Recall that the neighborhoods Ci,k = Ci,k,k also determine the sparsity pattern of the stiffness
matrix Ak on level k = 0, . . . , J. The interlevel neighborhoods Ci,k,k̃ with k 6= k̃ determine the
sparsity pattern of the global transfer operators of §5.2.1. The neighborhoods Ci,k,k̃ are also the
only information needed for the construction of the decomposition of the respective integration
domains, compare §6.1.

The computation of a single block-entry (Ak)i,j involves ji,k and jj,k. Hence, it seems that
we not only need remote patches wj,k but also all their neighbors wl,k 2 Cj,k for the evaluation of
the integrands involved in the block-row corresponding to the local patch wi,k. This would sig-
nificantly increase the communication volume and storage overhead due to parallelization. But
since all function evaluations of jj,k are restricted to the support of ji,k—recall that the integration
domain for the block entry is W\wi,k \wj,k—every neighboring patch wl,k 2 Cj,k that contributes
a nonzero weight Wl,k to the PU function jj,k (on the integration domain) must also be a neighbor
of wi,k. Hence we only need those neighbors wl,k 2 Cj,k of wj,k 2 Ci which satisfy

wl,k \wi,k 6= ∆ ) wl,k 2 Ci,k.

Hence, it is sufficient to store copies of remote patches wj,k which are direct neighbors of a local
patch wi,k. There is no need to store neighbors of neighbors for the assembly of the stiffness
matrix.

But how does a processor q̂ detect which neighbors wj,k exist on a remote processor q 6= q̂ for
one of its local patches wi,k? In fact, a processor q̂ cannot determine which patches wj,k to request
from a remote processor q 6= q̂. But a processor can certainly determine which of its local patches
wi,k overlap the remote sub-trees with the help of the leaves of the common global tree. Hence, a
processor can compute which of its local patches wi,k a remote processor may need to complete
its neighbor search. Thus, it seems that we need to perform only a parallel communication step
where a processor sends its local patches wi,k which overlap the remote sub-trees prior to the
computation of the neighborhoods Ci,k.
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However this procedure may yield a very large yet unnecessary communication volume if
applied based on the current common global tree patches. The reason for this behavior is that our
multilevel cover construction is designed for the construction of a sequence of valid covers Ck

W
which essentially means that the absolute size of the overlap regions grow with decreasing levels.
Therefore, we can encounter the situation that

wi,k \wj,k̃ 6= ∆

where wj,k̃ is an element of the common global tree yet all of the successors wl,k ⇢ wj,k̃ of wj,k̃ on
level k satisfy

wi,k \wl,k = ∆.

Hence, the patch wi,k must not be communicated for the neighbor search on level k. The elements
wj,k̃ of the common global tree can be much larger than the union of their successor patches wl,k

on levels k > k̃. Therefore, the communication volume is substantially overestimated which can
compromise the overall optimal complexity of our implementation.

To cure this we need to store a separate copy of the common global tree which consists
of patches with minimal extension. To this end, we need to modify steps 6(a)ii and 9(a)ii of
Algorithm 6.2 slightly and define these patches as the minimal bounding box of its successors.
After we have computed these minimal patches we compute our cover sequence Ck

W with k =
0. . . . , J as before with Algorithm 6.2.

Any processor q̂ can now compute which of its patches wi,k is very likely to overlap a remote
patch wj,k on processor q and must be communicated to enable processor q to compute the neigh-
borhoods Cj,k with a minimal number of operations and communication. Once the neighbors are
exchanged between the processors the assembly of the stiffness matrix, the transfer operators and
the right-hand side vector can be carried out locally without any communication.

The solution of the resulting linear system with our multilevel solver of course requires some
parallel communication in each iteration, i.e. in each matrix-vector product and each application
of the smoother. The communication pattern of these operations are given by the sparsity struc-
ture of the respective matrices. The sparsity structure of any PPUM matrix however is defined
by the respective neighborhoods Ci,k,k̃ which are known, thus the necessary data exchange can be
easily implemented.

Thus, it remains to consider the parallelization of the error estimation and the adaptive
refinement (compare step 4 of Algorithm 5.5). The error estimation essentially involves two
matrix-vector products for the evaluation of the right-hand sides, compare §5.4.1, which require
communication. Furthermore, the computation of the activity classifier requires the exchange of
additional neighbor information. Again, all required communication patterns and communica-
tion volumes are known via the neighborhoods Ci,k. Only the refinement step requires further
attention since we generate new patches and modify the local approximation spaces Vi,J on some
patches wi,J locally. Let us first consider the modification of a patch wi,J on processor q̂. If this
patch has a remote neighbor wj,J 2 Ci,J on processor q 6= q̂ then a copy of wi,J was previously
sent to processor q for the neighbor search. This copy must now be updated; i.e., we must send
the modified patch again to processor q. Note however that we not only need to check for the
neighbors wj,J 2 Ci,J but also the neighbors wj,J�1 2 Ci,J,J�1 or the neighbors wj,J�1 2 CH

i,J,J�1
involved in the transfer operators.

Let us now consider the generation of new patches in the refinement step. If the refinement
lead to the construction of a new level we obviously need to compute the neighborhoods with
respect to the newly generated level. Here, we determine the remote neighbors of a newly gen-
erated patch simply by checking the neighborhood of its ancestor. If the ancestor does have a
remote neighbor on processor q it is very likely that its successor patches will have neighboring
patches on processor q as well. More importantly, if the ancestor does not have a remote neighbor
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on processor q then it is guaranteed that its successors do not have remote neighbors on proces-
sor q since the ancestor completely covers the union of the supports of its successors. Thus, we
compute the communication pattern on the new level directly from the communication pattern
on level J. Similarly we can update the local neighborhood Ci,J if no new level was generated.

Finally, we must check our local load estimates to determine whether we should re-balance
the load among the processors to obtain an optimal scaling of our computations.



Chapter 7

Validation

In this section we are concerned with the numerical validation of the presented theoretical prop-
erties of our PPUM. To this end, we consider the scalar reaction-diffusion problem

�Du + cu = f in W ⇢ RD,
∂u
∂n

= gN on GN ⇢ W,
u = gD on GD = ∂W \ GN ,

(7.1)

and the equations of linear elasticity

� div s(u) = f in W ⇢ RD,
s(u) · n = gN on GN ⇢ W,

u = gD on GD = ∂W \ GN ,
(7.2)

where the symmetric stress tensor s(u) and the symmetric strain tensor e(u) are defined as

s(u) := C · e(u), and e(u) :=
1
2

⇣
ru + (ru)T

⌘

and C = C(E, n) denote material parameters.
First, we focus on the approximation properties of our PPUM when applied to the Galerkin

discretization of (7.1) and (7.2). Here we distinguish three major cases which determine the con-
vergence behavior of our PPUM:

1. a uniform global refinement of the approximation space VPU =
PN

i=1 jiVi,

2. an adaptive local refinement of VPU; i.e., of the the cover patches wi = supp�(ji) or the
local approximation spaces Vi,

3. and a refinement of the PPUM space VPU with (hierarchical) enrichment.

Recall that uniform global refinement (without enrichment) attains its optimal convergence be-
havior only if the sought solution is regular whereas an adaptive refinement and hierarchical
enrichment lead to an optimal convergence behavior also for singular solutions.

Moreover, we study the effect of boundary conditions and their implementation on the ap-
proximation properties of our PPUM. To this end, we compare the results obtained for a (def-
inite) Neumann problem with those computed for the respective Dirichlet problem using the

109
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non-conforming approach due to Nitsche of §3.2.2 and the conforming boundary treatment of
§4.2.2.

The second major topic of this section is the efficiency of the presented multilevel solver.
Here, we study the dependence of the convergence behavior of our iterative schemes with respect
to the type of boundary conditions (Neumann or Dirichlet) and their implementation (conforming
or non-conforming). Furthermore, we are concerned with the influence of the employed local
approximation spaces (higher order or enriched) on the speed of convergence.

7.1 Approximation Properties
To determine the approximation properties of our PPUM numerically, we introduce some short-
hand notation for various norms of the error u� uPU, i.e., we define

eL• :=
ku� uPU

kL•

kukL•
, eL2 :=

ku� uPU
kL2

kukL2
, and eH1 :=

ku� uPU
kH1

kukH1
. (7.3)

For each of these error norms we compute the respective algebraic convergence rate r as

r := �
log
⇣
ku�uPU

l k

ku�uPU
l�1k

⌘

log( dof l
dof l�1

)
, where dofm := dim(VPU

m ) =
NmX

i=1

dim(Vi,m), (7.4)

by considering the error norms of two consecutive levels l � 1 and l. Hence the optimal rate rH1

of an uniformly h-refined sequence of spaces with pi,k = p for all i = 1, . . . , Nk and k = 0, . . . , J for
a sufficiently smooth solution u is rH1 = p

D where D denotes the spatial dimension of W ⇢ RD.
This corresponds to the classical hg notation with g = rD = p.

According to §6.1 the reliable approximation of the error norms (7.3) requires the use of
an appropriate numerical integration scheme. Furthermore, this integration scheme should be
employed on all levels k = 0, . . . , J to ensure the comparability of the computed results and the
evaluation of the rates (7.4) from the relative errors (7.3). Therefore, we always employ an h-
refined version of the numerical integration scheme of §6.1 constructed on the finest level J for
the evaluation of (7.3).

If the analytical solution is u is not available, we assess the convergence behavior of our
PPUM via a reference solution uref. This reference solution is obtained by a global hp-refinement
of the finest approximation level J. In these cases we employ an h-refined version of the numerical
integration scheme constructed on the reference level J + 1 for the approximation of the respective
relative errors (7.3) and convergence rates (7.4).

In those experiments where we use the conforming boundary treatment presented in §4.2.2
we do not give the total number of degrees of freedom dof of (7.4) but rather the splitting

NmX

i=1

dim(Vi,m) = dofm = dofm,K + dofm,I =
NmX

i=1

dim(Vi,m,K) +
NmX

i=1

dim(Vi,m,I)

where dofm,I denotes the number of degrees of freedom employed in the approximation of the es-
sential boundary conditions on GD and dofm,K = dofm� dofm,I is the dimension of the conforming
subspace VPU

m,K ⇢ VPU
m on level m. Observe though that the convergence rates (7.4) are computed

with respect to the total number of degrees of freedom dofm.
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Table 7.1. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.1 with Neumann
boundary conditions.

J dof N eL• rL• eL2 rL2 eH1 rH1

1 12 4 4.594�1 � 4.008�1 � 8.391�1 �

2 48 16 2.750�1 0.37 1.543�1 0.69 6.137�1 0.23
3 192 64 1.707�1 0.34 4.854�2 0.83 3.649�1 0.38
4 768 256 6.705�2 0.67 1.314�2 0.94 1.907�1 0.47
5 3072 1024 2.167�2 0.81 3.405�3 0.97 9.674�2 0.49
6 12288 4096 6.509�3 0.87 8.667�4 0.99 4.875�2 0.49
7 49152 16384 1.882�3 0.89 2.182�4 0.99 2.432�2 0.50
8 196608 65536 5.320�4 0.91 5.470�5 1.00 1.209�2 0.50
9 786432 262144 1.480�4 0.92 1.369�5 1.00 6.164�3 0.49
10 3145728 1048576 4.070�5 0.93 3.424�6 1.00 3.162�3 0.48
11 12582912 4194304 1.109�5 0.94 8.559�7 1.00 1.473�3 0.55
12 50331648 16777216 3.004�6 0.94 2.125�7 1.00 7.625�4 0.47

7.1.1 Uniform Refinement
In the following examples we consider a uniform global refinement of our PPUM space

VPU :=
NX

i=1

jiVi =
NX

i=1

jiP
pi

without enrichment in two and three space dimensions. As local approximation spaces Vi we em-
ploy polynomials P pi of total degree pi with tensor products of univariate Legendre polynomials
as basis functions P pi = spanhyt

i i.

Example 7.1 (Scalar problem with regular solution). In our first example, we consider the reaction-
diffusion problem (7.1) with c = 1 and Neumann boundary conditions on the domain (0, 1)2

where we choose the data f and gN such that the analytical solution is given by

u(x1, x2) = arctan
⇣

100
�x1 + x2
p

2
� 0.8

��
x1 � x2

1
��

x2 � x2
2
�⌘

. (7.5)

Here, we use linear polynomials as local approximation space, i.e. pi = 1. Thus, we anticipate to
find a reduction of the error in the L2-norm eL2 by 0.25 due to the refinement of level l to level
l + 1. This behavior corresponds to a rate (7.4) in the L2-norm of rL2 = 1 (i.e. gL2 = 2). With
respect to the H1-norm we expect to find rH1 = 0.5 (i.e. gH1 = 1).

The results of this numerical experiment are summarized in Table 7.1 and Figure 7.1. From
the measured relative errors (7.3) and the respective convergence rates (7.4) we clearly observe
the anticipated convergence behavior with rL2 = 1 and rH1 = 0.5. Furthermore, this optimal
behavior is attained on all levels l � 4, compare Figure 7.1. Note that the considered model
problem can be regarded as the simplest test case for our PPUM since it involves natural boundary
conditions only and always yields a symmetric positive definite stiffness matrix. Thus, there are
no explicit constraints acting on the PPUM function space VPU which could adversely affect its
approximation properties.

Let us now consider a slightly more challenging model problem. Here we are concerned
with the approximation of (7.1) with c = 0 and Dirichlet boundary conditions which either re-
quires the use of a non-conforming approach like Nitsche’s method of §3.2.2 or the conforming
boundary treatment of §4.2.2 to obtain a positive definite stiffness matrix. This however means
that certain components of our PPUM space are explicitly constrained which may have an adverse
effect on the absolute value of the obtained errors (7.3) (or in principle even on the convergence
rates (7.4)).
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Figure 7.1. Convergence history for Example 7.1 in the L•-norm, the L2-norm, and the H1-norm
(left: Neumann boundary conditions; center: Dirichlet boundary conditions via Nitsche’s method; right:
Dirichlet boundary conditions via conforming local approximation spaces).

Table 7.2. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.1 with Dirichlet
boundary conditions implemented via Nitsche’s method.

J dof N eL• rL• eL2 rL2 eH1 rH1

1 12 4 7.660�1 � 3.699�1 � 1.0240 �

2 48 16 3.156�1 0.64 1.258�1 0.78 6.958�1 0.28
3 192 64 1.145�1 0.73 4.540�2 0.74 3.957�1 0.41
4 768 256 3.381�2 0.88 1.397�2 0.85 1.997�1 0.49
5 3072 1024 1.055�2 0.84 3.937�3 0.91 9.884�2 0.51
6 12288 4096 2.893�3 0.93 1.042�3 0.96 4.920�2 0.50
7 49152 16384 7.555�4 0.97 2.663�4 0.98 2.442�2 0.51
8 196608 65536 1.929�4 0.98 6.713�5 0.99 1.211�2 0.51
9 786432 262144 4.868�5 0.99 1.684�5 1.00 6.169�3 0.49
10 3145728 1048576 1.221�5 1.00 4.215�6 1.00 3.163�3 0.48
11 12582912 4194304 3.049�6 1.00 1.054�6 1.00 1.473�3 0.55
12 50331648 16777216 7.573�7 1.00 2.636�7 1.00 7.626�4 0.48

We choose the data f and gD such that the analytical solution u is again given by (7.5) to
allow for a direct comparison of the results. In Table 7.2 we give the measured relative errors
and the respective convergence rates for a PPUM discretization of (7.1) using Nitsche’s method
with the minimal regularization parameter, see Figure 7.1. Observe that we attain the optimal
convergence rates rL2 = 1 and rH1 = 0.5 also in this experiment. Comparing the absolute values
of the measured errors of Tables 7.2 and 7.1 we find an almost perfect agreement, see also Figure
7.1. Thus, the approximation properties of our PPUM are not compromised by Nitsche’s method.

Next, we consider the use of the conforming technique of §4.2.2 for the implementation of
the essential boundary conditions. The respective results are collected in Table 7.3. Again, we find
the optimal convergence behavior with rL2 = 1 and rH1 = 0.5 also in this case. Moreover, the
absolute values of the measured relative errors (7.3) agree almost perfectly with those of Tables
7.2 and 7.1, see also Figure 7.1. Here, the approximation properties of our PPUM seem to be com-
pletely independent of the considered boundary conditions and the employed implementation of
essential boundary data.

As the last experimental configuration of this example we consider the scalar model problem
(7.1) with c = 0 on the domain (�1, 1)3 and Dirichlet boundary conditions on

GD := {(x1, x2, x3) 2 [�1, 1]3 | xd = �1 for at least one d = 1, 2, 3}
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Table 7.3. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.1 with Dirichlet
boundary conditions implemented via the algebraic conforming boundary treatment of §4.2.2.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

1 0 12 4 5.893�1 � 5.605�1 � 9.799�1 �

2 20 28 16 5.353�1 0.07 3.302�1 0.38 7.865�1 0.16
3 132 60 64 2.940�1 0.43 1.110�1 0.79 4.766�1 0.36
4 644 124 256 1.041�1 0.75 2.631�2 1.04 2.365�1 0.51
5 2820 252 1024 2.922�2 0.92 5.639�3 1.11 1.109�1 0.55
6 11780 508 4096 7.691�3 0.96 1.248�3 1.09 5.256�2 0.54
7 48132 1020 16384 1.974�3 0.98 2.907�4 1.05 2.529�2 0.53
8 194564 2044 65536 4.956�4 1.00 7.006�5 1.03 1.234�2 0.52
9 782340 4092 262144 1.244�4 1.00 1.719�5 1.01 6.225�3 0.49

10 3137540 8188 1048576 3.082�5 1.01 4.259�6 1.01 3.177�3 0.49
11 12566532 16380 4194304 7.669�6 1.00 1.059�6 1.00 1.477�3 0.55
12 50298884 32764 16777216 1.862�6 1.02 2.643�7 1.00 7.635�4 0.48

Table 7.4. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.1 in three di-
mensions using the algebraic conforming boundary treatment of §4.2.2 for the implementation of essential
boundary conditions.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

1 12 20 8 7.2900 � 1.6910 � 1.0630 �

2 168 88 64 2.2510 0.56 9.595�1 0.27 9.675�1 0.05
3 1680 368 512 2.0230 0.05 4.912�1 0.32 7.128�1 0.15
4 14880 1504 4096 7.524�1 0.48 1.897�1 0.46 4.415�1 0.23
5 124992 6080 32768 2.499�1 0.53 5.574�2 0.59 2.393�1 0.29
6 1024128 24448 262144 7.430�2 0.58 1.433�2 0.65 1.173�1 0.34
7 8290560 98048 2097152 2.042�2 0.62 3.572�3 0.67 5.952�2 0.33

and Neumann boundary conditions on GN := ∂W \ GD. We realize the essential boundary con-
ditions via the construction of conforming local approximation spaces Vi,K ⇢ Vi = P

1. Here, we
choose the data f , gD and gN such that the analytical solution is given by

u(x) = sin
⇣

2p
⇣ DX

d=1

⇣⇣3
4

+
d
3

⌘
xd

⌘⌘⌘
. (7.6)

In three dimensions the optimal rates rL2 and rH1 that correspond to the optimal classical con-
vergence behavior with gL2 = 2 and gH1 = 1 are rL2 = 2

3 and rH1 = 1
3 . From the measured

errors given in Table 7.4 we see that the optimal convergence behavior is attained also in this
three dimensional experiment with mixed boundary conditions.

Example 7.2 (Higher order discretization). In our second example we focus on the approximation
properties of higher order PPUM discretizations. To this end, we first consider the approximation
of (7.1) with c = 0 on the domain (�1, 1)2 and Dirichlet boundary conditions on

GD := {(x1, x2) 2 [�1, 1]2 | xd = �1 for at least one d = 1, 2}

and Neumann boundary conditions on GN := ∂W \ GD using cubic polynomials as local approxi-
mation spaces Vi = P

3. Thus, we expect to find the convergence rates rL2 = 2 and rH1 = 1.5 for
the approximation of the analytical solution (7.6) independent of the implementation of the essen-
tial boundary conditions. Again, we compare the results obtained by Nitsche’s method with the
minimal regularization parameter, summarized in Table 7.5, and those attained with conforming
local approximation spaces, see Table 7.6. Observe that we find the anticipated optimal conver-
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Figure 7.2. Convergence history for Example 7.2 in the L•-norm, the L2-norm, and the H1-norm
using cubic polynomials and Nitsche’s method (left), or the conforming approach (center). Convergence
history for Example 7.2 in the L•-norm, the L2-norm, and the H1-norm using an alternating h-refinement
and hp-refinement (right).

Table 7.5. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.2 with p = 3 using
Nitsche’s method.

J dof N eL• rL• eL2 rL2 eH1 rH1

1 40 4 1.2130 � 6.755�1 � 8.124�1 �

2 160 16 2.920�1 1.03 1.151�1 1.28 2.526�1 0.84
3 640 64 2.392�2 1.80 6.879�3 2.03 3.672�2 1.39
4 2560 256 2.516�3 1.62 4.692�4 1.94 5.003�3 1.44
5 10240 1024 1.633�4 1.97 3.075�5 1.97 6.429�4 1.48
6 40960 4096 9.843�6 2.03 1.943�6 1.99 8.042�5 1.50
7 163840 16384 5.932�7 2.03 1.215�7 2.00 1.028�5 1.48
8 655360 65536 3.605�8 2.02 7.593�9 2.00 1.320�6 1.48
9 2621440 262144 2.188�9 2.02 4.736�10 2.00 1.514�7 1.56
10 10485760 1048576 2.418�10 1.59 1.037�10 1.10 1.983�8 1.47

gence behavior regardless of the approach employed for the implementation of essential bound-
ary conditions. For both techniques we measure the convergence rates rL2 = 2 and rH1 = 1.5
and the absolute values of the relative errors (7.3) agree very well also for higher order discretiza-
tions, compare Figure 7.2. The reduction in the measured convergence rates rL• and rL2 in the
last refinement step are round-off effects (see below).

Finally, we consider a sequence of PPUM spaces VPU
k with k = 1, . . . , J resulting from alter-

nating a global uniform h-refinement and a global uniform hp-refinement step for the approxima-
tion of (7.1) with the analytical solution (7.6). Up to level k = 4 we employ quadratic polynomials
as local approximation spaces, then we continue to apply a global hp-refinement step followed by
a global h-refinement step. Hence, we expect to find the algebraic convergence rates rL2 = p+1

2
and rH1 = p

2 on all odd levels k > 4 and a kind of exponential convergence on all even levels
k � 4. The measured relative errors and convergence rates are collected in Table 7.7. From the
numbers displayed there we learn that we attain the anticipated convergence behavior on all lev-
els k = 1, . . . , 9. In the last refinement step from level 9 to level 10 with quintic polynomials as
local approximation spaces the measured convergence breaks down. We attribute this to the fact
that the relative error in the L•-norm is already on the scale of machine precision which renders
the numerical integration employed in the approximation of the L2-error and the H1-error rather
challenging.
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Table 7.6. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.2 with p = 3
and the algebraic conforming boundary approach of §4.2.2 for the implementation of essential boundary
conditions.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

1 25 15 4 1.4150 � 7.486�1 � 8.607�1 �

2 129 31 16 4.310�1 0.86 1.467�1 1.18 3.003�1 0.76
3 577 63 64 2.804�2 1.97 8.166�3 2.08 4.082�2 1.44
4 2433 127 256 2.516�3 1.74 5.003�4 2.01 5.227�3 1.48
5 9985 255 1024 1.633�4 1.97 3.163�5 1.99 6.561�4 1.50
6 40449 511 4096 9.846�6 2.03 1.970�6 2.00 8.123�5 1.51
7 162817 1023 16384 5.934�7 2.03 1.224�7 2.00 1.033�5 1.49
8 653313 2047 65536 3.606�8 2.02 7.619�9 2.00 1.323�6 1.48
9 2617345 4095 262144 2.189�9 2.02 4.744�10 2.00 1.516�7 1.56

10 10477569 8191 1048576 2.413�10 1.59 1.037�10 1.10 1.984�8 1.47

Table 7.7. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.2 with global hp-
refinement and the algebraic conforming boundary approach of §4.2.2 for the implementation of essential
boundary conditions.

J dofK dof I N p eL• rL• eL2 rL2 eH1 rH1

1 13 11 4 2 2.7140 � 1.4090 � 1.1850 �

2 73 23 16 2 1.0240 0.70 3.950�1 0.92 5.735�1 0.52
3 337 47 64 2 1.512�1 1.38 5.544�2 1.42 1.872�1 0.81
4 1441 95 256 2 2.014�2 1.45 5.858�3 1.62 4.971�2 0.96
5 9985 255 1024 3 1.633�4 2.54 3.163�5 2.75 6.561�4 2.28
6 40449 511 4096 3 9.846�6 2.03 1.970�6 2.00 8.123�5 1.51
7 244481 1279 16384 4 4.006�9 4.36 8.234�10 4.34 8.993�8 3.80
8 980481 2559 65536 4 1.254�10 2.50 2.610�11 2.49 5.766�9 1.98
9 5498881 6143 262144 5 1.439�11 1.26 8.785�12 0.63 3.525�12 4.30
10 22007809 12287 1048576 5 9.436�11 �1.36 4.329�11 �1.15 1.404�11 �1.00

Example 7.3 (System of equations with regular solution). Let us now turn to the discretization
of systems of PDEs by our PPUM. To this end, we consider the equations of linear elasticity (7.2)
with the material parameters E = 1000 and n = 0.3 on the domain W := (�1, 1)D with D = 2, 3
and employ linear polynomials as local approximation spaces Vi = P

1. The boundary conditions
are given by

u · n = 0 on GD, (s(u) · n) · t = 0 on GD, and s(u) · n = x · n + 1 on GN := ∂W \ GD

with the Dirichlet boundary GD := {x 2 (�1, 1)D
| xd = �1 for at least one d = 1, . . . , D}. The

essential boundary conditions are implemented by the conforming approach of §4.2.2. In this ex-
ample we use a reference solution to assess the performance of our PPUM. To this end, we employ
a uniform global hp-refinement step of the finest computational level J. In two dimensions the
reference solution is computed with roughly 200 million degrees of freedom and in three space
dimension with 8 million degrees of freedom. The relative errors (7.3) with respect to the refer-
ence solution are approximated by an numerical integration scheme based on the decomposition
of §6.1 constructed for the reference PPUM space.

The measured errors and the respective convergence rates are summarized in Tables 7.8 and
7.9. We anticipate to find the convergence rates rL2 = 1 and rH1 = 0.5 in two dimensions and
rL2 = 2

3 and rH1 = 1
3 in three dimensions as in Example 7.1. The results given clearly show this

optimal convergence behavior also for the discretization of systems of PDEs.

The results of Examples 7.1, 7.2 and 7.3 where we considered the approximation of smooth
solutions on simple D-rectangular domains show that we attain the optimal convergence behav-
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Table 7.8. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.3 in two dimensions
using the algebraic conforming boundary treatment of §4.2.2 for the implementation of essential boundary
conditions.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

4 1472 64 256 1.052�2 � 5.682�3 � 5.769�2 �

5 6016 128 1024 3.525�3 0.79 1.408�3 1.01 2.827�2 0.51
6 24320 256 4096 1.100�3 0.84 3.442�4 1.02 1.396�2 0.51
7 97792 512 16384 3.291�4 0.87 8.450�5 1.01 6.940�3 0.50
8 392192 1024 65536 9.556�5 0.89 2.089�5 1.01 3.459�3 0.50
9 1570816 2048 262144 2.725�5 0.91 5.190�6 1.00 1.719�3 0.50

10 6287360 4096 1048576 7.627�6 0.92 1.293�6 1.00 8.540�4 0.50
11 25157632 8192 4194304 2.106�6 0.93 3.221�7 1.00 4.059�4 0.54

Figure 7.3. Vector field representation of the computed solution two dimensions (left) and in three
dimensions (right).

ior of our PPUM according to Theorem 3.1. Here, the uniform h-version converges with the rates
rL2 = p+1

D and rH1 = p
D for a discretization with polynomials of total degree p in D space dimen-

sions independent of the type and implementation of the boundary conditions.
Let us now consider the approximation of singular solutions. Here, the uniform h-version

(without enrichment) cannot achieve its optimal convergence rate due to the limited regularity
of the solution. Nonetheless, the study of the performance of a uniformly refined PPUM ap-
proximation for problems with singularities due to geometry and boundary conditions is highly
instructive to understand the differences in the treatment of essential boundary conditions by
Nitsche’s method and via the use of conforming local approximation spaces.

Example 7.4 (Problems with singular solution). Recall that for convex domains our PU satisfies
not only the flat top condition in the domain W but also on the boundary ∂W. In the case of a non-
convex domain however the flat top condition on the boundary may not be satisfied, compare
Figure 4.3. Thus, the conforming approach of §4.2.2 constructs a splitting

VPU = VPU
K �VPU

I

of our PPUM space VPU which is sub-optimal only. The dimension of the conforming subspace
VPU

K used for the approximation of the PDE in the domain W maybe smaller than the dimension
of the kernel of the trace operator applied to VPU. Thus, we might use more degrees of freedom
for the approximation of the boundary conditions than necessary and less degrees of freedom in
the domain than possible. This however does not compromise the convergence rate of our PPUM
yet the absolute value of the attained errors may be affected.
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Table 7.9. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.3 in three di-
mensions using the algebraic conforming boundary treatment of §4.2.2 for the implementation of essential
boundary conditions.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

1 60 36 8 2.103�1 � 1.179�1 � 2.996�1 �

2 624 144 64 9.027�2 0.41 5.218�2 0.39 1.855�1 0.23
3 5568 576 512 4.334�2 0.35 1.838�2 0.50 9.968�2 0.30
4 46848 2304 4096 1.646�2 0.47 5.467�3 0.58 5.417�2 0.29
5 384000 9216 32768 1.432�2 0.07 1.355�3 0.67 3.334�2 0.23
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Figure 7.4. Convergence history for Example 7.4 in the L•-norm, the L2-norm, and the H1-norm
(left: Nitsche’s method with minimal regularization; center: conforming local approximation spaces; right:
Nitsche’s method with large regularization).

The standard reference domain for the study of singular solutions due to boundary condi-
tions in two dimensions is the L-shaped domain W := (�1, 1)2

\ [0, 1)2. On W we consider the
model problem (7.1) with c = 0 and homogeneous Dirichlet boundary conditions on

GD := {(x1, x2) 2 W | x1 = 0, or x2 = 0} (7.7)

and Neumann boundary data gN on GN := ∂W \ GD such that the solution u is given by

u(r, q) = r
2
3 sin

⇣2q � p

3

⌘
(7.8)

where (r(x), q(x)) denote polar coordinates. The solution (7.8) is singular at the re-entrant corner
(0, 0) and is in Hs with s < 1 + 2

3 only. Thus, we expect to find the convergence rates rL2 = 2
3 and

rH1 = 1
3 for a uniformly refined sequence of PPUM spaces VPU

k with k = 0, . . . , J.
Note that each cover Ck

W of the sequence constructed by Algorithm 5.1 based on the mini-
mal bounding box [�1, 1]2 � W contains three patches wi that cover the re-entrant corner at (0, 0)
(and part of both edges running into the corner), compare Figure 4.3. Thus, a PPUM discretization
according to Algorithm 4.2 will construct a direct splitting of the respective local approximation
spaces Vi defined on these patches wi into Vi,K and Vi,I where Vi,K is the kernel of the localized
trace operator applied to Vi. This kernel however is empty for all three patches wi since we cur-
rently limit ourselves to the use of polynomials as local approximation spaces Vi (independent
of the employed polynomial degree). Hence, all three local approximation spaces Vi which over-
lap the re-entrant corner are used completely for the approximation of the (vanishing) boundary
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Table 7.10. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.4 with Dirichlet
boundary conditions on GD of (7.7) implemented via Nitsche’s method.

J dof N eL• rL• eL2 rL2 eH1 rH1

1 9 3 1.058�1 � 1.060�1 � 2.076�1 �

2 36 12 7.014�2 0.30 4.015�2 0.70 1.378�1 0.30
3 144 48 4.456�2 0.33 1.753�2 0.60 9.095�2 0.30
4 576 192 2.836�2 0.33 7.277�3 0.63 5.883�2 0.31
5 2304 768 1.789�2 0.33 2.959�3 0.65 3.769�2 0.32
6 9216 3072 1.128�2 0.33 1.190�3 0.66 2.400�2 0.33
7 36864 12288 7.104�3 0.33 4.762�4 0.66 1.519�2 0.33
8 147456 49152 4.475�3 0.33 1.899�4 0.66 9.584�3 0.33
9 589824 196608 2.818�3 0.33 7.558�5 0.66 6.102�3 0.33
10 2359296 786432 1.774�3 0.33 3.005�5 0.67 3.894�3 0.32
11 9437184 3145728 1.116�3 0.33 1.194�5 0.67 2.386�3 0.35
12 37748736 12582912 7.005�4 0.34 4.737�6 0.67 1.523�3 0.32

Table 7.11. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.4 with Dirichlet
boundary conditions on GD of (7.7) implemented via the algebraic conforming boundary treatment of §4.2.2
for the implementation of essential boundary conditions.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

1 0 9 3 1.0000 � 1.0000 � 1 �

2 23 13 12 5.654�1 0.41 6.872�1 0.27 7.194�1 0.24
3 123 21 48 3.552�1 0.34 3.651�1 0.46 4.645�1 0.32
4 539 37 192 2.243�1 0.33 1.657�1 0.57 2.872�1 0.35
5 2235 69 768 1.413�1 0.33 7.000�2 0.62 1.780�1 0.35
6 9083 133 3072 8.898�2 0.33 2.862�2 0.65 1.111�1 0.34
7 36603 261 12288 5.607�2 0.33 1.153�2 0.66 6.968�2 0.34
8 146939 517 49152 3.528�2 0.33 4.613�3 0.66 4.378�2 0.34
9 588795 1029 196608 2.224�2 0.33 1.839�3 0.66 2.766�2 0.33

10 2357243 2053 786432 1.392�2 0.34 7.315�4 0.66 1.750�2 0.33
11 9433083 4101 3145728 8.746�3 0.34 2.907�4 0.67 1.089�2 0.34
12 37740539 8197 12582912 5.538�3 0.33 1.155�4 0.67 6.899�3 0.33

conditions in the conforming approach. With Nitsche’s method however the boundary condi-
tions act on the product functions jiJ

m
i rather than on the local approximation functions Jm

i and
this non-conforming technique balances the error in the domain with the error on the bound-
ary (weighted by the regularization parameter). Therefore, we expect that the results obtained
by Nitsche’s method and a conforming discretization will not agree with respect to the absolute
values of the attained errors (7.3) — unlike in the previous examples.

Let us first consider a non-conforming discretization via Nitsche’s methods with the minimal
regularization parameter. The errors (7.3) and the respective convergence rates r are given in
Table 7.10, compare Figure 7.4. These measurements clearly show the anticipated convergence
behavior with the rates rL2 = 2

3 and rH1 = 1
3 . On level J = 12 we find the absolute values of the

relative errors eL2 = 4.737�6 and eH1 = 1.523�3. Comparing these results with those obtained by
a conforming discretization, see Table 7.11, we clearly see the effect of the much more restrictive
conforming boundary treatment. Here, the discretization on level J = 12 yields the relative errors
eL2 = 1.155�4 and eH1 = 6.899�3 only. Yet the asymptotic convergence rates of the conforming
approach also agree with the optimal attainable values of rL2 = 2

3 and rH1 = 1
3 . With respect to

the L2-norm this optimal behavior however is achieved on levels k � 5 only for the conforming
approach whereas with Nitsche’s method (employing the minimal regularization parameter) the
optimal rates are obtained on levels k � 2 already, compare also Figures 7.4 and 7.5.

Note however that these results only imply that we may obtain a smaller absolute error;
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Table 7.12. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.4 with Dirichlet
boundary conditions on GD of (7.7) implemented via Nitsche’s method with large regularization.

J dof N eL• rL• eL2 rL2 eH1 rH1

1 9 3 9.523�1 � 9.884�1 � 9.918�1 �

2 36 12 5.277�1 0.43 6.734�1 0.28 7.078�1 0.24
3 144 48 3.287�1 0.34 3.567�1 0.46 4.563�1 0.32
4 576 192 2.060�1 0.34 1.615�1 0.57 2.820�1 0.35
5 2304 768 1.294�1 0.34 6.817�2 0.62 1.747�1 0.35
6 9216 3072 8.135�2 0.33 2.787�2 0.65 1.091�1 0.34
7 36864 12288 5.123�2 0.33 1.122�2 0.66 6.840�2 0.34
8 147456 49152 3.224�2 0.33 4.490�3 0.66 4.298�2 0.34
9 589824 196608 2.032�2 0.33 1.789�3 0.66 2.714�2 0.33
10 2359296 786432 1.271�2 0.34 7.119�4 0.66 1.717�2 0.33
11 9437184 3145728 7.991�3 0.34 2.830�4 0.67 1.069�2 0.34
12 37748736 12582912 5.062�3 0.33 1.124�4 0.67 6.772�3 0.33

Table 7.13. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.5 with the algebraic
conforming boundary approach of §4.2.2 for the implementation of essential boundary conditions.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

5 1601 490 697 4.885�1 0.09 2.742�1 0.17 5.267�1 0.08
6 7063 926 2663 3.236�1 0.31 1.131�1 0.66 3.372�1 0.33
7 29324 1714 10346 2.113�1 0.31 4.998�2 0.60 2.211�1 0.31
8 119016 3282 40766 1.364�1 0.32 1.966�2 0.68 1.345�1 0.36
9 479181 6279 161820 8.755�2 0.32 7.164�3 0.73 7.872�2 0.39
10 1921984 12203 644729 5.480�2 0.34 2.587�3 0.74 4.579�2 0.39
11 7697471 24256 2573909 3.273�2 0.37 8.616�4 0.79 2.552�2 0.42

i.e., the asymptotic convergence behavior is reached earlier, with Nitsche’s method compared
with the conforming boundary treatment. But, this is only the case if we employ the optimal
regularization parameter b in Nitsche’s method. Recall that our conforming construction can
be interpreted as the limit case when the regularization parameter b ! • in Nitsche’s method.
To confirm this interpretation numerically we also give the results obtained by Nitsche’s method
using a very large regularization parameter b in Table 7.12. Observe that now the measured errors
and convergence rates agree almost perfectly with those of Table 7.11, see Figures 7.4 and 7.5.

Example 7.5. As the final experimental setup we consider a slight generalization of the L-shaped
domain problem, see Figure 7.6. The computational domain has a re-entrant corner with an inte-
rior angle > 3p

2 and an elliptical hole. Note that the boundary segments running into the re-entrant
corner are intentionally not aligned with the coordinate axes. Here, we employ homogeneous
Dirichlet boundary conditions and a constant right-hand side f = 10. The conforming approach
will eliminate all local approximation spaces Vi which overlap a curved boundary segment to
construct the conforming subspace VPU

K ⇢ VPU, compare Figure 7.6.

7.1.2 Adaptive Refinement
In the following we now consider the adaptive refinement of our PPUM space VPU in two and
three space dimensions based on the error estimator h (5.56) of §5.4.1. To assess the performance
of our adaptation approach, compare §5.4, we consider the estimated relative error in the energy-
norm

e⇤A :=
eqp

a(u, u)
=

vuut
PN

i=1 e2
i,q

a(u, u)
, (7.9)
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Figure 7.5. Surface plots of the computed solution on level k = 4 (top row) and the respective error
(bottom row) obtained by Nitsche’s method with minimal regularization (left) and conforming subspaces
(right).

the respective convergence rate r⇤A, and the efficiency index

k⇤A :=
hp

a(u� uPU, u� uPU)
. (7.10)

Note that the bilinear form in Nitsche’s method changes from level to level due to the regular-
ization parameter and (7.9) and (7.10) actually employ this level-dependent bilinear form when
applied to the results of a non-conforming discretization.

In all experiments we use the parameters q = 2, sb = 0.8, snull = 1, sh = 3, and sp = 0.6 in
the computation of the error estimator and the refinement scheme, see §5.4.1 and §5.4.2.

Example 7.6. In our first experiment we consider the reference situation of Example 7.4 on the
L-shaped domain with the analytical solution (7.8) and realize the Dirichlet boundary conditions
on the boundary segments running into the re-entrant corner via Nitsche’s method. Here, we use
our hp-adaptive refinement scheme to construct a sequence of PPUM spaces VPU

k with k = 0, . . . , J
based on the local error estimators hi of (5.56).1

In the FEM it is well-known [122] that the best attainable convergence behavior with hp-
refinement for the considered problem class is characterized by the error bound

ku� uFE
kH1(W)  C exp(�b dof1/3). (7.11)

1Note that within the non-conforming approach it is crucial to employ appropriate regularization parameters for the
local subdomain problems, see [128] for details.
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Figure 7.6. Contour plots of the computed solution (top row) on levels k = 3, 5, 7 (left to right)
and the respective surface plots (bottom row, rotated). All local approximation spaces intersecting a curved
boundary are used for the boundary value approximation.

We anticipate a similar behavior of our hp-adaptive PPUM. Therefore, we plot the measured
relative errors and in the L•-norm, the L2-norm, the H1-norm, and the estimated relative error in
the energy-norm against dof1/3 on a logarithmic scale in Figure 7.7, see also Figures 7.8 and 7.9.
The validity of an error bound of type (7.11) for the PPUM can be inferred from the displayed
results. Up to level k = 18 we essentially find straight lines in Figure 7.7. The error reduction
however decays slightly in further refinement steps. We attribute this loss in performance to
numerical integration errors. Observe from Figure 7.8 that also the efficiency index of our error
estimator falls below 1 on levels k > 18. We can also observe that on levels k > 18 our PPUM
space VPU employs polynomials of maximal degree p � 7. Thus the integrands arising in the
computation of the local approximations to the error are of order 18 already which cannot be
computed exactly with our sparse grid integration rule. Thus, we assume that on patches wi,k
with very large polynomial degree pi,k the reliability of our error estimator hi,k is compromised
due to integration errors. Therefore, the refinement is no longer steered appropriately and yields
sub-optimal results for k > 18 only.

Let us now consider the hp-adaptive refinement of a PPUM space in the conforming treat-
ment of our model problem. From the observations of the previous section we assume that the
conforming approach yields slightly larger errors than the non-conforming approach since the
conforming splitting at the re-entrant corner uses all polynomials at the re-entrant corner for
the approximation of the (vanishing) boundary condition such that the approximation benefits
only indirectly from the higher polynomial degree via a correction of the right-hand side. The
measured results are depicted in Figure 7.10. From these plots we find not only a larger error
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Figure 7.7. Convergence history of the measured relative errors e (7.3) in the L•-norm, the L2-
norm, and the H1-norm for Example 7.6 using Nitsche’s method. The dotted red line with circular markers
gives the estimated error (5.56) (denoted by E⇤ in the legend) used to steer the refinement process. On the
left are the results up to level J = 18, on the right up to level 26.
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Figure 7.8. Efficiency index k⇤ (left) and range of polynomial degrees (right) for Example 7.6
using Nitsche’s method.

Figure 7.9. Distribution of the polynomial degrees for levels k = 10, 13, 16 (left to right) depicted
on the cell centers of the respective tree decomposition for Example 7.6 using Nitsche’s method. The size
of the particle at the cell center indicates the size of the respective cover patch wi, the color of the particle
indicates the employed polynomial degree pi.
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Figure 7.10. Convergence history (left) of the measured relative errors e (7.3) in the L•-norm,
the L2-norm, and the H1-norm for Example 7.6 using a conforming boundary treatment and the efficiency
index k⇤ (center) and range of polynomial degrees (right) resulting from an hp-adaptive refinement.

Figure 7.11. Distribution of the polynomial degrees for levels k = 10, 13, 16 (left to right) depicted
on the cell centers of the respective tree decomposition for Example 7.6 using a conforming discretization.
The size of the particle at the cell center indicates the size of the respective cover patch wi, the color of the
particle indicates the employed polynomial degree pi.
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Figure 7.12. Convergence history (left) of the measured relative errors e (7.3) in the L•-norm,
the L2-norm, and the H1-norm for Example 7.6 using a conforming boundary treatment and the efficiency
index k⇤ (right) resulting from an h-adaptive refinement.
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Table 7.14. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.6 with h-adaptive
refinement and conforming boundary treatment.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

1 0 9 3 9.123�2 � 6.457�2 � 2.069�1 �

2 2 16 6 5.650�1 �2.63 2.646�1 �2.03 8.878�1 �2.10
3 11 16 9 3.560�1 1.14 1.200�1 1.95 5.080�1 1.38
4 20 16 12 1.986�1 2.03 6.975�2 1.89 3.440�1 1.35
5 31 32 21 3.755�1 �1.14 2.428�1 �2.23 7.824�1 �1.47
6 45 36 27 2.366�1 1.84 1.125�1 3.06 4.304�1 2.38
7 59 40 33 1.489�1 2.31 5.560�2 3.51 2.814�1 2.12
8 78 48 42 1.413�1 0.22 4.201�2 1.16 2.170�1 1.08
9 121 68 63 8.890�2 1.14 1.921�2 1.93 1.399�1 1.08
10 158 76 78 5.601�2 2.16 1.197�2 2.21 1.023�1 1.47
11 209 88 99 3.528�2 1.94 6.540�3 2.54 7.768�2 1.16
12 388 116 168 2.224�2 0.87 2.966�3 1.49 5.392�2 0.69
13 521 136 219 1.401�2 1.74 2.177�3 1.17 4.452�2 0.72
14 1025 208 411 8.826�3 0.73 9.138�4 1.38 2.896�2 0.68
15 1237 212 483 5.523�3 2.90 7.156�4 1.51 2.592�2 0.69
16 2713 320 1011 3.479�3 0.63 3.498�4 0.97 1.763�2 0.52
17 3373 344 1239 2.206�3 2.24 2.751�4 1.18 1.540�2 0.67
18 6147 468 2205 1.378�3 0.82 1.449�4 1.11 1.124�2 0.55
19 7626 528 2718 8.743�4 2.18 1.191�4 0.94 1.013�2 0.50
20 16613 820 5811 5.495�4 0.61 5.245�5 1.08 6.580�3 0.57
21 19877 868 6915 3.462�4 2.66 4.454�5 0.94 5.929�3 0.60
22 40344 1272 13872 2.181�4 0.66 2.275�5 0.97 4.154�3 0.51
23 51782 1408 17730 1.374�4 1.88 1.670�5 1.26 3.659�3 0.52
24 98691 1884 33525 8.654�5 0.73 8.957�6 0.98 2.634�3 0.52
25 121072 2120 41064 5.451�5 2.28 7.361�6 0.97 2.403�3 0.45

Figure 7.13. Distribution of the error for levels k = 13, 16, 19 (left to right) depicted on the cell
centers of the respective tree decomposition for Example 7.6 using an h-adaptive conforming discretization.
The size of the particle at the cell center indicates the size of the respective cover patch wi.

compared to the non-conforming approach but also the convergence is slightly slower. Yet, the
quality of the error estimator is high since we find a very stable efficiency index of about 1. One
of the reasons for this loss in performance is the different error distribution in the conforming
approach, compare Figure 7.5. Here, the error seems to be rougher such that less p-refinement is
carried out in the conforming approach, compare Figures 7.10 and 7.8, and the Figures 7.11 and
7.9. Thus, we assume that the optimal convergence behavior (7.11) is reached later than in the
non-conforming approach. Moreover, it is not clear that the refinement parameters given above
which were identified for the non-conforming approach are optimal for the conforming approach
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Figure 7.14. Distribution of the error for levels k = 15, 20, 25 (left to right) for Example 7.6 using
an hp-adaptive conforming discretization.

Figure 7.15. Wireframe representation of the integration cells constructed for the h-adaptive
conforming discretization of Example 7.6.

as well.
An h-adaptive refinement however should yield its optimal convergence behavior much

faster since the quality of the error estimator is the only influence on the refinement and conver-
gence behavior. From the plots depicted in Figure 7.12 and the convergence rates r given in Table
7.14 the optimal convergence of the h-adaptive PPUM can in fact be observed. We find very sta-
ble rates around rL2 = 1 and rH1 = 1

2 as expected. In Figure 7.13 we give some snapshots of the
pointwise error at the cell centers of our cover patches on the levels k = 13, 16, 19. From these
plots we can clearly observe the fast reduction of the error and the strong refinement towards the
re-entrant corner.

Finally, we consider our model problem (7.1) with c = 0 on a non-convex domain with
interior angle b = 3.3p

2 , a non-convex hole, and an oscillatory outer boundary, see Figures 7.14
and 7.15. We consider Dirichlet boundary conditions and choose the data f and g such that the
analytical solution is given by

u(r, q) = rp/b sin
⇣pq

b

⌘

with respect to an appropriately rotated polar coordinate system. Since the boundary of the do-
main is approximated on each level independently we cannot expect a very smooth convergence
behavior in this example. Moreover, the boundary of the domain is rather complicated and our
conforming approach will use all local approximation spaces at the curved boundaries for the
approximation of the boundary data. From the results of the previous experiment we infer that
the hp-adaptive refinement strategy will most probably not yield exponential convergence for the
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Figure 7.16. Convergence history of the measured relative errors e (7.3) in the L•-norm, the
L2-norm, and the H1-norm for Example 7.6 using a conforming boundary treatment and hp-adaptive
refinement (left), or an h-adaptive refinement (right) only.

Table 7.15. Estimated errors e⇤ and respective convergence rates r⇤ for Example 7.7.

J dof N [p] LC e⇤L2 r⇤L2 e⇤H1 r⇤H1 e⇤A r⇤A
3 1792 448 [1, 1] 0 6.673�3 0.55 2.315�1 0.24 3.475�1 0.30
4 14336 3584 [1, 1] 0 1.881�3 0.61 1.280�1 0.28 1.721�1 0.34
5 58996 14749 [1, 1] 1 1.174�3 0.33 9.464�2 0.21 1.072�1 0.33
6 131366 28091 [1, 2] 1 3.085�4 1.67 4.446�2 0.94 5.292�2 0.88
7 276180 47166 [1, 3] 2 8.861�5 1.68 2.059�2 1.04 2.390�2 1.07
8 659599 109291 [1, 4] 2 7.210�5 0.24 1.622�2 0.27 2.038�2 0.18
9 1468658 220969 [1, 5] 3 2.430�5 1.36 9.816�3 0.63 1.324�2 0.54

conforming approach. We assume that an insufficient amount of p-refinement is carried out so
that in the worst case our hp-refinement actually behaves like an h-adaptive PPUM. This assertion
is confirmed by the measured results given in Figure 7.16 (note that we employ a small number
of uniform h-refinements before the adaptation process starts). Our hp-refinement scheme here
essentially yields almost the same refinement pattern as the h-refinement strategy with only a
minimal number of p-refinements (up to level 26 the maximal polynomial degree is p = 2).

Example 7.7. Next we consider the three-dimensional analogue of the L-shaped domain with
homogeneous Dirichlet boundary conditions realized by Nitsche’s method and a constant right-
hand side f = 1. In this example we measure absolute errors only and we estimate the errors
in the L2-norm and the H1-norm by e⇤L2 and e⇤H1 with the help of the local approximations to the
error ePU

i,q . The estimated errors e⇤ and the respective convergence rates r⇤ are given in Table 7.15.
We can observe an increase in the rates r⇤ for larger refinement levels J indicating an exponential
convergence as in the previous example.

Example 7.8. In our last example of this section, we consider the adaptive refinement of an en-
riched PPUM space. To this end, we apply our PPUM with a minimal amount of enrichment
functions to a reference problem from linear elastic fracture mechanics

� div s(u) = f in W = (�1, 1)2,
s(u) · n = gN on GN ⇢ ∂W [ C,

u = gD on GD = ∂W \ GN ,
(7.12)

with material parameters E = 1 and n = 0.3. The Dirichlet boundary is given by GD := {(x, y) 2
∂W | y = �1} and we use gD = (0, 0). On the upper boundary {(x, y) 2 ∂W | y = 1} ⇢ GN we use
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Table 7.16. Estimated errors e⇤ and respective convergence rates r⇤ for Example 7.8.

J dof N [p] Lmax e⇤L2 r⇤L2 e⇤H1 r⇤H1 e⇤A r⇤A
3 472 64 [1, 1] 0 1.981�2 0.89 4.530�1 0.23 5.164�1 0.23
4 1132 166 [1, 1] 1 1.159�2 0.61 3.805�1 0.20 4.120�1 0.26
5 2464 346 [1, 2] 2 4.782�3 1.14 2.777�1 0.41 2.852�1 0.47
6 4600 568 [1, 3] 2 1.851�3 1.52 1.846�1 0.65 1.860�1 0.68
7 7068 778 [1, 3] 2 8.175�4 1.90 1.237�1 0.93 1.238�1 0.95
8 10144 1066 [1, 3] 3 4.676�4 1.55 8.485�2 1.04 8.494�2 1.04
9 13364 1330 [1, 4] 3 2.914�4 1.72 6.044�2 1.23 6.020�2 1.25

10 17800 1708 [1, 4] 3 1.879�4 1.53 4.332�2 1.16 4.310�2 1.17
11 23380 2140 [1, 4] 4 1.036�4 2.18 3.014�2 1.33 3.001�2 1.33
12 29716 2608 [1, 4] 4 6.432�5 1.99 2.138�2 1.43 2.124�2 1.44
13 37412 3160 [1, 5] 4 3.680�5 2.42 1.518�2 1.49 1.504�2 1.50
14 46536 3922 [1, 5] 4 2.431�5 1.90 1.061�2 1.64 1.055�2 1.63
15 56476 4582 [1, 6] 5 1.605�5 2.14 7.583�3 1.73 7.525�3 1.74
16 69256 5542 [1, 6] 5 1.037�5 2.14 5.405�3 1.66 5.357�3 1.67
17 87896 6856 [1, 6] 5 5.370�6 2.76 3.709�3 1.58 3.682�3 1.57
18 106188 7726 [1, 6] 5 3.421�6 2.39 2.640�3 1.80 2.616�3 1.81
19 129972 9424 [1, 7] 6 2.065�6 2.50 1.866�3 1.72 1.849�3 1.72
20 160800 11194 [1, 7] 6 1.396�6 1.84 1.281�3 1.77 1.272�3 1.76
21 193736 12826 [1, 7] 6 9.238�7 2.22 9.190�4 1.78 9.114�4 1.79
22 239784 15850 [1, 7] 6 6.079�7 1.96 6.501�4 1.62 6.445�4 1.62
23 310348 19648 [1, 8] 7 3.949�7 1.67 4.514�4 1.41 4.478�4 1.41

gN = (0, 1). On the remaining parts of the Neumann boundary GN we use gN = (0, 0) where the
crack C ⇢ GN is defined as

C := {(x, y) 2 W | x 2 (�0.5, 0.5) and y = 0}.

The singular behavior of the solution at the crack tips is modeled by the enrichment functions
(5.23) and its discontinuity across the crack line is realized by (5.22). Note that we do not use the
hierarchical enrichment approach of §5.3 but employ enrichment only directly at the tips. Thus,
the enriched PPUM spaces do not resolve the singular behavior of the solution asymptotically
and an adaptive refinement process is necessary to recover the optimal convergence behavior.

First, we consider a non-conforming discretization of (7.12) and adaptive hp-refinement.
The estimated errors e⇤ and the respective convergence rates r⇤ are collected in Table 7.16. Here,
we give estimated absolute errors only and use the strain energy seminorm k 1

2 (ru +rTu)kL2(W)
for the definition of e⇤H1 . Furthermore, we also indicate the maximal level difference Lmax attained
on the respective refinement level. From the displayed numbers we can clearly observe the antic-
ipated increase in the algebraic convergence rates which indicates an exponential convergence.

We give snapshots of the distribution of the employed polynomial degrees on the (scaled)
deformed configuration in Figure 7.17 and for the distribution of the von Mises stress in Figure
7.18. From these plots, we clearly see the hp-adaptive resolution of the singularities near the crack
tips as well as the additional singularities in the Dirichlet-Neumann corners. Note also that across
the crack line we obtain a (pure) p-refinement in regions where the displacement field is locally
(above/below the crack line) smooth.

7.1.3 Hierarchical Enrichment
Let us now consider the refinement of our PPUM spaces with hierarchical enrichment. Recall that
this approach may recover the optimal convergence behavior of the uniform h-version also for
singular solutions — provided that the employed enrichment functions resolve the singularities
of the solution. Thus, we may also interpret the enrichment approach as an solution-adapted
refinement technique, yet it is an algebraic adaptation rather than a geometric adaptation.



128 Chapter 7. Validation

Figure 7.17. Distribution of the polynomial degrees for levels k = 10, 13, 16 (left to right) depicted
on the cell centers of the respective (deformed) tree decomposition for Example 7.8. The size of the particle
at the cell center indicates the size of the respective support patch wi, the color of the particle indicates the
employed polynomial degree pi.

Example 7.9. In the first example we consider the model problem (7.1) with c = 0 and Dirichlet
boundary conditions on the domain W = (�1, 1)2. Here we choose the data f and gD such that
the analytical solution is given by

u(x1, x2) =
p

r(sin(
q

2
) + cos(

q

2
))(1 + sin(q)) + (x2

1 � 1) + (x2
2 � 1) + 1 (7.13)

where (r(x), q(x)) denote polar coordinates, see Figure 7.19. This solution is obviously designed
to mimic the behavior of a solution to a crack problem with C = {(x1, x2) | x1 2 (�1, 0) and x2 =
0} so that the enrichment spaces (5.22) and (5.23) are optimal for the approximation of (7.13).

Here, we employ three initial refinement steps with minimal enrichment and employ the
hierarchical enrichment with local preconditioning on all later refinement levels k > 3, as smooth
local approximation spaces we use linear polynomials. Thus, we consider the enrichment zone

Etip := (�0.25, 0.25)2
⇢ W = (�1, 1)2 (7.14)

on all levels k = 0, . . . , J and we expect to find a linear convergence behavior with respect to the
H1-norm globally, i.e. rH1 = 1

2 . According to Theorem 5.1 we can obtain a better convergence
behavior within the enrichment zone Etip. To confirm this result we measure the errors (7.3) and
respective convergence rates (7.4) not only globally on W but also with respect to the subdomains

E1 := Etip =
⇣
�

1
4

,
1
4

⌘2
, E2 :=

⇣
�

1
8

,
1
8

⌘2
, E2 :=

⇣
�

1
16

,
1

16

⌘2
. (7.15)

Note that in this example we use a very aggressive enrichment strategy since we employ the
H1-norm for the construction of the preconditioner SE\P where we set e = 10�12.

The measured values are given in Table 7.17, see also Figures 7.20 and 7.21. We can clearly
see a perfect agreement with the theoretical convergence behavior. We find the rates rL2 = 1 and
rH1 = 1

2 for the global convergence on W. Within the enrichment zone Etip we obtain convergence
rates of 1.3 � rH1 � 0.75 and 1.78 � rL2 � 1. Thus, the super-convergence established in The-
orem 5.1 is practically observed and (at least for the considered enrichment spaces) substantial.
We attain an almost quadratic convergence behavior in the H1-norm near the singularity of the
solution.
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Figure 7.18. Distribution of the von Mises stress for Example 7.8 on the cell centers of the
respective deformed tree decomposition for levels J = 10 (left) and J = 19 (right). The size of the particle
at the cell center indicates the size of the respective support patch wi, the color of the particle indicates the
von Mises stress at the cell center.

Example 7.10. In our second example we consider the linear elastic fracture mechanics model
problem

� div s(u) = f in W ⇢ RD,
s(u) · n = gN on GN ,

u · n = gD on GD = ∂W \ GN ,
(7.16)

on the domain W := (�1, 1)2. The considered material parameters are E = 1000 and n = 0.3. The
Dirichlet boundary is defined as

GD := {(x, y) 2 ∂W | y = �1}

and we assume homogeneous Dirichlet data gD = 0 which we implement by Nitsche’s method.
The Neumann boundary GN := ∂W \ GD [ C contains the traction-free crack C of Example 7.9.
We apply inhomogeneous Neumann boundary conditions gN = (1, 0) on the segment {(x, y) 2
GN | y = 1} ⇢ GN only. Again we use the same enrichment zone Etip given in (7.14) and the
enrichment spaces (5.22), (5.23), and (5.26).

Note that we employ a reference solution uPU
ref 2 VPU

ref in this example to assess the perfor-
mance of our PPUM. This reference solution was computed by the enriched PPUM using a global
hp-refinement of the PPUM space VPU

J the finest level J = 9; i.e., the reference space VPU
ref em-

ploys roughly 106 patches, the local polynomial spaces P2, the enrichment spaces (5.22), (5.23),
and (5.26), and has roughly 107 degrees of freedom dofref. Thus, the relative errors (7.3) and re-
spective convergence rates (7.4) given in Table 7.18, see also Figures 7.22 and 7.24, refer to this
reference solution uPU

ref . In Figure 7.10 we give a contour plot of the von Mises stress of the ref-
erence solution on the deformed domain. A contour plot with respect to the enrichment zone
Etip of the dimension dDi,Jref

= dim(Di,Jref) of the local (scalar) pure enrichment spaces employed
in VPU

ref is depicted in Figure 7.26. Observe that close to the singularity all original additive en-
richment functions are present (dDi,Jref

= dim(Wtip) = 4). Further away from the singularity we
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Figure 7.19. Contour plot of the solution (7.13).

102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1
convergence history

degrees of freedom

re
la

tiv
e 

er
ro

r

 

 

H1

L∞

L2

Figure 7.20. Convergence history of the
measured relative errors e (7.3) with respect to the
complete domain W in the L•-norm, the L2-norm,
and the H1-norm for Example 7.9.
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Figure 7.21. Convergence history of the measured relative errors e (7.3) with respect to the sub-
domains E1 (left), E2 (center), and E3 (right) given in (7.15) with respect to the L•-norm, the L2-norm,
and the H1-norm for Example 7.9.

find dDi,Jref
= 3; i.e. one enrichment function was automatically removed by our preconditioner.

On the crack line C we employ both enrichments (5.22) and (5.23); i.e., we use (5.26), so that
cEi,Jref

= dim(Wtip) + dim(HC
±
P

2) = 4 + 6 = 10. Close to the singularity all these enrichment
functions are present and contribute to the approximation since we find dDi,Jref

= 10. Moving
away from the singularity along the crack the dimension dDi,Jref

decreases and several enrichment
functions were removed by our preconditioner to obtain a stable basis of VPU

ref .
Note that there are some oscillations in the local dimension dDi,Jref

due to the interplay of the
cut-off parameter e in the construction of the local preconditioner and quadrature errors in the
assembly of the local operators. These oscillations however are insubstantial and have no effect
on the stability, the approximation properties, or the regularity of the approximation.

Again, we compute the relative errors and corresponding convergence rates with respect to
the domain W and the subdomains E1, E2, and E3 of (7.15). In this example we expect to find the
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Table 7.17. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.9 using Nitsche’s method.

J dof N eL• rL• eL2 rL2 eH1 rH1

with respect to W
1 28 4 7.262�2 � 5.011�2 � 1.663�1 �

2 70 16 4.741�2 0.47 3.096�2 0.53 1.449�1 0.15
3 226 64 1.614�2 0.92 1.098�2 0.88 8.826�2 0.42
4 874 256 5.192�3 0.84 2.974�3 0.97 4.544�2 0.49
5 3418 1024 1.488�3 0.92 7.779�4 0.98 2.296�2 0.50
6 13498 4096 4.491�4 0.87 1.990�4 0.99 1.148�2 0.50
7 53626 16384 1.317�4 0.89 5.034�5 1.00 5.864�3 0.49
8 213736 65536 3.748�5 0.91 1.266�5 1.00 3.010�3 0.48
9 853410 262144 1.042�5 0.92 3.173�6 1.00 1.405�3 0.55
10 3410716 1048576 2.878�6 0.93 7.946�7 1.00 7.269�4 0.48

with respect to E1
2 28 4 4.329�2 � 3.245�2 � 9.040�2 �

3 70 16 3.145�2 0.35 2.061�2 0.50 6.313�2 0.39
4 184 36 1.058�2 1.13 5.325�3 1.40 2.559�2 0.93
5 580 100 3.385�3 0.99 1.390�3 1.17 9.671�3 0.85
6 2044 324 1.018�3 0.95 3.534�4 1.09 3.495�3 0.81
7 7660 1156 2.974�4 0.93 8.867�5 1.05 1.270�3 0.77
8 29626 4356 8.505�5 0.93 2.217�5 1.02 4.604�4 0.75
9 116532 16900 2.394�5 0.93 5.538�6 1.01 1.541�4 0.80
10 462382 66564 6.645�6 0.93 1.384�6 1.01 5.586�5 0.74

with respect to E2
3 28 4 1.659�2 � 1.178�2 � 3.599�2 �

4 118 16 4.200�3 0.95 3.707�3 0.80 1.216�2 0.75
5 264 36 1.209�3 1.55 8.846�4 1.78 4.271�3 1.30
6 724 100 3.040�4 1.37 2.133�4 1.41 1.472�3 1.06
7 2316 324 7.327�5 1.22 5.209�5 1.21 5.182�4 0.90
8 8188 1156 1.818�5 1.10 1.287�5 1.11 1.849�4 0.82
9 30658 4356 4.555�6 1.05 3.200�6 1.05 6.004�5 0.85
10 118588 16900 1.141�6 1.02 7.980�7 1.03 2.187�5 0.75

with respect to E3
4 28 4 3.567�3 � 2.447�3 � 1.096�2 �

5 118 16 9.241�4 0.94 7.710�4 0.80 4.124�3 0.68
6 264 36 2.651�4 1.55 1.803�4 1.80 1.471�3 1.28
7 724 100 6.244�5 1.43 4.337�5 1.41 5.247�4 1.02
8 2316 324 1.495�5 1.23 1.056�5 1.21 1.882�4 0.88
9 8188 1156 3.685�6 1.11 2.606�6 1.11 6.133�5 0.89
10 30652 4356 9.081�7 1.06 6.476�7 1.05 2.227�5 0.77

global convergence rates to be close to rL2 = 1 and rH1 = 1
2 since to solution of (7.16) has two

additional but weaker singularities at the corners (�1,�1) and (1,�1). Within the enrichment
zone we anticipate to find rates rL2 � 1 and rH1 �

1
2 as in Example 7.9.

Table 7.18 summarizes the computed results. From the displayed numbers we can clearly
see the anticipated convergence behavior. For the complete domain we find the rates rL2 = 1 and
rH1 = 1

2 and inside the enrichment zone we obtain rates between 1 and 1.5 for the L2-norm and
0.8 and 1.2 for the H1-norm. These results correspond very well to those of Example 7.9. Again,
we find an almost quadratic convergence with respect to the H1-norm within the enrichment
zone Etip. Observe from Figure 7.23 where we give a contour plot of the error on level k = 9 with
respect to the reference solution that the error is regular (with the expected jump across the crack
line). All singular components (apart from the corner singularities at (�1,�1) and (1,�1) which
are not considered by the enrichment) of the solution are resolved. In Figure 7.23 we depict the
dimension dDi,k = dim(Di,k) of the local (scalar) pure enrichment spaces employed in VPU

k on level
k = 9. Observe that our preconditioner does not remove any enrichment functions for patches
wi,k \ C = ∆. Only along the crack line we see a decay in the dimension dDi,k moving away from
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Table 7.18. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.10 using Nitsche’s
method.

J dof N eL• rL• eL2 rL2 eH1 rH1

with respect to W
1 56 4 2.401�1 � 2.028�1 � 2.519�1 �

2 140 16 1.945�1 0.23 1.870�1 0.09 2.161�1 0.17
3 452 64 9.564�2 0.61 9.405�2 0.59 1.131�1 0.55
4 1748 256 2.786�2 0.91 2.761�2 0.91 4.041�2 0.76
5 6836 1024 7.320�3 0.98 7.288�3 0.98 1.608�2 0.68
6 26996 4096 1.853�3 1.00 1.850�3 1.00 7.355�3 0.57
7 107252 16384 4.635�4 1.00 4.640�4 1.00 3.583�3 0.52
8 427472 65536 1.772�4 0.70 1.160�4 1.00 1.783�3 0.50
9 1706820 262144 1.040�4 0.39 2.901�5 1.00 8.575�4 0.53

with respect to E1
2 28 4 1.493�1 � 1.448�1 � 1.620�1 �

3 70 16 9.055�2 0.55 7.939�2 0.66 1.112�1 0.41
4 184 36 2.713�2 1.25 2.425�2 1.23 3.867�2 1.09
5 580 100 7.450�3 1.13 6.553�3 1.14 1.249�2 0.98
6 2044 324 1.954�3 1.06 1.694�3 1.07 4.053�3 0.89
7 7660 1156 5.056�4 1.02 4.331�4 1.03 1.350�3 0.83
8 29626 4356 1.307�4 1.00 1.109�4 1.01 4.610�4 0.79
9 116532 16900 3.381�5 0.99 2.854�5 0.99 1.581�4 0.78

with respect to E2
3 56 4 7.690�2 � 7.560�2 � 8.106�2 �

4 236 16 2.623�2 0.75 2.281�2 0.83 3.331�2 0.62
5 528 36 6.887�3 1.66 6.297�3 1.60 1.114�2 1.36
6 1448 100 1.752�3 1.36 1.641�3 1.33 3.598�3 1.12
7 4632 324 4.435�4 1.18 4.224�4 1.17 1.194�3 0.95
8 16376 1156 1.255�4 1.00 1.091�4 1.07 4.064�4 0.85
9 61316 4356 4.028�5 0.86 2.840�5 1.02 1.384�4 0.82

with respect to E3
4 56 4 2.006�2 � 2.304�2 � 1.947�2 �

5 236 16 7.198�3 0.71 6.343�3 0.90 1.296�2 0.28
6 528 36 1.763�3 1.75 1.675�3 1.65 4.912�3 1.20
7 1448 100 4.770�4 1.30 4.320�4 1.34 1.724�3 1.04
8 4632 324 1.520�4 0.98 1.117�4 1.16 6.045�4 0.90
9 16376 1156 4.877�5 0.90 2.913�5 1.06 2.089�4 0.84

the singularity at (0, 0).
We use the contour integral method (CIM) [140] to extract the stress intensity factors (SIF)

sifI for mode I and sifII for mode II. For the computation of the SIFs of the reference solution we
use a large number of different extraction domains {(x, y) 2 W | max{x, y} < r}; i.e., extraction
radii r, and compute the mean value of these SIFs (for 10�2

 r  10�1) as our reference values

sif⇤avg,I = 5.091385419547622, sif⇤avg,II = �0.330092517099450. (7.17)

In Figure 7.27 we plot the relative error of the extracted SIFs to the mean value (for all depicted
values of r). The depicted curves clearly show the path-independence of the extraction and we
can infer that our reference values sifavg,I and sifavg,II are accurate with 6 digits of relative accuracy.

Since the convergence of the SIFs is related to the H1-norm we expect to find an improved
convergence behavior also for the SIFs. To validate this assertion we employ three different ex-
traction radii

r1 =
2
3

, r2 =
1
6

, r3 =
1

12
p

2
, (7.18)

where the SIFs are computed outside of Etip for r1 and inside Etip for r2 and r3. We define the
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Figure 7.22. Convergence
history of the measured relative er-
rors e (7.3) with respect to the com-
plete domain W in the L•-norm, the
L2-norm, and the H1-norm for Ex-
ample 7.10.

Figure 7.23. Contour plot of the error (left) on level k = 9
with respect to the reference solution uPU

ref depicted on the (scaled)
deformed domain with respect to the deformation uPU

k 2 VPU
k . Con-

tour plot of the dimension dDi,k of the pure enrichment spaces Di,k

(right) for patches wi,k ⇢ Etip with Vi,k = P
1
�Di,k on level k = 9.
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Figure 7.24. Convergence history of the measured relative errors e (7.3) with respect to the sub-
domains E1 (left), E2 (center), and E3 (right) given in (7.15) with respect to the L•-norm, the L2-norm,
and the H1-norm for Example 7.10.

relative errors

e :=
sif � sif⇤avg

sif⇤avg

with respect to the reference values (7.17) and measure the respective convergence rates analo-
gous to (7.4). In Table 7.19 we give the relative errors e1, e2, and e3 obtained for the three extrac-
tion radii (7.18) with respect to mode I and mode II. From the displayed numbers we can clearly
observe that the SIFs converge much faster in the enrichment zone, i.e., r1,I and r1,II are smaller
than rr,I and rr,II with r = 2, 3 respectively, see also Figure 7.28. The relative errors are about one
order smaller inside Etip. Furthermore, we find an almost perfect agreement of the SIFs computed
with respect to r2 and r3 with an average convergence rate of about 1.

Now we consider a conforming discretization of (7.16) with linear polynomials and an in-
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Figure 7.25. Contour plot of the von Mises
stress distribution depicted on the (scaled) deformed
domain with respect to the reference solution uPU

ref 2

VPU
ref .

Figure 7.26. Contour plot of the dimen-
sion dDi,Jref

of the pure enrichment spaces Di,Jref for
patches wi,Jref ⇢ Etip with Vi,Jref = P

2
�Di,Jref on

the reference level Jref = 10.
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Figure 7.27. Path inde-
pendence of SIF extraction for ref-
erence solution.
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Figure 7.28. Convergence history of stress intensity factors
(left: mode I; right: mode II).

clined crack C = clcu with cl = (�1,�0.25) and cu = (0.0). Here we furthermore use a less
aggressive enrichment strategy since we construct the preconditioner SE\P of §5.3.2 based on the
L2-norm and use e = 10�10 only. Thus, we expect to obtain less enrichment functions in this dis-
cretization than above (in fact already on level k = 7 some enrichment functions are eliminated).
Yet, the convergence properties should still be comparable (up to an error of the order of e).

The measured errors and the respective convergence rates are given in Table 7.20. From
these numbers we can again observe that the optimal convergence behavior of the uniform h-
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Table 7.19. Relative errors e and respective convergence rates r for the stress intensity factors sI
and sII for Example 7.10.

J e1,I r1,I e1,II r1,II e2,I r1,I e2,II r2,II e3,I r3,I e3,II r3,II
1 1.80�1 � 2.65�1 � 7.68�2 � 4.87�1 � � � � �

2 1.65�1 0.09 3.04�1 �0.15 1.28�1 �0.56 2.09�1 0.92 � � � �

3 6.79�2 0.76 8.02�2 1.14 8.71�2 0.33 1.11�1 0.54 5.57�2 � 9.75�2 �

4 2.56�2 0.72 7.22�2 0.08 2.26�2 1.00 2.88�2 1.00 1.94�2 0.78 2.53�2 1.00
5 3.56�3 1.45 3.34�3 2.25 4.39�3 1.20 4.41�3 1.38 7.01�3 0.75 1.00�2 0.68
6 2.52�3 0.25 1.07�2 �0.85 1.29�3 0.89 1.59�3 0.74 1.15�3 1.32 1.50�3 1.38
7 1.81�4 1.91 2.97�3 0.93 3.21�4 1.01 4.51�4 0.91 3.36�4 0.89 4.32�4 0.90
8 3.61�4 �0.50 2.14�3 0.24 8.01�5 1.00 1.33�4 0.88 7.64�5 1.07 1.36�4 0.83
9 1.13�4 0.84 8.92�4 0.63 1.99�5 1.01 4.01�5 0.87 1.99�5 0.97 3.90�5 0.90
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Figure 7.29. Convergence history of the measured relative errors e (7.3) with respect to the sub-
domains E1 (left), E2 (center), and E3 (right) given in (7.15) with respect to the L•-norm, the L2-norm,
and the H1-norm for Example 7.10 using a conforming discretization.

version is fully recovered globally, we again find rL2 = 1 and rH1 = 1
2 . Note that the total

number of degrees of freedom dof = dofK + dof I though is significantly less in this experiment
than with the very aggressive enrichment employed in the previous experiments. Here, we have
dof = 1674372 on level k = 9 whereas above we employed an enriched PPUM space VPU

9 with
dof = 1706820. Yet, this reduction in the number of degrees of freedom which is due to the
elimination of more enrichment functions in the construction of SE\P does not adversely affect the
convergence behavior. In fact the attained errors on a particular level k are very much comparable
so that the convergence rates r tend to be slightly larger on coarser levels in this experiment. On
later refinement levels however we may encounter a slight decline of the convergence rates in
the enrichment zone since here the impact of the elimination of the enrichment functions on the
convergence properties is most prominent. This anticipated behavior can be observed from Table
7.20 and the plots depicted in Figure 7.29.

Example 7.11. In our last example use an h-adaptive refinement together with our hierarchical
enrichment scheme and a conforming discretization with linear polynomials. Since the enrich-
ment essentially eliminates the singularity of the solution at the crack tip we anticipate that the
adaptive refinement will in fact be close to uniform outside of the enrichment zone and that there
is almost no refinement within Etip. Hence, we expect to find similar asymptotic convergence
rates as in Example 7.10 with respect to the domain W. Within the enrichment zone, however, the
combination of adaptive refinement and hierarchical enrichment can yield much higher conver-
gence rates.
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Table 7.20. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.10 using a con-
forming boundary treatment.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

with respect to W
2 124 16 16 2.072�1 � 2.025�1 � 2.294�1 �

3 408 32 64 9.899�2 0.65 9.795�2 0.63 1.162�1 0.59
4 1660 64 256 2.842�2 0.91 2.823�2 0.91 4.068�2 0.77
5 6660 128 1024 7.355�3 0.99 7.335�3 0.98 1.600�2 0.68
6 26644 256 4096 1.819�3 1.01 1.820�3 1.01 7.296�3 0.57
7 106080 512 16384 5.241�4 0.90 4.396�4 1.03 3.568�3 0.52
8 419102 1024 65536 3.140�4 0.37 1.026�4 1.06 1.791�3 0.50
9 1672324 2048 262144 1.834�4 0.39 2.231�5 1.10 8.838�4 0.51

with respect to E1
2 56 0 4 1.672�1 � 1.661�1 � 1.774�1 �

3 140 0 16 9.434�2 0.62 8.475�2 0.73 1.135�1 0.49
4 362 0 36 2.794�2 1.28 2.522�2 1.28 3.876�2 1.13
5 1142 0 100 7.533�3 1.14 6.702�3 1.15 1.242�2 0.99
6 4064 0 324 1.965�3 1.06 1.699�3 1.08 4.075�3 0.88
7 14804 0 1156 4.914�4 1.07 4.207�4 1.08 1.392�3 0.83
8 52194 0 4356 1.245�4 1.09 1.016�4 1.13 5.327�4 0.76
9 201192 0 16900 5.687�5 0.58 2.337�5 1.09 2.533�4 0.55

with respect to E2
3 56 0 4 8.055�2 � 8.122�2 � 8.449�2 �

4 236 0 16 2.764�2 0.74 2.384�2 0.85 3.375�2 0.64
5 522 0 36 6.998�3 1.73 6.467�3 1.64 1.142�2 1.37
6 1430 0 100 1.729�3 1.39 1.653�3 1.35 3.809�3 1.09
7 4608 0 324 4.588�4 1.13 4.138�4 1.18 1.394�3 0.86
8 15210 0 1156 1.650�4 0.86 1.018�4 1.17 6.195�4 0.68
9 53472 0 4356 7.536�5 0.62 2.444�5 1.13 3.575�4 0.44

with respect to E3
4 56 0 4 2.024�2 � 2.409�2 � 2.035�2 �

5 236 0 16 7.448�3 0.69 6.547�3 0.91 1.331�2 0.30
6 522 0 36 1.734�3 1.84 1.700�3 1.70 5.282�3 1.16
7 1430 0 100 5.551�4 1.13 4.287�4 1.37 2.059�3 0.93
8 4606 0 324 1.997�4 0.87 1.072�4 1.18 9.370�4 0.67
9 14928 0 1156 9.119�5 0.67 2.709�5 1.17 5.452�4 0.46

The measured errors and convergence rates are given in Table 7.21. From the displayed
numbers we can observe the anticipated global convergence behavior with the rates rL2 � 1
and rH1 �

1
2 . The plots depicted in Figure 7.30 clearly show the expected refinement behavior.

Outside of the enrichment zone we attain an almost uniform refinement with some additional
refinement steps near the boundary of Etip and the Dirichlet-Neumann corners. Observe the
jump in the patch size at the boundary of Etip (Lmax � 3) which accounts for the jump in the
resolution of the local approximation spaces Vi. Outside of Etip we employ linear polynomials
only and within Etip linear polynomials and the enrichment spaces (5.22) and (5.23). Inside the
enrichment zone we find a highly localized refinement towards the crack tip which yields a very
fast convergence with Etip, see Table 7.21. Since the local approximation spaces in Etip are much
richer than just linear polynomials and themselves adapted to the asymptotic behavior of the
solution the convergence rates in Etip are much higher than for W. We measure rates rH1 around
1.5 which corresponds to the optimal convergence of a uniform discretization with p = 3. Clearly,
the super-convergence effect of our hierarchical enrichment approach is further enhanced by the
adaptive h-refinement.
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Table 7.21. Relative errors e (7.3) and convergence rates r (7.4) for Example 7.11 using an
h-adaptive conforming boundary treatment.

J dofK dof I N eL• rL• eL2 rL2 eH1 rH1

with respect to W
1 36 20 4 4.715�1 0.19 4.445�1 0.20 5.004�1 0.17
2 124 16 16 2.078�1 0.89 2.031�1 0.85 2.301�1 0.85
3 408 32 64 9.923�2 0.65 9.819�2 0.63 1.164�1 0.59
4 1126 52 187 3.617�2 1.02 3.524�2 1.04 4.869�2 0.89
5 2038 64 331 2.146�2 0.90 2.092�2 0.90 3.264�2 0.69
6 3348 92 544 1.287�2 1.04 1.243�2 1.06 2.256�2 0.75
7 4918 112 799 8.038�3 1.24 7.899�3 1.19 1.677�2 0.78
8 7336 160 1204 5.638�3 0.89 5.433�3 0.94 1.347�2 0.55
9 12536 192 2053 3.109�3 1.12 2.989�3 1.13 9.605�3 0.64
10 19550 240 3211 1.937�3 1.07 1.876�3 1.06 7.401�3 0.59
11 32168 348 5296 1.286�3 0.82 1.236�3 0.84 5.806�3 0.49

with respect to Etip
2 56 0 4 1.679�1 0.44 1.667�1 0.45 1.780�1 0.43
3 140 0 16 9.460�2 0.63 8.500�2 0.74 1.138�1 0.49
4 182 0 24 3.505�2 3.78 2.799�2 4.23 5.365�2 2.86
5 344 0 41 1.954�2 0.92 1.787�2 0.70 3.078�2 0.87
6 458 0 52 1.154�2 1.84 1.071�2 1.79 2.072�2 1.38
7 614 0 68 7.477�3 1.48 6.870�3 1.51 1.257�2 1.70
8 704 0 83 5.301�3 2.51 4.541�3 3.03 9.978�3 1.69
9 932 0 102 2.827�3 2.24 2.474�3 2.17 5.804�3 1.93
10 1220 0 136 1.958�3 1.36 1.590�3 1.64 4.219�3 1.18
11 1730 0 190 1.264�3 1.25 1.037�3 1.23 2.560�3 1.43

Figure 7.30. Distribution of the von Mises stress (left) and the enrichment spaces (right) for
Example 7.11 on the cell centers of the respective tree decomposition for level J = 10. The size of the
particle at the cell center indicates the size of the respective support patch wi, the color of the particle
indicates the von Mises stress at the cell center (left), or the type of enrichment space employed on wi (blue:
Ei = {0}, yellow: Ei = HC

±
P

1, red: Ei �Wtip).
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7.2 Solver Efficiency
Let us now consider the solution of the large sparse linear system

Aũ = f̂ (7.19)

arising from a PPUM Galerkin discretization of a PDE. Here, A denotes the PPUM stiffness ma-
trix which is symmetric positive definite for the considered model problems (7.1) and (7.2) with
appropriate boundary conditions, ũ = (um

i ) is the coefficient vector associated with a particular
function uPU

2 VPU, i.e.

uPU =
NX

i=1

ji

dim(Vi)X

m=1

um
i Jm

i ,

and f̂ = (hl, jiJ
m
i i) refers to the load vector.

The standard solver employed in our PPUM is a conjugate gradient (CG) method with
a multilevel V(2, 2)-cycle using block-Gauss–Seidel smoothing as preconditioner and an initial
guess obtained from the prolongation of the approximate solution obtained on a coarser level.
Besides this nested iteration with a preconditioned CG solver we also consider our multilevel
iteration presented in §5 as a stand-alone solver. In general we must consider stopping criteria
based on the residual vector

r̂q := f̂ � Aũq (7.20)
where the sub-script q denotes the current iteration step. In all our experiments we stop the
iteration if q = 30 or if the l2-norm of the residual vector kr̂qkl2 < 10�13. Furthermore, we are
concerned with the iterative update

h̃q := ũq � ũq�1 (7.21)

and the correction
c̃q := ũq � ũ0 (7.22)

to measure the convergence behavior and performance of our linear solver. By itself the update
h̃q allows us to determine the stagnation of the iteration only which in general however gives
no indication if the iteration has truly converged. For an arbitrary initial guess the correction c̃q
provides no additional information. Yet with the particular choice of the initial guess ũ0 as the
(prolonged) solution of a coarser approximation we can interpret the correction c̃q or its associated
function cPU

q as an approximation of the discretization error.
We assess the quality of the stand-alone multilevel iteration via the use of a vanishing right-

hand side f̂ = 0 and a normalized random-valued initial guess ũ0. Due to this choice for the load
vector the iterates ũq agree with the error ẽq := ũq � ũ• where ũ• denotes the exact solution of
(7.19), i.e. for f̂ = 0 there holds ũ• = 0. Note that we in fact normalize the respective function
uPU

0 . To this end, we define the notion of an L2-norm of a coefficient vector ũ by

kũk2
L2 := ũT Mũ = kuPU

k
2
L2

with the help of the mass matrix M so that kũk2
L2 is identical to the L2-norm of the respective

function uPU and we enforce kũ0kL2 = 1 for the random valued initial guess ũ0. Analogously, we
define the energy-norm

kũ0k
2
E := ũT

0 Aũ0 = a(uPU
0 , uPU

0 ).
The average convergence rate of the first q iterations with respect to error in the L2-norm is

defined as

r̄L2 :=
✓
kẽqkL2

kẽ0kL2

◆ 1
q

.
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Which can easily be determined in the case of f̂ = 0 since ẽq = ũq, i.e.

r̄L2 =
✓
kũqkL2

kũ0kL2

◆ 1
q

=

 
ũT

q Mũq

ũT
0 Mũ0

! 1
q

,

and with kũ0kL2 = 1 there holds r̄r
L2 = kũqkL2 . Furthermore, we define the asymptotic conver-

gence rate r⇤L2 by considering the average of the last three iterations, i.e.

r⇤L2 :=
✓
kũqkL2

kũq�3kL2

◆ 1
3

.

Analogously we define the convergence rates with respect to the l2-norm and the energy-norm of
the iterate ũq, the correction c̃q, and the iterative update h̃q. For the residual vector r̂ we consider
the l2-norm only.

Example 7.12. In our first example we consider the multilevel solution of the linear systems aris-
ing from the PPUM discretization of the scalar model problem (7.1) with c = 1 and Neumann
boundary conditions on the domain W = (�1, 1)2 using a uniformly h-refined sequence of spaces
VPU

l with l = 0, . . . , J and linear local approximation spaces Vi,l = P
1 for all i = 1, . . . , Nl .

In Figure 7.31 we summarize the performance of our standard nested iteration solver. De-
picted are the convergence history of the residual r̂, of the correction c̃, and of the iterative update
h̃. From these line plots we can clearly observe the level-independent convergence of the solver.
For each level l = 1, , . . . , 11 we need about 10 iterations to reduce the l2-norm of the residual
vector below machine accuracy.

From the rapid convergence of the correction c̃ and the update h̃ however we see that we
can safely stop the iterative solver even after a single iteration to obtain an approximate solution
within discretization accuracy. Observe also that the L2-norm of the correction decreases by a
factor of 0.25 from level to level which agrees perfectly with the reduction of the discretization
error due to the uniform h-refinement with linear polynomials in two dimensions. With respect
to the energy-norm we attain the anticipated reduction factor of 0.5.

Recall from section 4.4 that the nested iteration approach should converge with just a single
iteration if the asymptotic convergence rate of the employed inner solver is less or equal to the
reduction of the discretization error due to refinement. The measured asymptotic and average
convergence rates for our default solver are depicted in Figure 7.31. The rates are clearly bounded
below 0.06 which is much smaller than the reduction in the discretization error. Note also that
the average convergence rates agree very well with the asymptotic rates which indicates that the
convergence behavior is very stable in each iteration, compare Figure 7.31.

Let us now consider the efficiency of our multilevel iteration as a stand-alone solver. Here,
we consider a vanishing right-hand side with random-valued initial guess so that we consider
the convergence of iterate ũ rather than iterative update h̃. The measured convergence rates are
collected in Figure 7.32. We expect that the convergence behavior improves with multiple smooth-
ing steps and that the convergence rates for the V(1, 1)-cycle and the V(3, 3)-cycle are somewhat
larger than those of Figure 7.31 due to the use of an outer CG method in the standard solver. This
anticipated behavior is clearly attained. We find the rates 0.27 for the V(1, 1)-cycle, the V(3, 3)-
cycle yields a rate of 0.11, and the V(5, 5)-cycle reduces the iteration errors by a factor of 0.07 in
each iteration.

Thus, our multilevel iteration provides an optimally convergent stand-alone solver and its
use as a preconditioner for a CG method further speeds up the convergence. Within a nested itera-
tion approach a single application of the V(s, s)-cycle with s > 1 already provides an approximate
solution within discretization accuracy.
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Figure 7.31. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) with c = 1 and Neumann boundary conditions using uniformly
h-refined PPUM spaces VPU

l with linear local approximation spaces.
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Figure 7.32. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) with c = 1 and Neumann
boundary conditions using uniformly h-refined PPUM spaces VPU

l with linear local approximation spaces.

Example 7.13. Let us now consider the efficient solution of the linear systems arising from the
PPUM discretization of (7.1) with c = 0 and Dirichlet boundary conditions. Again, we use lin-
ear local approximation spaces and a uniformly h-refined sequence of PPUM spaces. Here, we
compare the results of the non-conforming Nitsche method using the optimal regularization pa-
rameter with those of the conforming construction of §4.2.2.

We begin with the non-conforming discretization. The measured results are presented in
Figures 7.33 and 7.34. We essentially obtain an identical convergence behavior of our multilevel
solvers as in the previous experiment. The nested iteration attains an approximate solution within
discretization accuracy with just a single iteration per level and its convergence rate is roughly
0.07. Also the results obtained for the stand-alone multilevel solver are very much comparable
to those of Figure 7.32. Here, we find the rates 0.27, 0.11, and 0.07 for the V(s, s)-cycles with
s = 1, 3, 5 respectively.

The results attained for the conforming approach are collected in Figures 7.35 and 7.36. Re-
call that in the conforming approach we consider the block-partitioned linear system

✓
AK,K AK,I

0 B̂I,I

◆✓
ũK
ũI

◆
=
✓

f̂K
ĝI

◆
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Figure 7.33. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) with c = 0 and Dirichlet boundary conditions using Nitsche’s method
with the optimal regularization parameter and uniformly h-refined PPUM spaces VPU

l with linear local
approximation spaces.
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Figure 7.34. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) with c = 0 and Dirichlet
boundary conditions using Nitsche’s method with the optimal regularization parameter using uniformly
h-refined PPUM spaces VPU

l with linear local approximation spaces.

and apply our multilevel solver to the solution of

AK,KũK = f̂K � AK,I ũI

with ũI = B̂�1
I,I ĝI only. Again, all our multilevel iterative solvers converge with rates that are

independent of the number of levels. However we must acknowledge a slight increase of the
convergence rates for the conforming approach compared with those of the previous experiments.
The preconditioned CG solver now reduces the iteration error roughly by a factor of 0.15 and for
the V(s, s)-cycles we find the rates 0.6, 0.35, and 0.2 with s = 1, 3, 5 respectively. What causes this
loss in performance?

In the Nitsche method our local-to-local restriction and prolongation operate on the com-
plete local approximation spaces Vi. Thus, the transfer operators maintain the exactness for all
polynomials p 2 P

p if P p
⇢ Vi,m for all i = 1, . . . , Nm and all levels m = 0, . . . , J. Hence, the

differences
VPU

m+1 \VPU
m

of our nonnested sequence of PPUM spaces are minimal on all levels. With the conforming ap-
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Figure 7.35. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) with c = 0 and Dirichlet boundary conditions using uniformly h-
refined PPUM spaces VPU

l with the conforming subspaces of P1 as local approximation spaces.
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Figure 7.36. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) with c = 0 and Dirichlet
boundary conditions using uniformly h-refined PPUM spaces VPU

l with the conforming subspaces of P1

as local approximation spaces.

proach however we base our multilevel construction to the sequence of conforming subspaces

VPU
m,K =

NmX

i=1

ji,mVi,m,K

only. Due to the elimination of the degrees of freedom associated with the boundary conditions
VPU

m,I := VPU
m \VPU

m,K on each level m = 0, . . . , J we unfortunately increase the size of the difference
spaces

VPU
m+1,K \VPU

m,K

and thereby the nonnestedness compared with the non-conforming approach. Therefore, we as-
sume that the quality of our coarse grid correction step in the conforming approach is reduced
near the boundary. To confirm this assertion we consider the projection

Emũm := (Im � Il
m�1M�1

m�1 Im�1
m Mm)ũm (7.23)

where Mm denotes the mass matrix on level m. The operator Em identifies those fine scale com-
ponents of a coefficient vector ũm on level m that cannot be represented on the coarser level m� 1
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Figure 7.37. Contour plots of the coarse grid projection error Elũl of (7.23) with l = 4 for a
random valued vector ũl (top row) and a smooth coefficient vector ũl (bottom row) (left: Nitsche method;
right: conforming).

using the restriction Im�1
m and the prolongation Im

m�1. Thus, (7.23) is well-suited to determine de-
ficiencies of the coarse grid correction step of our multilevel iteration. In Figure 7.37 we give
the contour plots of the projection error Elũl for the Nitsche approach and the conforming dis-
cretization for a random valued coefficient vector ũl and a coefficient vector ũl corresponding to
a smooth function. The errors Elũl for the random valued vector ũl serve as a quality measure for
the coarse grid correction in the first iterations of our multilevel solver whereas the errors attained
for the smooth function identify defects of the coarse grid correction at later iterations. With re-
spect to the random valued test vector ũl we find no qualitative difference in the projection error
between the conforming and non-conforming approaches. Thus, the initial convergence behavior
of the V(s, s)-cycles for the conforming and non-conforming discretization should agree. From
Figure 7.38 we can observe this behavior. Yet, we can clearly see that the convergence rate for
the conforming discretization increases after the first few iterations. Note that we essentially find
a kink in the line plots. Observe though that the asymptotic rate is still bounded independent
of the number of levels. Hence, we infer that we experience a jump in the quality of the coarse
grid correction once the iterate is smooth, compare Figure 7.37. In fact we find a strong deviation
in the projection errors for a smooth coefficient vector ũ. In the conforming approach we find a
large projection error near the boundary (exactly one patch from the boundary) whereas in the
non-conforming approach the error is uniformly distributed. This is due to the fact that a coarse
patch wj,l�1 with wj,l�1 \ ∂W 6= ∆ cannot capture all degrees of freedom of the finer patches
wi,l ⇢ wj,l�1 due to the elimination of the boundary degrees of freedom from Vj,l�1.
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Figure 7.38. Convergence history of the V(1, 1)-cycle with block-Gauss–Seidel smoothing for the
non-conforming discretization (top row) and the conforming approach (bottom row) using linear polyno-
mials.

The worst case scenario arises with the choice of Vi,m = P
1 for all i = 1, . . . , Nm and all levels

m = 0, . . . , J. Then our conforming splitting of the local approximation spaces yields

Vi,m,K = {0} and Vi,m,I = Vi,m = P
1

at the corners of the domain. Thus all degrees of freedom of a corner patch are fixed by the
approximation of the boundary conditions so that the supports of the basis functions of the con-
forming spaces VPU

m,K do not cover the complete domain W on any level m = 0, . . . , J - the corner
patches wC,m are missing. Therefore, we obtain patches wi,m+1 ⇢ wC,m with wi,m+1 \ ∂W = ∆
such that Vi,m+1,K = Vi,m+1 = P

1 which cannot be captured by VC,m,K = {0} on the coarser level
l. These degrees of freedom are not corrected at all and are present on the finer level m + 1 only
which means that the respective error components must be handled completely by the smoother
on level m + 1.

In principal this deficiency is encountered for any choice of local approximation spaces Vi,m.
The coarser spaces Vj,m,K are smaller than the collection of the respective finer spaces Vi,m+1,K so
that the coarse grid correction does not provide an update of all fine scale degrees of freedom. This
interpretation leads to the assertion that the conforming approach will always yield a somewhat
reduced multilevel convergence rate. Yet, this is not the case. From the discussion given above we
essentially learn that the restriction operator Im

m+1 projects the larger spaces Vi,m+1,K onto smaller
spaces Vj,m,K. This however may also yield a smoother approximation on the coarser level m and
so the restriction serves as an additional filter for fine scale error components. Following this
line of argument the quality of the coarse grid correction can actually improve in the conforming
approach. From the contour plots of the respective projection errors depicted in Figure 7.39 for
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Figure 7.39. Contour plots of the coarse grid projection error Elũl of (7.23) with l = 4 (left) and
l = 5 (right) using cubic polynomials.

cubic local approximation spaces we can clearly observe that the error is much smaller close to the
boundary. Thus, we expect the multilevel solver for the conforming approach with cubic spaces
Vi,m to converge somewhat faster than for the non-conforming Nitsche approach.

The measured results attained for a Nitsche discretization and a conforming discretization
with cubic polynomials are collected in the Figures 7.40 and 7.41, and the Figures 7.42 and 7.43, re-
spectively. Comparing these results we see that the multilevel solver for the conforming approach
in fact yields better convergence rates than for the Nitsche method. For the non-conforming dis-
cretization we find the rates 0.45, 0.08, and 0.015 for the V(s, s)-cycles with s = 1, 3, 5 respectively
and the preconditioned CG method reduces the iteration error by a factor of 0.075. The conver-
gence rates attained for the conforming approach are even better. We measure the rates 0.25, 0.02,
and 0.007 for the V(s, s)-cycles with s = 1, 3, 5 respectively and our default solver converges with
a rate of 0.05.

In summary, the presented results clearly confirm that our multilevel PPUM solvers yield
a level-independent convergence behavior independent of the type of boundary conditions. In
the case of Dirichlet boundary conditions we may obtain faster convergence of the solver for the
Nitsche approach or for the conforming boundary treatment. We assume that the geometry of
the boundary, the employed local approximation spaces, and even the solution itself may have an
impact on the specifics of the convergence behavior, i.e. on the constants.

Note that the arguments of the above discussion are valid in a more general situation. To
this end, we consider a sequence of uniformly hp-refined PPUM spaces (actually we alternate
uniform global h-refinement and global hp-refinement). With this refinement scheme the local
approximation spaces on coarser levels Vi,l have a coarser polynomial resolution than the finer
spaces Vi,l+1 such that the restriction and prolongation operators again should have an additional
filtering property which leads to a smoother coarse grid approximation and correction. Thus,
we expect that the convergence rate of our multilevel solvers are very much robust with respect
to the polynomial degree due to this additional smoothing effect of the transfer operators. The
results obtained for this experiment are summarized in Figures 7.44 and 7.45. Observe that the
convergence behavior is again level-independent. Since we coupled the polynomial degree to the
refinement level, the convergence behavior is also independent of the polynomial degree. From
the line plots showing the convergence history for the iterative correction depicted in Figure 7.44
we can clearly see that a single iteration of our nested iteration solver is again sufficient to obtain
an approximate solution within discretization accuracy. Note however that due to the global hp-
refinement there are huge jumps in the improvement of the discretization errors from level to
level (e.g. three orders of magnitude from level 7 to level 8). Hence, it is really surprising that a
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Figure 7.40. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) with c = 0 and Dirichlet boundary conditions using Nitsche’s method
with the optimal regularization parameter and uniformly h-refined PPUM spaces VPU

l with cubic local
approximation spaces P3.
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Figure 7.41. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) with c = 0 and Dirichlet
boundary conditions using Nitsche’s method with the optimal regularization parameter using uniformly
h-refined PPUM spaces VPU

l with cubic local approximation spaces P3.

single iteration of the solver is already sufficient. The convergence rates of our solvers given in
Figures 7.44, and 7.45 are very stable up to level 8. Then, we find a larger deviation of the average
and asymptotic convergence rates which is really just a rounding effect (another indication is of
course that the asymptotic rates are better than the average rates which is usually not the case). To
see this, we must consider the iterative update h̃ and its convergence behavior, see Figure 7.44. As
we have already seen, the norms of the iterative correction c̃ decrease substantially from level to
level. Thus, the norms of the iterative updates h̃ are very small absolute numbers. On level 9 the
l2-norm of the initial update and of the correction is of the order 10�10 and after 5 iterations the l2-
norm of the update is certainly below machine accuracy. Therefore, it is very likely that rounding
effects can spoil the computation of norms at later iterations to some extent so that we cannot
compute the convergence rate reliably. In essence, the iterations should have been stopped once
the l2-norm of the iterative update relative to the l2-norm of the iterate is below machine accuracy.

We close this example with the convergence results of our multilevel solver for a three di-
mensional model problem (7.1) with c = 0 and Dirichlet boundary conditions implemented by
the conforming local subspaces of Vi,l = P

1. From the plots depicted in Figures 7.46 and 7.47
we essentially read of the same convergence behavior as in the two dimensional case discussed
in detail above. The standard solver attains a rate around 0.15 and the stand-alone V(s, s)-cycles
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Figure 7.42. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) with c = 0 and Dirichlet boundary conditions using uniformly h-
refined PPUM spaces VPU

l with the conforming subspaces of P3 as local approximation spaces.
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Figure 7.43. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) with c = 0 and Dirichlet
boundary conditions using uniformly h-refined PPUM spaces VPU

l with the conforming subspaces of P3

as local approximation spaces.

yield reduction factors of 0.6, 0.35, and 0.25 with s = 1, 3, 5 respectively.

Example 7.14. In the next example we consider the solution of linear systems arising from the
PPUM discretization of systems of PDEs (7.2) on the domain (�1, 1)D with D = 2, 3. The Dirichlet
boundary is given as

GD := {x 2 [�1, 1]D
| xd = �1 for at least one d = 1, . . . , D}

and we employ linear polynomials as local approximation spaces. The essential boundary condi-
tions are realized via the construction of conforming subspaces.

In Figure 7.48 the convergence history for the preconditioned CG solver applied to our
PPUM discretization of (7.2) in two dimensions is depicted. We can clearly observe a level-
independent convergence behavior from these plots. The asymptotic error reduction per iteration
is about 0.2 which corresponds very well to the rates obtain for a conforming discretization of the
scalar model problem. However the measured convergence rates for the stand-alone multilevel it-
erations are slightly worse than in the scalar case, see Figure 7.49. Here, multiple smoothing steps
do not yield the same improvement in the convergence rate. We find the rates to be no better than
0.4 for the V(3, 3)- and the V(5, 5)-cycles and about 0.6 for the V(1, 1)-cycle. Since we obtain very
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Figure 7.44. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) with c = 0 and Dirichlet boundary conditions using uniformly h-
refined PPUM spaces VPU

l with the conforming subspaces of P pl with pl = 1, 1, 2, 2, 3, 3, 4, 4, 5 for l =
1, . . . , 9 as local approximation spaces.
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Figure 7.45. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) with c = 0 and Dirichlet
boundary conditions using uniformly h-refined PPUM spaces VPU

l with the conforming subspaces of P pl

with pl = 1, 1, 2, 2, 3, 3, 4, 4, 5 for l = 1, . . . , 9 as local approximation spaces.

similar results also for a non-conforming discretization we assume that the smoothing property
of our block-Gauss–Seidel iteration which operates on all physical variables simultaneously is
somewhat reduced in the systems case.

The results obtained for the three-dimensional problem are collected in Figures 7.50 and 7.51.
Here, we find essentially the same convergence behavior as in the two-dimensional case. Now the
rates are about 0.25 for our default solver, and the V(s, s)-cycles yield the error reduction factors
0.65, 0.55, and 0.5 with s = 1, 3, 5 respectively.

Example 7.15. Let us now turn to problems with singular solutions. First we consider (7.2) on an
L-shaped domain with c = 0 and homogeneous Dirichlet boundary conditions on GD of (7.7) and
Neumann boundary conditions on ∂W \ GD. Here, we employ a uniform h-refinement and use
linear polynomials as local approximation spaces.

Note that the low-order regularity of the solution (7.8) in general causes (at least) a substan-
tial increase in the convergence rates of classical multigrid methods [141]. Thus we should expect
to find larger convergence rates in this example than for Example 7.12.

The results obtained for a non-conforming discretization with minimal regularization are
given in Figures 7.52 and 7.53. It is somewhat surprising that the observed convergence rates are



7.2. Solver Efficiency 155

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

convergence history

number of iterations

l2 −
no

rm
 o

f r
es

id
ua

l

 

 

level=[1,7]

0 5 10 15 20 25 30

10−1

100

convergence history

number of iterations

l2 −
no

rm
 o

f c
or

re
ct

io
n

 

 

level=[1,7]

0 5 10 15 20 25 30

10−1

100

convergence history

number of iterations

L2 −
no

rm
 o

f c
or

re
ct

io
n

 

 

level=[1,7]

0 5 10 15 20 25 30

101

convergence history

number of iterations

en
er

gy
−n

or
m

 o
f c

or
re

ct
io

n

 

 

level=[1,7]

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

convergence history

number of iterations

l2 −
no

rm
 o

f u
pd

at
e

 

 

level=[1,7]

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

convergence history

number of iterations

L2 −
no

rm
 o

f u
pd

at
e

 

 

level=[1,7]

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

convergence history

number of iterations

en
er

gy
−n

or
m

 o
f u

pd
at

e

 

 

level=[1,7]

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

performance of solver

refinement level

l2 −
co

nv
er

ge
nc

e 
ra

te
 o

f r
es

id
ua

l

 

 

mean
asymptotic

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

performance of solver

refinement level

l2 −
co

nv
er

ge
nc

e 
ra

te
 o

f u
pd

at
e

 

 

mean
asymptotic

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

performance of solver

refinement level

L2 −
co

nv
er

ge
nc

e 
ra

te
 o

f u
pd

at
e

 

 

mean
asymptotic

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

performance of solver

refinement level

en
er

gy
−c

on
ve

rg
en

ce
 ra

te
 o

f u
pd

at
e

 

 

mean
asymptotic

Figure 7.46. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.1) in three dimensions with c = 0 and Dirichlet boundary conditions
using uniformly h-refined PPUM spaces VPU

l with the conforming subspaces of P1 as local approximation
spaces.
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Figure 7.47. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the discretization of (7.1) in three dimensions with c = 0
and Dirichlet boundary conditions using uniformly h-refined PPUM spaces VPU

l with the conforming
subspaces of P1 as local approximation spaces.

almost identical to those of Example 7.12. Yet, it becomes obvious from the following argument.
Recall that the error distribution obtained by Nitsche’s method with minimal regularization is
quite different from a conforming discretization, see Figure 7.5. The error is essentially shifted
onto the boundary due to the fact that the boundary conditions are enforced as weakly as possi-
ble without breaking the definiteness of the stiffness matrix. Thus, the discrete problem is in some
sense of higher regularity than the analytical problem. In essence the minimal regularization pa-
rameter in Nitsche’s method (which controls the definiteness of the stiffness matrix) yields the
maximal regularization of the approximate solution (with respect to its smoothness). Thus, our
multilevel solver in fact operates on a sequence of problems that are more regular than the ana-
lytical problem. This allows the employed smoother to shift the error onto the Dirichlet boundary
and on coarser levels these error components carry less energy due to the smaller regularization
parameter. Furthermore, our transfer operators do not enforce boundary conditions explicitly.
Hence, the use of a minimal regularization parameter in Nitsche’s method preserves the quality
of our smoother and coarse grid correction.

If we, however, use a large regularization (or even just a constant regularization on all lev-
els, i.e. the regularization of the finest level) the convergence behavior of our solver is adversely
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Figure 7.48. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.2) in two dimensions using P1 as local approximation spaces.
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Figure 7.49. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the conforming discretization of (7.2) in two dimensions
using P1 as local approximation spaces.

affected. Since the boundary value is (more) strictly enforced the error cannot be shifted to the
boundary so that especially on coarser levels the error is distributed inside the domain and can-
not be reduced efficiently by the smoother, compare Figure 7.5. Therefore, we find the anticipated
larger convergence rates of our solvers for the conforming discretization, see Figures 7.54 and 7.55.
Yet, the convergence rates are still level-independent (which is in general not the case for classi-
cal multigrid methods [141]). The V(s, s)-cycles yield rates not better than 0.75 with s = 1, 3, 5
which is larger than the improvement of the discretization error due to refinement so that also
our default nested iteration solver requires more iterations per level, see Figure 7.54. From the
convergence history of the iterative correction c̃ and the update h̃ we see that up to 7 iterations
are needed to reach the asymptotic convergence regime (with respect to the L2-norm). Thus the
measured convergence rates grow slightly up to 0.25 for level J = 11 yet these rates will level off
since they are certainly bounded by the rates of the V(3, 3)-cycle which attains a rate of 0.8.

The convergence behavior of our multilevel solvers for a conforming discretization on the
non-convex domain with re-entrant corner and an elliptic hole of Example 7.5 is almost identical,
see Figures 7.56 and 7.57.

Example 7.16. If the singularities of the solution are however resolved by adaptive refinement,
we expect to find similar convergence rates of our multilevel solvers as for problems with regular
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Figure 7.50. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to the discretization of (7.2) in three dimensions using P1 as local approximation spaces.
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Figure 7.51. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to the conforming discretization of (7.2) in three dimen-
sions using P1 as local approximation spaces.

solutions. The results obtained for an hp-adaptive conforming discretization on the L-shaped
domain are displayed in Figure 7.58. Here, we find a convergence rate around 0.15 for our nested
iteration approach which agree well with those obtained for a uniform hp-refinement, compare
Figures 7.44. These plots clearly indicate that a single iteration on each level is sufficient to attain
an approximate solution with discretization accuracy.

The convergence behavior of our multilevel solver for an hp-adaptive conforming discretiza-
tion on the complicated domain of Example 7.6, see Figure 7.15, depicted in Figure 7.59 is also very
similar with a rate of about 0.1.

Example 7.17. Our hierarchical enrichment scheme also resolves singular behavior of the solu-
tion. Thus a uniform h-refinement with hierarchical enrichment should yield a similar conver-
gence behavior of our multilevel solver as for the corresponding regular problem.

In Figures 7.60 and 7.61 we give the results obtained for the linear elastic fracture mechanics
problem 7.16. Observe that the rates agree very well with those of Example 7.3 where we con-
sidered a smooth elasticity problem. The preconditioned CG solver attains a rate of 0.2 and the
V(s, s)-cycles converge with a rate around 0.6. Thus, the hierarchical enrichment with singular
functions has no adverse effect on the convergence behavior of our multilevel solvers. The error
reduction is independent of the number of levels, the enrichment functions and the regularity of



7.2. Solver Efficiency 161

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

convergence history

number of iterations

l2 −
no

rm
 o

f r
es

id
ua

l

 

 

level=[1,11]

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100
convergence history

number of iterations

l2 −
no

rm
 o

f c
or

re
ct

io
n

 

 

level=[1,11]

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

convergence history

number of iterations

L2 −
no

rm
 o

f c
or

re
ct

io
n

 

 

level=[1,11]

0 5 10 15 20 25 30

10−2

10−1

100

convergence history

number of iterations

en
er

gy
−n

or
m

 o
f c

or
re

ct
io

n

 

 

level=[1,11]

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

convergence history

number of iterations

l2 −
no

rm
 o

f u
pd

at
e

 

 

level=[1,11]

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

convergence history

number of iterations

L2 −
no

rm
 o

f u
pd

at
e

 

 

level=[1,11]

0 5 10 15 20 25 30
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

convergence history

number of iterations

en
er

gy
−n

or
m

 o
f u

pd
at

e

 

 

level=[1,11]

2 4 6 8 10
0

0.05

0.1

performance of solver

refinement level

l2 −
co

nv
er

ge
nc

e 
ra

te
 o

f r
es

id
ua

l

 

 

mean
asymptotic

2 4 6 8 10
0

0.05

0.1

performance of solver

refinement level

l2 −
co

nv
er

ge
nc

e 
ra

te
 o

f u
pd

at
e

 

 

mean
asymptotic

2 4 6 8 10
0

0.05

0.1

performance of solver

refinement level

L2 −
co

nv
er

ge
nc

e 
ra

te
 o

f u
pd

at
e

 

 

mean
asymptotic

2 4 6 8 10
0

0.05

0.1

performance of solver

refinement level

en
er

gy
−c

on
ve

rg
en

ce
 ra

te
 o

f u
pd

at
e

 

 

mean
asymptotic

Figure 7.52. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to a non-conforming discretization of (7.2) on an L-shaped domain using P1 as local approximation
spaces.
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Figure 7.53. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to a non-conforming discretization of (7.2) on an L-shaped
domain using P1 as local approximation spaces.

the solution.
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Figure 7.54. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to a conforming discretization of (7.2) on an L-shaped domain using P1 as local approximation
spaces.
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Figure 7.55. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to a conforming discretization of (7.2) on an L-shaped
domain using P1 as local approximation spaces.
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Figure 7.56. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to a conforming discretization of (7.2) on a non-convex domain with a re-entrant corner and an
elliptic hole using P1 as local approximation spaces.
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Figure 7.57. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to a conforming discretization of (7.2) on on a non-convex
domain with a re-entrant corner and an elliptic hole using P1 as local approximation spaces.
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Figure 7.58. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to a conforming discretization of (7.2) on an L-shaped domain using adaptive hp-refinement.
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Figure 7.59. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to a conforming discretization of (7.2) on a non-convex domain with a re-entrant corner, a non-
convex hole and oscillatory outer boundary using adaptive hp-refinement.
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Figure 7.60. Convergence history and rates for a nested iteration solver with a conjugate gradient
method as inner solver preconditioned by a multilevel V(2, 2)-cycle with block-Gauss–Seidel smoothing
applied to a conforming discretization of (7.16) using uniform h-refinement and hierarchically enriched
linear local approximation spaces.
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Figure 7.61. Convergence rates for the multilevel V(s, s)-cycles with s = 1, 3, 5 (top to bottom
row) and block-Gauss–Seidel smoothing applied to a conforming discretization of (7.16) using uniform
h-refinement and hierarchically enriched linear local approximation spaces.



Chapter 8

Concluding Remarks

In this manuscript we presented the meshfree generalization of the classical finite element method.
To this end, we introduced two abstract methodical ingredients: The moving least squares method
for the meshfree construction of a partition of unity and the partition of unity method which pro-
vides the framework to smoothly splice arbitrary local approximation spaces together.

Even though these two components yield optimal reproduction and approximation prop-
erties they must be complemented with the assumption of the flat top property of the partition
of unity to attain a stable basis and thereby a computationally efficient method. The multilevel
particle-partition of unity method (PPUM) developed in this manuscript employs all these ingre-
dients. Hence, the method is applicable to arbitrary clouds of discretization points, supports the
use of problem-dependent local approximation spaces, implements an automatic construction of
a stable basis system, and comes equipped with a highly efficient multilevel solver.

Furthermore, we presented two fully automatic approaches to the notoriously cumbersome
realization of essential boundary conditions in meshfree methods. The localized overlapping
Nitsche formulation presented here is much more suited for adaptive discretizations than the
global formulation employed previously [64, 125] where a slight deterioration of the convergence
behavior of our multilevel solver was observed for adaptive discretizations [125]. With the over-
lapping approach we find no dependence of the convergence rate of our multilevel solver on the
distribution of discretization points near the boundary. Yet, this non-conforming technique re-
quires the analytical derivation of an appropriate weak form which somewhat hinders its speedy
application to new problem classes. Furthermore, it is in some sense limited to stationary prob-
lems or implicit time-discretization schemes. Thus, there is a growing demand for a conforming
boundary treatment. The availability of a conforming boundary treatment broadens the scope of
our PPUM and simplifies the realization of new applications substantially.

In principle the construction of conforming approximation spaces is straightforward — just
request a collection of conforming local approximation spaces as input. This approach however
is practically irrelevant since it implies that the geometry of the domain and the approximation
to the boundary is fixed on all discretization levels. Furthermore, this assumption denies us the
automatic refinement and coarsening of the resulting PPUM space. Thus, the automatic construc-
tion of an efficient multilevel solver is not feasible. Here, we need to assume that on all levels of
the discretization we are given appropriate conforming local approximation spaces. Clearly, this
approach is asking for too much detail from the user. Especially for general domains and with
enriched local approximation spaces. This is in essence the situation with all approaches to a con-
forming boundary treatment in meshfree methods — it can in principle be done but only under
very restrictive assumptions on the input data. The presented algebraic approach now overcomes
this issue for all partition of unity methods if the flat top property is satisfied. To our knowledge
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our approach is the only technique that is fully automatic and generally applicable to arbitrary
input and thereby very easy on the user.

We impose no additional restrictions on the local approximation spaces nor do we assume a
specific distribution of discretization nodes near or even on the boundary. We explicitly construct
the conforming subspaces of the employed local approximation space after we have defined the
current approximation to the boundary of the domain. Therefore, we can refine and adapt the
local approximation spaces automatically on each level without any user interaction. This ease on
the user however has a prize — we may obtain slightly larger errors than with the non-conforming
approach. The quality of the approximation is asymptotically optimal but near the boundary we
obtain a quite different approximation than with Nitsche’s method. Moreover, the efficiency of
our multilevel solver may be somewhat reduced (but still optimal) with the conforming boundary
treatment due to the explicit enforcement of the boundary conditions on all levels.

Recall that the presented construction of our multilevel solver is independent of the em-
ployed local approximation spaces. We make no assumption on the structure of these spaces or
their basis functions. We only require a specific local geometric hierarchy of the employed cover
patches which however is automatically ensured by our tree-based cover construction scheme
and our local refinement procedure. The presented numerical results show that our multilevel
solver converges with a rate that is independent of the number of discretization points (i.e. cover
patches or partition of unity functions). Moreover, the convergence behavior is independent of
the employed enrichment functions and only slightly dependent on the polynomial degree. In
fact, if we enforce that the polynomial degrees employed on coarser levels are truly smaller than
on finer levels we find no dependence of the multilevel convergence rate on the polynomial de-
gree at all (at least for the practical range p = 1, . . . , 5).

Besides the classical hp-refinement of our approximation space we furthermore presented a
hierarchical enrichment scheme that can be viewed as an algebraic refinement scheme. With the
help of this technique we recover the optimal convergence rate of the uniform h-version indepen-
dently of the regularity of the solution. Moreover, we attain a kind of super-convergence near its
singularities, theoretically and numerically.

In summary, the methodology presented in this manuscript is applicable to arbitrary clouds
of discretization points and arbitrary local approximation spaces and provides approximation
spaces of arbitrary regularity. Thus, it is not limited to a specific application but rather a gen-
eral purpose approach with much room for the utilization of application-adapted (a priori) in-
formation. Here, the user can focus completely on the approximation properties and must not
be concerned with the stability of the method since the presented local preconditioning scheme
automatically ensures the stability of the constructed basis while maintaining the required ap-
proximation properties.

Extensions
Thus we anticipate that the incorporation of numerical enrichment functions e.g. by a global-local
approach [40] in our meshfree generalized finite element method is straightforward and will not
impact the convergence behavior of our multilevel solver.

Also the automatic construction of quasi-divergence free approximation spaces using the
local splitting techniques developed for the conforming boundary treatment is a promising ap-
proach for fluid flow applications. In principle the proposed construction is applicable to all
equality constraints imposed on the approximation space. If the constraints involve function val-
ues only the constraints can be eliminated completely, for gradient-based constraints we attain
quasi-optimal subspaces only.

Another important issue is the interplay of our conforming boundary treatment and the
geometry approximation. Recall that the presented numerical integration scheme is targeted to
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Figure 8.1. The magnitude of the deformation field (left) and the distribution of the enrichment de-
grees of freedom (right) on level k = 10 of a hierarchically enriched (starting on level 5) fracture mechanics
problem with 64 randomly distributed cracks.

provide a high quality approximation to the domain on all levels and is in some sense indepen-
dent of the local approximation spaces. However that means that the geometric complexity of the
approximated boundary is in general too high for the employed local approximation spaces espe-
cially on coarse levels. Thus, the quality of the coarse grid correction of our multilevel solver for
a conforming discretization is somewhat compromised. Here, we propose two strategies which
might overcome this issue: The local approximation spaces at the boundary can be enriched with
a (scaled) distance function to the (approximated) boundary or we can even try to construct a
local coordinate system that is aligned with the local boundary. Obviously, the latter approach is
substantially simplified if the local boundary approximation within a patch is linear (in general
a curve that can be represented exactly by the employed local approximation spaces). Hence,
if we re-order the steps of the construction of the numerical integration cells and approximate
the boundary directly on the tree-cells we obtain a less accurate approximation to the boundary
but one that is better suited for its representation with the employed local approximation spaces.
Moreover, the identification of geometric singularities is simplified with this coarser boundary ap-
proximation so that the automatic enrichment of the respective local approximation spaces with
the respective corner singularity can be done in optimal complexity.

Further, we can substantially reduce the total operation counter of the proposed method
with the help of the conforming splitting of the approximation space. Recall that we currently
discretize the right-hand side explicitly, i.e. f̂ := ( f̂ m

i ) where

f̂ m
i :=

Z

W
f jiJ

m
i dx +

Z

GN

gN jiJ
m
i ds + b

Z

GD

gD(jiJ
m
i � (rjiJ

m
i · n)) ds

for a Nitsche discretization of a Poisson problem with Dirichlet boundary GD ⇢ ∂W and Neumann
boundary conditions on GN := ∂W \ GD. Thus, the caching strategy mentioned in Remark 6.4 for
differential operators with constant coefficients is not applicable to the assembly of f̂ . Observe
that we cannot directly interpolate the function f to obtain its coefficient vector f̃ so that we may
not use the approximation f̂ = M f̃ commonly employed in the classical FEM. Yet, with the help
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Figure 8.2. The von Mises stress distribution (left) and the enrichment zones (right) on the
(scaled) deformed configuration on level k = 10 of a hierarchically enriched (starting on level 5) fracture
mechanics problem with 64 randomly distributed cracks.

of the local-to-local mass matrix fM and the conforming splitting of the approximation space we
can obtain discrete representations of the data f , gD and gN , i.e. the respective coefficient vectors
f̃ , g̃D and g̃N , very efficiently. Then, we can define an approximation to the right-hand side with
the help of the global mass matrix M which satisfies the assumptions for our caching technique.
Observe though that this procedure requires the design of an appropriate load estimate for our
parallel load balancing scheme which is rather involved since the effects on memory usage and
operation counts are not uniform. Prior to this development though a detailed study of the overall
approximation error attainable with this approach must be carried out.

We close our treatise on the meshfree generalization of the classical finite element method
with some snapshots of further numerical results attained with the developed particle-partition
of unity method. In Figure 8.1 we give the contour plots of the magnitude of the deformation
field obtained for a hierarchically enriched discretization of a fracture mechanics problem with
64 randomly distributed cracks and the distribution of the pure enrichment degrees of freedom.
The respective von Mises stress is depicted in Figure 8.2 on the (scaled) deformed configuration.
We can clearly observe the singularities at the crack tips. Note that we initialized the hierarchical
enrichment scheme on level k = 5 only. Therefore, we see some geometric artifacts (in fact the tree-
cell structure on level k = 5) in the respective enrichment zones and the distribution of the pure
enrichment degrees of freedom. But still around all tips do we find multiple layers of enriched
patches which resolve the singular behavior of the solution in the resulting enrichment zone. The
visualization of such high resolution results however remains a very challenging problem. For
the plots given in the Figures 8.1 and 8.2 we used the cell centers, i.e. 1048576 points, only whereas
the approximation employed 4296883 (scalar) degrees of freedom for each physical variable with
1151155 discontinuous (directly at the crack line) or singular enrichment functions. In Figure 8.3
we show the von Mises stress distribution for an h-adaptive discretization of a crack problem
with minimal enrichment. Here, we can clearly observe that the refinement jumps align with
the contour lines of the singularities of the solution. Note that here we only employ around
64 singular enrichment functions so that adaptive refinement of the singularities is very much
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Figure 8.3. The von Mises stress distribution on the (scaled) deformed configuration of an h-
adaptive discretization with minimal enrichment.

necessary.
The results depicted in Figures 8.4 and 8.5 are given to confirm that we are not limited to

linear cracks or disjoint cracks. The intersection of multiple cracks for instance is rather straight
forward due to our local preconditioning approach. Those patches that cover the point of inter-
section not only employ the enrichment functions for each crack HC1

±
P

pi and HC2
±
P

pi but also the
additional multiplicative enrichment HC1

±
HC2
±
P

pi , i.e.

Ei = HC1
±
P

pi + HC2
±
P

pi + HC1
±

HC2
±
P

pi .

The extension to the intersection of more than two intersecting cracks is straightforward. Recall
that in the choice of the enrichment space we must only be concerned with the approximation
properties not the stability. Thus, we must only include all necessary discontinuities which are
certainly generated by our approach. If more than two cracks intersect at a given point the above
approach yields the correct discontinuities but generates linearly dependent functions. This how-
ever is no cause of concern in our method since our local preconditioning technique will reliably
determine these dependencies and will provide a stable basis which encodes all necessary dis-
continuities automatically.

If the crack line is curved the tip enrichment functions are in some sense valid in front of the
tip only. Recall that the tip functions are discontinuous across the negative x-axis of the local tip
coordinate system, compare Figure 5.7. Thus, we can employ the singular enrichment for patches
(away from the tip) which do not intersect this (artificial) line of discontinuity. Even though the
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Figure 8.4. The von Mises stress distribution for a fracture mechanics problem with curved cracks
(left) and intersecting cracks (right).

Figure 8.5. The von Mises stress distribution on the (scaled) deformed configuration for an h-
adaptive discretization with minimal enrichment of a cracked lever.

enrichment functions may not perfectly match the singular behavior of the solution away from
the tip they still provide additional approximation power. However it is essential that we do
not introduce artificial discontinuities into the approximation space. This is especially important
for the convergence of our multilevel solver. All discontinuities in our multilevel hierarchy must
be aligned otherwise the quality of our transfer operators is spoiled. This issue however may
be overcome by a slight generalization of the construction of our transfer operators. Here, we
restrict the L2-projection approach to the smooth components of the local approximation spaces
only and assuming that the enrichment functions are designed to capture the correct physical
behavior on the coarse and the fine level respectively we can simply use the identity matrix to
transfer information. This approach would also allow us to employ a coarse representation of the
crack line on coarser levels without introducing artificial discontinuities. However the details of
this approach and its assessment must be left to future research.
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