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Abstract

This paper is concerned with the hp-adaptive multilevel solution of second order
elliptic partial differential equations using the meshfree particle–partition of unity
method. The proposed refinement scheme automatically constructs new discretiza-
tion points (or particles), the meshfree analogue of an adaptive h-refinement, and
local approximation spaces with better local resolution, a p-refinement.

The refinement process is steered with the help of an a-posteriori subdomain-type
error indicator. We present results of numerical experiments in two and three space
dimensions which demonstrated the overall efficiency of the proposed scheme.
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1 Introduction

Meshfree methods (MM) are promising tools for the numerical solution of
partial differential equations (PDE) in complex large scale engineering ap-
plications since they are based on a finite collection of (independent) points
only and do not require the use of a computational mesh as the finite element
method (FEM). Hence, an adaptive refinement process in meshfree meth-
ods does not have to deal with the cumbersome task of mesh-refinement but
merely with the generation of new independent points and the selection of in-
dependent local approximation spaces. The flexibility and robustness of MM
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make them very attractive approaches in a wide range of applications, e.g.
large deformation analysis, crack propagation, fluid dynamics, astrophysics
and magneto-hydrodynamics and many more, see [21, 22, 24, 26] and the ref-
erences therein. However, these benefits come at a price. MM are in general
somewhat more involved than classical finite element schemes for instance
with respect to numerical integration [1, 5, 9–11, 18, 33], the implementation
of essential boundary conditions [1,20,26,27], and the linear independence of
the employed shape functions [36,39,40]. The latter issue also complicates the
efficient solution of the arising linear systems. Classical fast solvers like multi-
grid [25,45] are not directly applicable in MM but rather have to be modified
in an appropriate way [16, 19]. Hence, the design and implementation of an
efficient and stable meshfree solver is a challenging task and the number of
codes applicable to large scale problems is rather small.

In this paper we focus on the particle–partition of unity method (PPUM)
[17,36]. The PPUM is a meshfree generalized finite element method based on
the partition of unity (PU) approach developed in [2,3, 15] but employs a so-
called flat top PU to ensure that the constructed shape functions are linearly
independent. A PPUM shape function ϕiψ

k
i is a product of a PU function ϕi

and an approximation function ψk
i . The PU function provides the locality and

the compact support of the shape function, whereas the function ψk
i provides

the approximation properties on ωi = supp(ϕi). Hence, we refer to the PU
functions ϕi as the h-components and the ψk

i are denoted p-components. Note
however that we are not restricted to the use of classical polynomials as ap-
proximation functions ψk

i . One of the key-benefits of the PU framework is that
we can use problem-dependent approximation functions to improve the overall
efficiency of the method. If, for instance, a particular (local) behavior of the
solution is know a-priori (e.g. by asymptotic analysis in the vicinity of a crack
tip) this information can easily be incorporated in the PPUM approximation
space by adding special enrichment functions ζm

i to the approximation, i.e.,
including the functions ϕiζ

m
i in the basis.

If however no analytic enrichment information is available or only of low qual-
ity, then the functions ζm

i must be constructed numerically. In principal ζm
i

can be computed using the FEM or other grid-based techniques. With such
a classical numerical scheme however the utilization of previously computed
special functions in an efficient self-adaptive approximation process is not fea-
sible. Hence, we suggest the use of the PPUM also for the computation of
special enrichment functions. Such enrichment functions are obviously discon-
tinuous or singular functions—otherwise the direct use of classical polynomials
is already sufficient. Therefore, the efficient approximation of such enrichment
functions requires an adaptive numerical procedure. To this end, we have de-
veloped an h-adaptive version of our multilevel PPUM in [23]. In this paper
we now extend these results to an hp-adaptive approach.
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The remainder of the paper is organized as follows. In §2 we shortly review
the core ingredients of the PPUM and the implementation of essential bound-
ary conditions in the PPUM. Then, we present the employed error estimator
and our refinement scheme in §3. The results of our numerical experiments
are presented in §4. In particular, we consider the hp-adaptive approxima-
tion of scalar diffusion problems in two and three space dimensions and of
a two-dimensional linear elastic fracture mechanics problem with analytical
enrichment. The presented results clearly show the overall efficiency of the
proposed scheme. Finally, we conclude with some remarks in §5.

2 Particle–Partition of Unity Method

In this section let us shortly review the core ingredients of the PPUM, see
[18, 19, 36] for details. In a first step, we need to construct a PPUM space
V PU, i.e., we need to specify the PPUM shape functions ϕiψ

k
i . With these

shape functions, we then set up a sparse linear system of equations Aũ = f̂
via the classical Galerkin method which is then solved by a full multigrid
type iterative solver [19, 23]. However, we need to employ a non-standard
variational formulation of the PDE to account for the fact that our PPUM
shape functions—like most meshfree shape functions—do not satisfy essential
boundary conditions explicitly.

To specify the PPUM shape functions ϕiψ
k
i , i.e. the PU functions ϕi, let us

first introduce the notion of a cover CΩ of a computational domain Ω ⊂ Rd,
i.e., the PPUM analogue of a computational mesh.

Definition 2.1 (Cover) Let Ω ⊂ Rd be an open set. Let ωi ⊂ Rd be open
sets with Ω∩ωi 6= ∅ for i = 1, . . . , N . The collection CΩ := {ωi | i = 1, . . . , N}
is called a cover of Ω and the sets ωi cover patches if the following conditions
are satisfied.

• Global covering:

Ω ⊂
N⋃

i=1

ωi.

• Bounded overlap: The mapping λCΩ
: Ω → N such that

λCΩ
(x) = card{ωj ∈ CΩ |x ∈ ωi}

denotes the associated covering index. There exists a constant M̂ > 0 such
that for any x ∈ Ω there holds

‖λCΩ
‖L∞(Ω) < M̂ � N. (1)
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Figure 1. Subdivision corresponding to a cover on level J = 4 with initial point
cloud (left), derived coarser subdivisions on level 3 (center), and level 2 (right) with
respective coarser point cloud.

• Sufficient overlap: There exists a constant K > 0 such that for any x ∈ Ω
there is at least one cover patch ωi such that x ∈ ωi and

dist(x, ∂ωi) ≥ K diam(ωi). (2)

• Comparability of neighboring patches: A subset

CΩ,i := {ωj ∈ CΩ |ωj ∩ ωi 6= ∅} ⊂ CΩ (3)

is called a local neighborhood or local cover of a particular cover patch
ωi ∈ CΩ. There exist constants CL > 0 and CU > 0 such that for all
local neighborhoods CΩ,i there holds the implication

ωj ∈ CΩ,i ⇒ CL diam(ωi) ≤ diam(ωj) ≤ CU diam(ωi). (4)

In [18,19] we have developed a tree-based cover construction scheme that gives
a multilevel sequence of covers {Ck

Ω} with k = 1, . . . , J based on a given point
set P = {xi | i = 1, . . . , N̂}. The fundamental construction principle employed
in [18] is a d-binary tree. Based on the given point data P = {xi | i = 1, . . . , N̂},
we sub-divide a bounding-box CΩ ⊃ Ω until each cell

Ci =
d∏

l=1

(cli − hl
i, c

l
i + hl

i)

associated with a leaf of the tree contains at most a single point xi ∈ P , see
Figure 1 (left). We obtain a valid cover from this tree by defining the cover
patches by

ωi :=
d∏

l=1

(cli − αhl
i, c

l
i + αhl

i), with α > 1. (5)

Note that we define a cover patch ωi for leaf-cells Ci that contain a point
xi ∈ P as well as for empty cells that do not contain any point from P . The
coarser covers Ck

Ω are defined considering coarser versions of the constructed
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tree, i.e., by removing a complete set of leaves of the tree, see Figure 1. For
details of this construction see [18,19,36].

To obtain a PU on a cover Ck
Ω we define a weight function Wi,k :

⋃Nk
i=1 ωi,k → R

with supp(Wi,k) = ωi,k for each cover patch ωi,k by

Wi,k(x) =

W ◦ Ti,k(x) x ∈ ωi,k

0 else
(6)

with the affine transforms Ti,k : ωi,k → [−1, 1]d and W : [−1, 1]d → R the
reference d-linear B-spline. By simple averaging of these weight functions we
obtain the functions

ϕi,k(x) :=
Wi,k(x)

Si,k(x)
, with Si,k(x) :=

∑
ωj,k∈Ck

Ω,i

Wj,k(x) =
Nk∑
l=1

Wl,k(x). (7)

We refer to the collection {ϕi,k} with i = 1, . . . , Nk as a partition of unity
since there hold the relations

0 ≤ ϕi,k(x) ≤ 1,
Nk∑
i=1

ϕi,k ≡ 1 on Ω,

‖ϕi,k‖L∞(Rd) ≤ C∞,k, ‖∇ϕi,k‖L∞(Rd) ≤
C∇,k

diam(ωi,k)

(8)

with absolute constants 0 < C∞,k < 1 and C∇,k > 0 so that the assump-
tions on the PU for the error analysis given in [3] are satisfied by our PPUM
construction.

In general the p-components ψn
i,k associated with a particular patch ωi,k of a

PPUM approximation space V PU
k are products of univariate Legendre poly-

nomials, i.e., the global space V PU
k is defined as

V PU
k :=

N∑
i=1

ϕi,kV
pi,k

i,k , where V
pi,k

i,k (ωi,k) := Ppi,k ◦ Ti,k

Ppi,k((−1, 1)d) := span〈{ψn |ψn(x) =
d∏

l=1

Ln̂l(xl), ‖n̂‖1 =
d∑

l=1

n̂l ≤ pi,k}〉,

where Lm denotes the univariate Legendre polynomial of degree m. 2

Note that the relations (8) do not ensure the linear independence of the re-

2 Note that there is no restriction on the choice of the employed norm. The use of
anisotropic spaces or more general subspaces is possible in the PPUM.
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sulting product functions ψi,kψ
n
i,k [3, 35,39,40], i.e., in general

Nk∑
i=1

ϕi,k(x)

dim V
pi,k
i,k∑

n=1

un
i,kψ

n
i,k(x) = 0 for all x 6⇒ un

i,k = 0 for all (i, n).

A linearly independent set of product functions ϕi,kψ
n
i,k, however, is obtained

if the considered PU has the flat top property.

Definition 2.2 (Flat top property) Let {ϕi} be a partition of unity on the
cover CΩ = {ωi | i = 1, . . . , N}. Define the sub-patches

ωFT,i := {x |λCΩ
(x) = 1} such that ϕi|ωFT,i

≡ 1.

Then, the PU is said to have the flat top property, if there exists a constant
CFT such that for all patches ωi ∈ CΩ

µ(ωi) ≤ CFT µ(ωFT,i) (9)

where µ(A) denotes the Lebesgue measure of A ⊂ Rd.

If the employed local basis sets {ψn
i,k} are linearly independent on ωFT,i then

the product functions ϕi,kψ
n
i,k form a stable basis of the approximation space

V PU
k .

The PU (7) based on a cover Ck
Ω obtained from the scaling of a tree decom-

position with α > 1 has the flat top property if α ∈ (1, 1 + 2−Lk) with

Lk := max
ωi,k∈Ck

Ω

max
ωj,k∈Ck

Ω,i

|li,k − lj,k| (10)

and li,k denotes the refinement level of the tree cell associated with ωi,k, see [23].
Note that the flat top property is a sufficient condition only. In practice, we
obtain a linearly independent and stable set of shape functions if the flat
top property is satisfied by O(Nk) patches ωi,k of the cover Ck

Ω = {ωi,k | i =
1, . . . , Nk}.

The maximal level difference Lk defined in (10) of a cover Ck
Ω is a measure

for the irregularity of the underlying tree construction. If we enforce a global
flat top property, i.e. if we use α ∈ (1, 1 + 2−Lk), the constants CL,k and CU,k

of (4), C∞,k and C∇,k of (8), and M̂ of (1) grow with increasing Lk, i.e. with
decreasing α. Throughout this paper we fix the scaling parameter α = 1.3
for all levels k = 1, . . . , J and thereby enforce the flat top property on coarse
levels only. On finer levels we obtain PUs which satisfy the flat top property
for most but not necessarily all patches. The benefit of this approach is that
the value of the constants, especially the values of C∞,k and C∇,k, are (almost)
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independent of Lk so that the irregularity of the underlying tree construction
has a negligible impact on the quality of the approximation only.

With the help of the basis functions ϕi,kψ
n
i,k we then discretize a PDE problem

in weak form

a(u, v) = 〈f, v〉

via the classical Galerkin method to obtain a discrete linear system of equa-
tions Aũ = f̂ . Note that the PU functions (7) in the PPUM are in general
piecewise rational functions only. Therefore, the use of an appropriate numer-
ical integration scheme is indispensable in the PPUM as in most meshfree
approaches [1, 5, 10, 11, 19]. Moreover, the functions ϕi,kψ

n
i,k form a basis of

V PU
k but in general they do not satisfy the Kronecker property. Thus, the

coefficients ũk := (un
i,k) of a discrete function

uPU
k =

Nk∑
i=1

ϕi

dim V
pi,k
i,k∑

n=1

un
i,kψ

n
i,k (11)

on level k do not directly correspond to function values and a trivial interpo-
lation of essential boundary data is not available.

2.1 Essential Boundary Conditions

The treatment of essential boundary conditions in meshfree methods is not
straightforward and a number of different approaches have been suggested.
In [20] we have presented how Nitsche’s method [30] can be applied successfully
in the meshfree context. Here, we give a short summary of this approach. To
this end, let us consider the model problem

−∆u = f in Ω ⊂ Rd,

u = gD on ΓD ⊂ ∂Ω,
∂u

∂n
= gN on ΓN = ∂Ω \ ΓD.

(12)

In the following we drop the level subscript k = 1, . . . , J for the ease of
notation. Let ∂nu := ∂u

∂n
denote the normal derivative, ΓD,i := ωi ∩ ΓD,

γD,i := diam(ΓD,i), and

CΓD
:= {ωi ∈ CΩ |ΓD,i 6= ∅}

denotes the cover of the Dirichlet boundary.
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With these conventions we define the cover-dependent functional

JCΩ
(w) :=

∫
Ω
|∇w|2 − 2

∫
ΓD

∂nww + β
∑

ωi∈CΓD

γ−1
D,i

∫
ΓD,i

|w|2 (13)

with some parameter β > 0. Minimizing (13) with respect to the error u−uPU

yields the weak formulation

aCΩ
(w, v) = lCΩ

(v) for all v ∈ V PU (14)

with the cover-dependent bilinear form

aCΩ
(w, v) :=

∫
Ω
∇w∇v −

∫
ΓD

(∂nwv + w∂nv) + β
∑

ωi∈CΓD

γ−1
D,i

∫
ΓD,i

wv (15)

and the corresponding linear form

lCΩ
(v) :=

∫
Ω
fv −

∫
ΓD

gD∂nv +
∫
ΓN

gNv + β
∑

ωi∈CΓD

γ−1
D,i

∫
ΓD,i

gDv. (16)

There is a unique solution uPU of (14) if the regularization parameter β in
(13) is chosen large enough; i.e., the regularization parameter β = βV PU is
dependent on the discretization space V PU. This solution uPU satisfies optimal
error bounds if the space V PU admits the following inverse estimate

‖∂nv‖− 1
2
,CΩ

≤ CV PU‖∇v‖L2(Ω) for all v ∈ V PU (17)

for the cover-dependent norm

‖∂nv‖2
− 1

2
,CΩ

:=
∑

ωi∈CΓD

γD,i‖∂nv‖2
L2(ΓD,i)

with a constant CV PU depending on the cover CΩ and the employed local bases
{ψn

i } only. If CV PU is known, the regularization parameter βV PU can be chosen
as βV PU > 2C2

V PU to obtain a symmetric positive definite linear system [30].
Hence, the main task associated with the use of Nitsche’s approach in the
PPUM context is the efficient and automatic computation of the constant
CV PU , see [20, 36]. To this end, we consider the inverse assumption (17) as a
generalized eigenvalue problem locally on each patch ωi ∈ CΓD

and solve for
the largest eigenvalue to obtain an approximation to C2

V PU .

Remark 2.1 Due to Nitsche’s approach we obtain a sequence of weak for-
mulations (14) with level-dependent bilinear forms (15) and linear forms (16).
Therefore, we also deal with a sequence of energy-norms

‖u‖A,k :=
√
aCk

Ω
(u, u)

with the property ‖u‖A,k ≤ ‖u‖A,l for k < l.
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In summary, the PPUM discretization of our model problem (12) using the
space V PU on the cover CΩ is carried out in two steps: First, we estimate
the regularization parameter βV PU from (17). Then, we define the weak form
(14) with (15) and (16) and use Galerkin’s method to set up the respective
symmetric positive definite linear system Aũ = f̂ . This linear system is then
solved by our full multigrid type iterative solver [19,23]. Finally, we assess the
quality of the computed approximation (11) with the help of an a-posteriori er-
ror estimation and improve the approximation efficiently using an appropriate
adaptive refinement procedure.

3 Adaptive Refinement

In this section we present our hp-type adaptive refinement scheme. The re-
finement of our PPUM is steered by local error estimates defined on the over-
lapping cover patches ωi,J on level J , i.e., we employ a subdomain-type error
estimator [3,4,23]. In the construction of the subdomain problems, however, we
have to be concerned with the fact that we employ a non-standard variational
form involving a regularization parameter that depends on the discretization
space. From the local estimates we obtain our refinement indicator function

r : CJ
Ω → {null, h, p} (18)

which determines the suggested refinement type for a particular patch ωi,J ∈
CJ

Ω on the finest level J . This refinement indicator uses a simple one-level
history as e.g. suggested in [28] for this decision. Finally, we need to ensure
that our hp-refined PPUM satisfies all the assumptions of the original PPUM
construction, see §2. In the following we drop the level subscript k, since the
adaptive refinement will always be carried out for the currently finest level J
of our sequence {V PU

k }J
k=1.

3.1 Error Estimation

In section 2.1 we introduced the weak formulation (14) for the treatment of
the model problem (12). The bilinear form (15) and linear form (16) arise
from the minimization of the functional (13) with respect to the global error
ePU := u− uPU for uPU from the considered discretization space V PU, i.e

ePU = argminvPU∈V PU JCΩ
(u− vPU).
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Now we are interested in the local approximation of the error ePU|ωi
. To this

end we consider the sequence of local problems

JCΩ
(ePU|ωi

− ei,∗) → min{ei,∗ ∈ Vi,∗} (19)

for i = 1, . . . , N and the spaces Vi,∗ := ϕiV
pi+q
i which corresponds to the

localized PDE

−∆ei,∗ = −∆ePU|ωi
= (f + ∆uPU)|ωi

in ωi ∩ Ω ⊂ Rd,

ei,∗ = ePU|ωi
= (gD − uPU)|ωi

on ∂(ωi ∩ Ω) \ ΓN ,

∂ei,∗

∂n
=
∂ePU|ωi

∂n
= (gN − ∂uPU

∂n
)|ωi

on ∂(ωi ∩ Ω) ∩ ΓN ,

(20)

compare [3, 4, 23, 32, 43]. We discretize the terms ∆uPU, uPU and ∂uPU

∂n
on the

right-hand side of (20) by a Petrov–Galerkin approach. The current approx-
imant uPU is given as a linear combination of the functions ϕiψ

n
i from the

global PPUM space V PU =
∑N

i=1 ϕiV
pi
i but the trial and test space for the

discretization of (19) and (20) is Vi,∗ = ϕiV
pi+q
i with q > 0. The term ∆uPU

for instance is discretized via the bilinear form (15) with the trial space V PU

and the test space Vi,∗. If the PU is of higher regularity, e.g. by choosing a
higher order B-spline in (6), we can also use a strong formulation.

Recall that the regularization parameter β of (13) must be chosen with respect
to the considered discretization space. Hence, for each local problem (19) we
need to employ an appropriate and possibly different regularization parameter
βi,∗ to ensure its solvability. In our implementation we use the maximal reg-
ularization parameter βmax,∗ = maxN

i=1 βi,∗ for all patches. Note that the use
of a larger regularization parameter overemphasizes the error distribution on
the Dirichlet boundary within the energy norm. Hence it can have an adverse
effect on the overall efficiency since it can lead to an unnecessary refinement
near the Dirichlet boundary and it may lead to a deterioration of the con-
vergence behavior of the iterative solver. In all our numerical experiments we
found the variation in the βi,∗ to be small enough to avoid such an unnecessary
refinement near the Dirichlet boundary.

From the local approximations ei,∗ ∈ Vi,∗ to the error ePU we obtain a local
estimator ηi,A and a global estimate ηN with respect to an arbitrary norm
‖ · ‖N by the definitions

ηi,N := ‖ei,∗‖N(ωi∩Ω), ηN :=
( N∑

i=1

η2
i,N

)1/2

. (21)

Throughout this paper we employ the energy-norm ‖·‖A,J with respect to level
J for the refinement control on (the finest) level J , i.e., we use ηi := ηi,A,J in
the following.
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3.2 Refinement Indicator

To attain our refinement indicator function (18) from (21) we first define a
Boolean indicator

b : CΩ → {true, false}
by simple thresholding

b(ωi) :=

 true if ηi ≥ σbηavg,

false else,

with η2
avg := N−1η2 = N−1 ∑N

i=1 η
2
i as it is done in many adaptive procedures.

The second component of (18) is an assumed error reduction classifier

t : CΩ → {constant, algebraic, exponential}

defined by

t(ωi) :=


constant if b(ωi) = false,

algebraic if b(ωi) = true and ηi ≥ ηi,∗,

exponential else,

where ηi,∗ is a predicted error based on the estimator η̂i from the previous
refinement step, i.e. an extrapolation of a one-level history.

If a particular patch ωi was h-refined, i.e. r(ωi) = h, we anticipate that the
error with respect to the energy-norm on ωi is reduced by a factor 2−pi . Fur-
thermore, we assume that the error is distributed uniformly among the 2d

children patches, so that we predict the error on a child patch ωj ⊂ ωi to be
ηj,∗ := σh2

−d2−piηi with σh > 0. In the case of a p-refined patch ωi we antic-
ipate an exponential convergence on ωi and set ηi,∗ := σpηi with 0 < σp < 1.
For patches ωi that are not refined we set ηi,∗ := σnullηi with σnull > 0 and
we obtain the overall definition

ηi,∗ :=


σnullηi if t(ωi) = constant,

σpηi if t(ωi) = exponential,

σh2
−d2−pjηj if ωj ⊃ ωi and t(ωj) = algebraic.

(22)

Obviously, this prediction assumes that the respective refinement yields an
optimal error reduction. Hence, if ηi < ηi,∗ the refinement reduced the error
better than predicted which indicates a higher regularity of the solution and
that an exponential convergence may be achieved on ωi. If ηi ≥ ηi,∗, we
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assume that the smoothness of the solution u is limited on ωi and only an
algebraic convergence is attainable.

If there is no local refinement, i.e. r(ωi) = null, we assume an almost constant
error on the patch ωi which disregards effects due to the overlap of the patches.
Note however that we can account for changes to the local error due to changes
to the respective PU function ϕi stemming from the h-refinement of neighbor-
ing patches ωj ∈ CΩ,i by using a local parameter σnull,i.

With these components in place, we define a completely local refinement in-
dicator function

r(ωi) :=


null if t(ωi) = constant,

h if t(ωi) = algebraic,

p if t(ωj) = exponential,

(23)

which steers the refinement of the PPUM space V PU defined on the cover
CΩ. If r(ωi) = h we refine the h-components of V PU, i.e., the PU functions
ϕi. Due to our construction this essentially means that we refine the cover
CΩ by refining the respective cover patch ωi. This is accomplished by the
introduction of new particles ξ ∈ ωi, see [23] for the details of the employed
particle creation scheme. The refinement of the p-components in the case of
r(ωi) = p is straightforward, we simply increase the current polynomial degree
pi on ωi by one.

Note that this refinement scheme generates a new level J+1 for our multilevel
sequence only if the refinement indicator r(ωi,J) = h for a particular patch ωi,J

that satisfies

ωi,J ∈ CJ
Ω and ωi,J 6∈ Ck

Ω for all k = 1, . . . , J − 1.

If there is no such patch ωi,J the current space V PU
J is replaced by its refined

version.

Remark 3.1 With the presented refinement scheme there is no control over
the evolution of the maximal tree level difference LJ and should not be em-
ployed directly if the flat top property is to be enforced globally by a level-
dependent scaling parameter αk ∈ (1, 1+2−Lk). To bound the constants in (8)
uniformly it is necessary to limit the level-difference Lk independently of the
number of levels. This can be achieved by the cover smoothing scheme pre-
sented in [23] which can be easily incorporated into our hp-adaptive scheme.
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3.3 Summary

For the sake of completeness let us summarize the computational steps of an
hp-adaptive PPUM computation for the numerical treatment of our model
problem (12). To this end let us assume that we already have a sequence of
PPUM spaces V PU

k with associated covers Ck
Ω and polynomial degrees

pmin,k :=
Nk

min
i=1

pi,k, pmax,k :=
Nk

max
i=1

pi,k (24)

for k = 1, . . . , J and predicted error values ηi,∗ for i = 1, . . . , Nk.

1. Estimate the global regularization parameter βJ associated with the space
V PU

J employed in (13) via local eigenvalue problems corresponding to (17).
2. Discretize the weak form (14) with the estimated βJ via Galerkin’s method

with the trial and test space V PU
J using the basis functions ϕi,Jψ

n
i,J .

3. Solve the arising global linear system Aũ = f̂ on level J with a full
multigrid solver [19,23] based on the complete sequence {V PU

k }J
k=1.

4. Define the local approximation spaces Vi,∗ := ϕi,JV
pi,J+q
i,J in (19) for the

local error approximation.
5. Estimate the local regularization parameters βi,∗ associated with the

space Vi,∗ employed in (19) by a respective local eigenvalue problem cor-
responding to (17).

6. Discretize (19), i.e. (20), with the estimated βi,∗. Solve the local linear
system Ai,∗ẽi,∗ = r̂i,∗ using a direct solver.

7. Estimate the local errors ηi and the global error η with respect to the
energy-norm ‖ · ‖A,J by (21).

8. Define the refinement indicator function (18) using the estimed local er-
rors ηi and the predicted error values ηi,∗.

9. If η > εtol, refine the global PPUM space V PU
J according to (18), define

the new predicted errors ηi,∗ with respect to ‖ ·‖A,J according to (22) and
return to 1.

4 Numerical Results

In this section we present some results of our numerical experiments using the
hp-adaptive PPUM discussed above. To this end, we introduce some shorthand
notation for various norms of the error u− uPU, i.e., we define

eL∞ :=
‖u− uPU‖L∞

‖u‖L∞
, eL2 :=

‖u− uPU‖L2

‖u‖L2

, eH1 :=
‖∇(u− uPU)‖L2

‖∇u‖L2

. (25)
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Analogously, we introduce the notion

e∗H1 :=
ηH1

‖∇u‖L2

=

(∑
ωi∈CΩ

η2
i,H1

) 1
2

‖∇u‖L2

=

(∑
ωi∈CΩ

‖∇ei,∗‖2
L2

) 1
2

‖∇u‖L2

(26)

for the estimated (relative) error using (19) and (21). For each of these error
norms we compute the respective algebraic convergence rate ρ by considering
the error norms of two consecutive levels l − 1 and l

ρ := −
log

(
‖u−uPU

l ‖
‖u−uPU

l−1
‖

)
log( dofl

dofl−1
)

, where dofk :=
Nk∑
i=1

dim(V
pi,k

i,k ). (27)

Hence the optimal rate ρH1 of an h-refined space with pi = p is ρH1 = p
d

where
d denotes the space dimension of Ω ⊂ Rd.

Note that the definition of the relative error with respect to the energy-norm
is not straightforward. This is due to the use of the cover-dependent scaling
parameters γi,D and the space-dependent regularization parameter β in (13).
Therefore the bilinear form (15) and the associated energy-norm are dependent
on the employed discretization space so that we deal with a sequence of energy-

norms ‖ · ‖A,k :=
√
ak(·, ·) for k = 1, . . . , J and we define

eA,k :=
‖u− uPU‖A,k

‖u‖A,0

(28)

where ‖ · ‖A,0 denotes the classical energy-norm ignoring all additional surface
terms due to Nitsche’s method. The values ρA,k now involve the two successive
energy-norms ‖·‖A,k and ‖·‖A,k−1. To assess the quality of our error estimator
(21) we give its effectivity index with respect to the energy-norm

ε∗A,k :=
e∗A,k

eA,k

=
ηA,k

‖(u− uPU)‖A,k

.

All these norms are approximated using a numerical integration scheme with
very high resolution based on the finest refinement level.

In all our examples we used q = 2 for the estimation of the error via (19) and
the values σb = 0.8, σnull = 1, σh = 3, and σp = 0.6, see (22), in the definition
of the refinement indicator (18).

Example 4.1 In the first example we apply our hp-adaptive PPUM to the
model problem (12) with Dirichlet boundary conditions on an L-shaped do-
main Ω = (−1, 1)2 \ [0, 1]2. We choose the data of the right-hand side such
that the solution is given by

u(x, y) = u(r, θ) = r
2
3 sin

(
2θ − π

3

)
.

14



In the hp-FEM [34] the optimal convergence behavior attainable for this type
of problem is the exponential error bound

‖u− uPU‖H1(Ω) ≤ C exp(−b dof1/3). (29)

The measured errors (25) and respective convergence rates (27) are given in
Table 1. Furthermore, we give the number of degrees of freedom dof, the
number of patches N , maximal tree level difference L, the range of employed
polynomial degrees [p] := [pmin, pmax], compare (24), for the respective level J .

We anticipate to find an exponential convergence of our hp-adaptive PPUM.
Thus the algebraic convergence rates ρ should increase with an increasing
number of levels J . From the numbers given in Table 1 we can clearly observe
this anticipated behavior. To assess the quality of our hp-adaptive PPUM dis-
cretization quantitatively we give a plot of the measured errors against dof1/3

in Figure 2. From the plots on the left of Figure 2 we can clearly observe a per-
fect agreement with the bound (29). Hence, our local error estimator ηi (21)
and the presented refinement indicator function r (18) are very well suited and
provide an optimal error reduction. This observation holds well up to refine-
ment level J = 19 where pmax = 7 and LJ = 6. On more refined levels J > 19
with pmax > 7 and LJ ≥ 6 we find a slight deterioration of this optimal be-
havior, see Figure 2 (right) and Table 1. This effect is (most probably) due to
numerical integration errors. The employed subdivision sparse grid numerical
integration scheme [18] employs quadrature rules that are exponentially con-
vergent but have a multi-variate polynomial exactness of order 13 only. Hence,
if we assume that the PU function is resolved by the employed subdivision for
numerical integration, we can compute the entries of the stiffness matrix (al-
most) exactly for p ≤ 6 only. The understanding of the effects of numerical
integration in meshfree methods is rather involved and far from complete and
a detailed study of the observed behavior is subject of current research. Note
that we obtained similar results when we limit LJ < 4 globally so that the
influence of the parameter LJ on the convergence behavior is negligable.

In Figure 3 we give some snapshots of the distribution of the polynomial de-
grees on levels J = 10, 13, 16. From these plots, we can observe a linear increase
in the polynomial degree towards the re-entrant corner and a substantial in-
crease in the local refinement-level of the employed tree in the vicinity of the
singularity. We can also see the large irregularity of the tree with L16 = 4 from
these plots.

Example 4.2 In our second example we consider our model problem (12) in
three space dimensions on the domain Ω = (−1, 1)3 \ [0, 1]3 with vanishing
Dirichlet boundary conditions gD = 0 and right-hand side f = 1. In this
example we measure absolute errors only and we estimate the error e∗L2 with
respect to the L2-norm analogously to (26).

15



Table 1
Relative errors e (25) and convergence rates ρ (27) for Example 4.1.
J dof N [p] L eL∞ ρL∞ eL2 ρL2 eH1 ρH1 eA,J ρA,J e∗A,J ρ∗A,J ε∗A,J

3 144 48 [1, 1] 0 4.54−2 0.34 8.91−3 0.57 1.14−1 0.30 9.91−2 0.29 3.01−1 0.87 3.04

4 171 57 [1, 1] 1 2.85−2 2.71 5.62−3 2.68 8.95−2 1.42 8.24−2 1.07 2.26−1 1.67 2.74

5 216 72 [1, 1] 1 1.80−2 1.97 4.10−3 1.35 7.42−2 0.80 7.11−2 0.63 1.56−1 1.59 2.19

6 291 93 [1, 2] 1 1.13−2 1.56 2.50−3 1.66 5.74−2 0.86 5.59−2 0.81 1.09−1 1.21 1.94

7 414 120 [1, 2] 1 6.90−3 1.40 1.71−3 1.08 4.45−2 0.72 4.66−2 0.52 6.10−2 1.64 1.31

8 633 168 [1, 2] 1 4.39−3 1.06 6.86−4 2.15 2.54−2 1.32 2.65−2 1.33 3.46−2 1.34 1.31

9 874 207 [1, 3] 1 2.69−3 1.52 2.74−4 2.85 1.51−2 1.61 1.55−2 1.66 2.05−2 1.62 1.32

10 1279 282 [1, 3] 2 2.03−3 0.73 1.45−4 1.68 9.28−3 1.28 9.55−3 1.27 1.10−2 1.63 1.15

11 1791 345 [1, 4] 2 1.29−3 1.35 6.38−5 2.43 5.63−3 1.48 5.75−3 1.51 6.50−3 1.56 1.13

12 2620 501 [1, 4] 3 8.32−4 1.16 2.58−5 2.38 3.17−3 1.51 3.24−3 1.51 4.07−3 1.23 1.26

13 3324 612 [1, 5] 3 5.53−4 1.71 1.54−5 2.16 2.11−3 1.71 2.15−3 1.72 2.70−3 1.72 1.26

14 4884 882 [1, 5] 4 3.49−4 1.20 8.22−6 1.63 1.39−3 1.09 1.41−3 1.10 1.73−3 1.15 1.23

15 6653 1236 [1, 5] 4 2.19−4 1.51 4.33−6 2.07 8.33−4 1.65 8.51−4 1.64 9.34−4 2.00 1.10

16 9059 1620 [1, 6] 4 1.42−4 1.40 1.55−6 3.32 5.31−4 1.46 5.40−4 1.47 6.13−4 1.36 1.14

17 12472 2349 [1, 6] 5 8.99−5 1.43 8.81−7 1.78 3.13−4 1.65 3.19−4 1.65 3.62−4 1.64 1.14

18 16117 2862 [1, 7] 5 5.69−5 1.78 4.64−7 2.50 2.14−4 1.49 2.17−4 1.50 2.37−4 1.65 1.09

19 23145 4458 [1, 7] 6 3.73−5 1.17 2.86−7 1.34 1.25−4 1.47 1.28−4 1.46 1.28−4 1.70 1.00

20 30046 5415 [1, 8] 6 2.41−5 1.67 9.62−8 4.17 8.48−5 1.50 8.63−5 1.51 8.45−5 1.60 0.98

21 45724 8925 [1, 8] 7 1.52−5 1.09 6.13−8 1.07 4.76−5 1.38 4.87−5 1.36 4.74−5 1.38 0.97

22 56520 10707 [1, 9] 7 9.60−6 2.18 2.78−8 3.72 3.25−5 1.80 3.32−5 1.82 3.20−5 1.85 0.97

23 83021 16683 [1, 9] 7 6.28−6 1.10 1.86−8 1.04 1.93−5 1.36 1.99−5 1.32 1.81−5 1.49 0.91

24 107269 21180 [1, 10] 8 3.96−6 1.80 7.16−9 3.73 1.25−5 1.71 1.29−5 1.71 1.16−5 1.73 0.90

25 154450 31041 [1, 10] 8 2.49−6 1.27 3.17−9 2.24 7.51−6 1.39 7.77−6 1.38 6.97−6 1.39 0.90

26 198786 41091 [1, 11] 9 1.57−6 1.83 1.93−9 1.96 4.72−6 1.84 4.87−6 1.85
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Figure 2. Convergence history of the measured relative errors e (25) in the L∞-norm,
the L2-norm, the H1-seminorm, and the energy-norm on the respective level (de-
noted by E in the legend) for Example 4.1. The dotted red line with circular markers
gives the estimated error (21) (denoted by E∗ in the legend) used to steer the re-
finement process. On the left are the results up to level J = 19, on the right up to
level 26.
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Figure 3. Depicted is the distribution of the polynomial degrees for levels
J = 10, 13, 16 (left to right) for Example 4.1 on the cell centers of the respec-
tive tree decomposition. The size of the particle at the cell center indicates the size
of the respective support patch, the color of the particle indicates the employed
polynomial degree on the patch.

Table 2
Estimated errors e∗ (26) and respective convergence rates ρ∗ (27) for Example 4.2.

J dof N [p] LC e∗
L2 ρ∗

L2 e∗
H1 ρ∗

H1 e∗A,J ρ∗A,J

3 1792 448 [1, 1] 0 6.673−3 0.55 2.315−1 0.24 3.475−1 0.30

4 14336 3584 [1, 1] 0 1.881−3 0.61 1.280−1 0.28 1.721−1 0.34

5 58996 14749 [1, 1] 1 1.174−3 0.33 9.464−2 0.21 1.072−1 0.33

6 131366 28091 [1, 2] 1 3.085−4 1.67 4.446−2 0.94 5.292−2 0.88

7 276180 47166 [1, 3] 2 8.861−5 1.68 2.059−2 1.04 2.390−2 1.07

8 659599 109291 [1, 4] 2 7.210−5 0.24 1.622−2 0.27 2.038−2 0.18

9 1468658 220969 [1, 5] 3 2.430−5 1.36 9.816−3 0.63 1.324−2 0.54

The estimated errors e∗ and the respective convergence rates ρ∗ are given in
Table 2. Again, we can observe and increase in the rates ρ∗ for increasing
refinement levels J indicating an exponential convergence. In Figure 4 we
plotted the estimated errors against dof1/5. From these graphs we see that the
convergence behavior is very close to the optimal hp-FEM behavior for this
problem.

Example 4.3 In our last example, we consider a reference problem from lin-
ear elastic fracture mechanics.

−div σ(u) = f in Ω = (−1, 1)2,

σ(u) · n = gN on ΓN ⊂ ∂Ω ∪ C,

u = gD on ΓD = ∂Ω \ ΓN ,

(30)

with material parameters E = 1 and ν = 0.3. The Dirichlet boundary is given
by ΓD := {(x, y) ∈ ∂Ω | y = −1} and we use gD = (0, 0). On the upper
boundary {(x, y) ∈ ∂Ω | y = 1} ⊂ ΓN we use gN = (0, 1). On the remaining
parts of the Neumann boundary ΓN we use gN = (0, 0). The internal traction-
free segment

C := {(x, y) ∈ Ω |x ∈ (0.25, 0) and y = 0}
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Figure 5. Convergence history of the
estimated errors e∗ (26) with respect
to the L2-norm, the strain energy-semi-
norm (denoted by H1 in the legend), and
the energy-norm on the respective level
(denoted by E in the legend) for Exam-
ple 4.3.

is referred to as a crack. The crack C induces a discontinuous displacement
field u across the crack line with singularities at the crack tips cl := (0.25, 0)
and cu := (0.75, 0). Hence, the local approximation spaces employed in our
PPUM must respect these features to provide good approximation. Therefore,
a crack tip is modeled by special analytical enrichment functions ζm

{ζm
tip} := {

√
r cos

θ

2
,
√
r sin

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2
}

with respect to a local polar coordinate system centered in the respective
crack tip. The discontinuous part is modeled by {ζm

jump,i} := s±,iHCV
pi,k

i,k where
s±,i > 0 denotes two local scaling parameters, and HC refers to the Haar
function. The scaling parameters s±,i are chosen based on µ({HC ≡ 1} ∩ ωi)
and µ({HC ≡ −1} ∩ ωi) to control the conditioning of the local basis. This
approach is similar to the enrichment techniques employed in other meshfree
methods e.g. [7, 31], the generalized finite element method [13, 14], and the
extended finite element method [6,8, 29].

In this paper we employ a minimal enrichment criterion only, i.e., we use the
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local approximation spaces

V
pi,k

i,k :=



Ppi,k ◦ Ti,k if ωi,k ∩ C = ∅,

Ppi,k ◦ Ti,k ⊕ {ζm
cl
} else if cl ∈ ωi,k,

Ppi,k ◦ Ti,k ⊕ {ζm
cu
} else if cu ∈ ωi,k,

Ppi,k ◦ Ti,k ⊕ s±,iHCPpi,k ◦ Ti,k else.

(31)

Note that there is a fundamental difference in the singular enrichment at the
crack tips compared with the discontinuous enrichment at the crack line. The
tip enrichment is additive and increases the local dimension by a constant
dim(V

pi,k

i,k ) = dim(Ppi,k) + 4 only. The discontinuous enrichment is multiplica-

tive and doubles the dimension of the local polynomial space, i.e., dim(V
pi,k

i,k ) =
2 dim(Ppi,k).

In this example we measure absolute errors only and use the strain energy
seminorm ‖ε(u)‖L2(Ω) = ‖1

2
(∇(u) + ∇T (u))‖L2(Ω) for the definition of e∗H1 of

(26). The estimated errors e∗A,J , e∗H1 , and e∗L2 and the respective convergence
rates ρ∗ are given in Table 3. From these numbers we can observe an increase
of the algebraic rates ρ which corresponds to an exponential convergence of
the approximation. In Figure 5 we have plotted the estimated errors against
dof1/3 and obtain (almost) straight lines indicating also in this example an
error bound of type (29).

In Figure 6 we plotted the mode I stress intensity factor (SIF) of the upper
crack tip cu against the refinement level and in Figure 7 against the employed
extraction radius using the contour integral method [44]. Note that we employ
square extraction domains centered in cu with arbitrary radii that do not align
with the support patches. From these plots we can clearly observe the path
independence for a very large range of extraction radii—virtually constant ex-
traction values from 100 down to 10−3 and only very small oscillations for radii
between 10−3 and 10−6—as well as the fast convergence of the SIF. Finally,
we give snapshots of the distribution of the employed polynomial degrees on
the (scaled) deformed configuration in Figure 8 and for the distribution of the
von Mises stress in Figure 9. From these plots, we clearly see the hp-adaptive
resolution of the singularities near the crack tips as well as the additional sin-
gularities in the Dirichlet-Neumann corners. Note also that across the crack
line we obtain a (pure) p-refinement in regions where the displacement field is
locally (above/below the crack line) smooth. We attain this optimal behavior
due to the choice of a multiplicative enrichment across the crack line.

Remark 4.1 Note that for the employed analytical enrichment we need to
assume that the curvature of the crack line near the crack tip is completely
resolved by the cover patches (h-refinement) so that the transformation to
polar coordinates is sensible. Another approach which is more in the spirit of
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Table 3
Estimated errors e∗ (26) and respective convergence rates ρ∗ (27) for Example 4.3.

J dof N [p] LC e∗
L2 ρ∗

L2 e∗
H1 ρ∗

H1 e∗A,J ρ∗A,J

3 472 64 [1, 1] 0 1.981−2 0.89 4.530−1 0.23 5.164−1 0.23

4 1132 166 [1, 1] 1 1.159−2 0.61 3.805−1 0.20 4.120−1 0.26

5 2464 346 [1, 2] 2 4.782−3 1.14 2.777−1 0.41 2.852−1 0.47

6 4600 568 [1, 3] 2 1.851−3 1.52 1.846−1 0.65 1.860−1 0.68

7 7068 778 [1, 3] 2 8.175−4 1.90 1.237−1 0.93 1.238−1 0.95

8 10144 1066 [1, 3] 3 4.676−4 1.55 8.485−2 1.04 8.494−2 1.04

9 13364 1330 [1, 4] 3 2.914−4 1.72 6.044−2 1.23 6.020−2 1.25

10 17800 1708 [1, 4] 3 1.879−4 1.53 4.332−2 1.16 4.310−2 1.17

11 23380 2140 [1, 4] 4 1.036−4 2.18 3.014−2 1.33 3.001−2 1.33

12 29716 2608 [1, 4] 4 6.432−5 1.99 2.138−2 1.43 2.124−2 1.44

13 37412 3160 [1, 5] 4 3.680−5 2.42 1.518−2 1.49 1.504−2 1.50

14 46536 3922 [1, 5] 4 2.431−5 1.90 1.061−2 1.64 1.055−2 1.63

15 56476 4582 [1, 6] 5 1.605−5 2.14 7.583−3 1.73 7.525−3 1.74

16 69256 5542 [1, 6] 5 1.037−5 2.14 5.405−3 1.66 5.357−3 1.67

17 87896 6856 [1, 6] 5 5.370−6 2.76 3.709−3 1.58 3.682−3 1.57

18 106188 7726 [1, 6] 5 3.421−6 2.39 2.640−3 1.80 2.616−3 1.81

19 129972 9424 [1, 7] 6 2.065−6 2.50 1.866−3 1.72 1.849−3 1.72

20 160800 11194 [1, 7] 6 1.396−6 1.84 1.281−3 1.77 1.272−3 1.76

21 193736 12826 [1, 7] 6 9.238−7 2.22 9.190−4 1.78 9.114−4 1.79

22 239784 15850 [1, 7] 6 6.079−7 1.96 6.501−4 1.62 6.445−4 1.62

23 310348 19648 [1, 8] 7 3.949−7 1.67 4.514−4 1.41 4.478−4 1.41

the PU technique is to design numerical enrichment functions [41,42] using a
local approximation near the crack tip [12,37] which deals with the curvature
of the crack line by the presented hp-adaptive technique. Furthermore, the
approximation properties of an hp-refined PPUM space with enrichment can
be further improved by employing an automatic multilevel enrichment control
which allows refined patches to reuse the enrichment functions of a coarser
patch [38] for approximation without compromising the stability of the global
basis.
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Figure 8. Depicted is the distribution of the polynomial degrees for levels
k = 10, 13, 16 (left to right) for Example 4.3 on the cell centers of the respective
deformed tree decomposition. The size of the particle at the cell center indicates the
size of the respective support patch, the color of the particle indicates the employed
polynomial degree on the patch.

Figure 9. Depicted is the distribution of the von Mises stress for Example 4.3 on the
cell centers of the respective deformed tree decomposition for levels J = 10 (left)
and J = 19 (right). The size of the particle at the cell center indicates the size of
the respective support patch, the color of the particle indicates the von Mises stress
at the cell center.

5 Conclusion

In this paper we presented an hp-adaptive version of our multilevel PPUM for
the efficient numerical treatment of second order elliptic PDEs. The proposed
scheme employs a sub-domain error estimator and a one-level history to steer
the refinement process. The overall goal of the PPUM approach is not only
to employ a classical hp-type discretization but to use more sophisticated
enrichment functions to deal with particular local features of the solution. The
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developed hp-adaptive PPUM is designed to serve as a basis for the automatic
approximation of such singular enrichment functions.

The results of our numerical experiments in two and three dimensions (in-
cluding analytical enrichment functions) clearly demonstrate the exponential
convergence behavior of our PPUM for problems with singular solutions. This
renders our hp-adaptive PPUM applicable for the automatic construction of
numerical enrichment functions for instance in the case of curved cracks.
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