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Abstract

Sparse Grids are the basis for efficient high dimensional approximation and
have recently been applied successfully to predictive modelling. They are
spanned by a collection of simpler function spaces represented by regular grids.
The sparse grid combination technique prescribes how approximations on a
collection of anisotropic grids can be combined to approximate the high di-
mensional functions.
In this paper we study the parallelisation of fitting data onto a sparse grid. The
computation can be done entirely by fitting partial models on a collection of
regular grids. This allows parallelism over the collection of grids. In addition,
each of the partial grid fits can be parallelised as well, both in the assembly
phase, where parallelism is done over the data, and in the solution stage using
traditional parallel solvers for the resulting PDEs. Using a simple timing
model we confirm that the most effective methods are obtained when both
types of parallelism are used.

Keywords: predictive modelling, sparse grids, parallelism, numerical linear
algebra

1. Introduction

Data mining algorithms have to address two major computational chal-
lenges. First, they have to be able to handle large and growing datasets and
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secondly, they need to be able to process complex data. Datasets used in
data mining studies have been doubling in size every year and many are now
in the terabyte range. The second challenge is sometimes referred to as the
curse of dimensionality as the algorithmic complexity grows exponentially
in the number of features or dimension of the data. Parallel processing is
a major tool in addressing the large computational requirements of data
mining algorithms.

Data mining aims to find patterns or structure in the data. One impor-
tant type of pattern discovered in data mining algorithms is represented by
functions between selected dataset features. In data mining, the discovery
of such functions is referred to as predictive modelling and includes both
classification and regression. Here we will consider regression but the same
algorithms are used in classification as well. Different types of models are
obtained from different functional classes. The classical methods of least
squares uses linear and nonlinear functions with relatively few parameters.
Modern nonparametric methods are characterised by large numbers of pa-
rameters and can flexibly approximate general function sets. They include
artificial neural nets [2], Bayesian nets [19], classification and regression trees
(CART) [5], Multivariate Adaptive Regression Splines (MARS) [7], Support
Vector Machines [23], ANOVA splines [24], and additive models [17, 18].

All approaches are able to characterise a large class of behaviours and in-
volve training or fitting the model to the dataset. For example, one may wish
to predict the vegetation cover of a particular region based on cartographic
measurements such as elevation, slope, distance to water, etc [3, 10, 22].
Other examples are prediction of the likelihood of a car insurance customer
making a claim, a business customer to purchase a product, or a resident to
commit taxation fraud [1].

For a given response variable y and predictor variables x = x1, . . . , xd a
predictive model is described by a function

y = f(x1, . . . , xd) = f(x).

We will only consider the case where the function f is an element of a
linear space and, in the following, we will discuss methods to compute its
representation from data.

In the next section we describe the sparse grid approach for predictive
modelling using a penalised least squares approach. In section 3 two solution
strategies are presented, one using the combination of the partial solutions in
the collection of grids, this is the so-called combination technique. The other
method uses the combination technique as a preconditioner for the solution
of the sparse grid problem in the hierarchical basis. We then discuss the
parallelisation of these solution strategies using both coarse and fine grain
approaches and their combination to further reduce computation time.
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2. Sparse Grids for Predictive Modelling

Recently a technique called sparse grids [12, 25], based on a hierarchical
basis approach, has generated considerable interest as a vehicle for reducing
dimensionality problems where approximations of high dimensional func-
tions are sought. Sparse grids functions f(x) ∈ V are approximations which
can be seen, in a generalised formulation, as additive models of the form

f(x) =
∑

α

cαfα(x), (1)

where the partial functions fα ∈ Vα are simpler than f in some sense,
i.e., they are from smaller function spaces Vα ⊂ V . Typically, the partial
functions only depend on a subset of the variables or the dependence has a
coarser scale as discussed below.

Sparse grids for the solution of partial differential equations, numerical
integration, and approximation problems have been studied for more than
a decade by Zenger, Griebel et al., see [6] for an overview article. They also
developed an algorithm known as the combination technique [15] prescribing
how the collection of standard grids can be combined to approximate the
high dimensional function. More recently, Garcke, Griebel and Thess [10, 11]
demonstrated the feasibility of sparse grids in data mining by using the
combination technique in predictive modelling.

Additive models of the form of equation (1) generalise linear models
and thus form a core technique in nonparametric regression. They include
the Multivariate Adaptive Regression Splines (MARS) [7], and the Additive
Models by Hastie and Tibshirani [17, 18].

Challenges include besides others the selection of function spaces and the
determination of the subset of variables a partial function depends on. Here
we will discuss algorithms for the determination of the function f and hence
the partial functions fα given observed function values when the function
spaces are known. For observed data points x1, . . . , xn and function values
y1, . . . , yn we define the function f from some finite dimensional function
space V to be the solution of a penalised least squares problem of the form

J(f) =
1

n

n
∑

i=1

(

f(x(i)) − yi
)2

+ β ‖Lf‖2 (2)

for some (differential) operator L, typical examples are L = ∇ or L = ∆.
The parameter β can be chosen according to cross-validation techniques, see
e.g. [24]. If the partial functions fα of the additive model (1) are known to
be orthogonal with respect to the corresponding norm (here the standard
2-norm), they can be computed independently as minima of J . In a slightly
more general case, which is considered for the combination technique, the
projections into the spaces of the partial functions are assumed to commute.
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In this case the partial functions fα in (1) are known to be multiples of the
projections gα into the partial spaces, i.e. the solutions of the minimisation
problem (2) for the space Vα. The factors are known (integer) coefficients,
the combination coefficients cα [11, 15], and thus

f =
∑

α

cαgα.

Note that these approximations can break down when the projections do
not commute. As a generalisation of this approach, an approximation has
been suggested in [21] where the partial functions are again multiples of the
projections gα but the coefficients are now determined by minimising the
functional J . In this case we obtain

f =
∑

α

γαgα.

This also generalises the approximations obtained from the additive Schwarz
method which is

f = γ
∑

α

gα,

and experimental evidence shows that the performance is in many cases close
to that of the multiplicative Schwarz method, which in statistics is known
under the term of backfitting [17]. The approaches above can be further
improved by iterative refinement. Note that in the following we assume
that the projections commute and use the normal combination coefficients
cα from [11, 15].

The interesting aspect of these problems which we will discuss here is
the opportunity for parallel processing and the trade-off between parallel
processing and the performance of the solvers. We use a two level iterative
solver and parallelism is exploited at both levels.

2.1. Multiresolution Analysis and Sparse Grids The sparse grid
idea stems from a hierarchical subspace splitting [25]. Consider the discrete
function space Vl, with l = (l1, ..., ld) ∈

� d
0, of piecewise d-linear functions

which is spanned by the usual d-linear ’hat’ functions

ϕl,j(x) :=

d
∏

t=1

ϕlt,jt
(xt), jt = 0, ..., 2lt .

Here, the 1D functions ϕl,j(x) are

ϕl,j(x) =

{

1 − |2l · x − j|, x ∈ [ j−1
2l , j+1

2l ];

0, otherwise.

The number of basis functions needed to resolve any f ∈ Vl := Vl,...,l is
now larger than 2ld. With a resolution of just 17 points in each dimension
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Figure 1. Left: Norms of errors of the difference spaces Wl on a logarithmic scale. The
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of refinement level l = 5 in three dimensions

(l = 4), say, a ten dimensional problem would require computation and
storage of about 2 × 1012 coefficients which is more than one can expect on
computers available today, we encounter the curse of dimensionality.

Now we define the difference spaces Wl, with et denoting the t-th unit
vector,

Wl := Vl \
d

⊕

t=1

Vl−e
t

These hierarchical difference spaces lead to the definition of a multilevel
subspace splitting, i.e., the definition of the space Vl as a direct sum of
subspaces,

Vl :=
l

⊕

l1=0

· · ·
l

⊕

ld=0

Wl =
⊕

|l|∞≤l

Wl. (3)

Figure 1, showing on a logarithmic scale the norms of the errors for the
reconstruction of a two-dimensional sufficiently smooth function, indicates
that spaces Wl with large |l|1 := l1 + ...+ ld contribute very little. In fact, it
can be shown [6, 22, 25] that the size of the error committed by removing the
space Wl is proportional to 2−r|l|1 , where r = 2 in the case of piecewise linear
functions. This suggests removing all spaces where the sum of resolutions
is ’large’. The choice of |l|1 ≤ l in (3) results in the sparse grid of [25] (see
Figure 1 for an example in three dimensions with l = 5) but the grids can
be chosen more generally.

Sparse grid spaces can also be achieved with the so-called combination
technique [15] through the combination of certain spaces Vl instead of the
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difference spaces Wl. In particular the spaces with

|l|1 = l1 + ... + ld = n − q, q = 0, .., d − 1, lt ≥ 0

are used for a sparse grid of level n. Note that the formula for the combi-
nation technique is here

f c
n(x) :=

d−1
∑

q=0

(−1)q

(

d − 1

q

)

∑

|l|1=n−q

fl(x). (4)

As mentioned the grids can be chosen more generally, so we will now
let the indices belong to an unspecified index set I, which leads to the
generalised sparse grid space

Sd
I =

⋃

l∈I

Vl. (5)

Each term in this sum is a tensor product of one dimensional spaces spanned
by hat functions, but they are now restricted by the index set I and will
generally have a much lower complexity. We will call the grids belonging to
I the collection of grids.

See [6, 11, 15, 21, 22] for further details and additional references relevant
to this subsection.

2.2. Penalised Least Squares on Sparse Grids To compute the par-
tial functions fα = fl ∈ Vl on each grid, the functional J(f) in equation (2)
has to be minimised. Substituting the representation of fl =

∑m
i=1 αiϕi,

with {ϕi}
m
i=1 a basis of Vl, into (2) and differentiation with respect to αi

results in the linear system, in matrix notation,

(BT B + λC)α = BTy. (6)

Here C is a symmetric m × m matrix with entries Cj,k = n (Lϕj , Lϕk)L2 ,
where (·, ·)L2 denotes the standard scalar product in L2. Note that we
use L = ∇ as in [10, 11]. B is a rectangular n × m matrix with entries
Bi,j = ϕj(x

(i)); i = 1, . . . , n and j = 1, . . . ,m. Since n � m one stores BTB
and not B, this also allows to use only one matrix structure for both C and
BTB. The vector BT y is computed once and then stored for the iterative
solution process. We determine the regularisation parameter β with cross-
validation [24]. See [10, 11] for further details.

3. Solution of the penalised least squares system

For the solution of the penalised least squares problem (2) one can use
a hierarchical sparse grid basis and solve the corresponding linear system of
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equations (6) by preconditioned conjugate gradient methods. The matrix
BTB+λC in this case is typically positive definite, often ill-conditioned and
has a complex, relatively dense nonzero structure. Although the operation
of the matrix C can be implemented in a number of operations proportional
to the size of the vector by use of the unidirectional principle, this is a quite
challenging part of sparse grid implementation for more general operators,
see [6] for detailed references in this regard. Furthermore, applying the
unidirectional principle for the computation of BTB scales with the number
of data points since it is an on-the-fly-computation, which has to be avoided
for complexity reasons [10, 11]

An alternative approach, which is based on the combination technique

does not have these problems [9, 10, 11]. In this approach the sparse grid is
represented as the union of regular grids, and, correspondingly, the sparse
grid space is equal to the sum of the component grid spaces, see equation (5).
The combination technique approach comes at the cost of some overhead,
as typically the component spaces include some redundancy. In the com-
bination technique the functional J(f) of equation (2) is minimised for all
component spaces Vl. The optimum of J(f) over the sparse grid is then
approximated by a linear combination of the partial solutions:

f(x) =
∑

l∈I

clfl(x)

where the combination coefficients cl are independent of the data and are
given for the case of a regular sparse grid in equation (4). For the generalised
sparse grid spase these can be found, e.g., in [8, 20]

Consider the coefficients α of f with respect to a sparse grid basis. Let
El be be the interpolation matrix mapping the coefficients in the subspaces
to the coefficients of the sparse grid space. With Bl = BEl and Cl = ET

l CEl

one gets

α =
∑

l∈I

clEl

(

BT
l Bl + λCl

)−1
ET

l BT y.

It follows that the combination technique approximates the inverse (BT B +

λC)−1 by the sum
∑

l∈I clEl

(

BT
l Bl + λCl

)−1
ET

l .

The application of the combination method has given good results in
practice and it is known that the method gives exact results under certain
circumstances [20]. An important property of the sparse grid combination
technique is that the solutions on the partial grids can be computed in
parallel. We will discuss the consequences of this observation in the next
section.
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4. Strategies for exploiting parallelism

In this section we describe how the combination technique can be paral-
lelised. The following is valid for both solution strategies of the last section,
for ease of presentation we will focus on the standard combination technique.

In general, coarse grain parallelism is preferred, in particular for the
application of distributed memory computing [4] as it typically has less
(communication) overhead. However, in many cases the amount of avail-
able coarse grain parallelism of the algorithm is limited. If one would like
to further parallelise the computations (if sufficient parallel resources are
available) one would need to look at utilising fine grain parallelism as well.
Such fine grain parallelism is also well suited to some shared memory and
vector computations, in which case it can be competitive with the coarse
grain parallelism.

The combination technique can be straightforward parallelised on a coarse
grain level [13]. A second level of parallelisation on a fine grain level for
each problem in the collection of grids can be achieved through the use of
threads on shared-memory multi-processor machines. Both parallelisation
strategies, i.e., the direct coarse grain parallel treatment of the different
grids and the fine grain approach via threads, can also be combined and
used simultaneously. This leads to a parallel method which is well suited
for a cluster of multi-processor machines. See [9] for first results concerning
speedups and efficiency.

Another aspect concerns the situation when the partial problems of the
combination technique already need so much main memory, that only one
can be treated on a multi-processor machine. This situation can arise for
high number of dimensions or massive data sets. In this case the fine grain
approach in addition to the coarse grain one still allows an efficient parallel
treatment of the combination technique on such systems.

4.1. Parallelisation across grids The linear systems (6) for the par-
tial functions fα of the collection of grids can be computed independently,
therefore their approximate solution in each outer iteration step can eas-
ily be done completely in parallel. Each process computes the solution on
a certain number of grids. If in the extreme case as many processors are
available as there are grids in the collection of grids then each processor
computes the solution for only one grid. The control process collects the
results and computes the final function f on the sparse grid. Just a short
setup or gather phase, respectively, is necessary. Since the cost of computa-
tion is roughly known a priori, a simple but effective static load balancing
strategy is available; see [14]. This strategy proceeds by first allocating the
large grids and then the smaller ones.

Note that for large data sets the dominant factor in the calculation time
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Figure 2. Splitting of the matrix and vector in p (here p = 4) parts for the matrix-vector-
multiplication

for each grid is by far the processing of the data points to compute the matrix
BTB in (6) and not the solution of the linear equation system, see [10, 11].
This reduces the burden on the load balancing strategy for the distribution
of the grids involved in the combination technique since different grid sizes
do not result in significantly different run times.

4.2. Parallelisation across data To compute BTB in (6) for each data
instance x(i), the product ϕj(x

(i)) ·ϕk(x(i)) of the values of all basis function
which are non-zero at x(i) has to be calculated and the results have to be
written into the matrix structure at

(

BTB
)

j,k
, i.e.,

(BT B)j,k =
∑

i≤n

ϕj(x
(i)) · ϕk(x

(i)).

These computations only depend on one data point at a time and there-
fore can be done independently for all instances. Therefore the d × n array
of the training set can be separated in p parts, where p is the number of pro-
cessors available in the shared-memory environment. Each processor now
computes the matrix entries for n/p instances. Some overhead is introduced
to avoid memory conflicts when writing into the matrix structure. In a sim-
ilar way the evaluation of the sparse grid function describing the classifier
on the data points can be threaded in the evaluation phase.

4.3. Parallelisation of solvers After the matrix is built, threading can
be used on SMP architectures in the solution phase as fine grain parallelism.
We are using on each partial grid an iterative solver with diagonal precon-
ditioning, therefore most of the computing time is spent on matrix-vector-
multiplication of the form α = Aβ, where A is stored in a sparse-matrix
structure. We use the simple approach of a stripe decomposition where the
vector α of size m is virtually split into p parts and each processor now
computes the action of the matrix for a vector of size m/p. In this way each
vector component is only changed by one thread and therefore the storing of
the intermediate results into the matrix structure during the computation
can be done unprotected, i.e. without the need for read/write blocking, see
Figure 2.

Practical experience has shown that diagonal preconditioning is typically
good enough for the penalised least squares problems considered. This is
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in large part due to the observation that for large data sets most time is
consumed in the data processing phase, more sophisticated preconditioners,
or parallel strategies in the solution step, would not result in significant run
time improvements.

4.4. Combination of coarse and fine grain parallelism We have
seen in [9] that coarse grain parallelism yields the highest speedups and the
better efficiency. However, the number of grids may be such that the parallel
resources are not fully utilised. Here we show how much additional speedup
can be expected when using fine grain parallelism in addition to the coarse
grain parallelism.

If p processors are used to parallelise a computation with k grids one
can expect a maximal speedup of k/dk/pe. This is displayed for the case
of p = 30 and k = 1, . . . , 200 in Figure 3. In order to utilise the fine grain
parallelism we use the coarse grain approach for a first stage where pbk/pc
grids are processed and then, in a second stage the processors are distributed
evenly among the remaining tasks. After the first step there are

px = k − pbk/pc < p

tasks remaining. Thus one has pl = bp/pxc processors per remaining partial
grid. These are then used to parallelise on the fine grain scale all the re-
maining tasks and one thus gets a total combined speedup (i.e. for px > 0)
of

Sp,k =
k

bk/pc + (0.1 + 0.9/pl)
.

This is again displayed in Figure 3. We assume here that the fine grain
parallelism has ten percent overhead which cannot be parallelised. Note
that in [9] a five percent overhead was observed.

This approach can be refined further through the concurrent use of fine
and coarse grain parallelism, e.g., using p/2 grids in the parallelism across
grids and a 2 processor shared memory parallelism for each of these grids.
This way the drops in the speedup still observed in Figure 3 for the coarse
grain with added fine grain parallelism can be reduced further.

5. Conclusion

In this paper we extend results from [9], where two parallelisation strate-
gies for the sparse grid combination technique were shown. Through the
combination of both the fine and the coarse grain strategies the speedup
results can be further improved. This leads to a parallel method which is
well suited for a cluster of multi-processor machines.

Note that besides using the combination technique as an approximation
method it also can be employed as a preconditioner for the solution of the

10



0 50 100 150 200

0
5

10
15

20
25

30

number of grids k

sp
ee

du
p

Figure 3. Theoretical speedups for coarse grain parallelism (dashed line) and coarse grain
with added fine grain (bold line).

sparse grid problem in the hierarchical basis. For difficult problems, one can
get an improvement with this ansatz over the one using the combination
technique directly for the discretisation. For the case of boundary value
problems, this approach has been discussed in [16]. For this ansatz the pre-
sented combined parallelisation approaches can be used as well. Additional
difficulties arise here since the operator has to be evaluated in the iterative
procedure in the hierarchical sparse grids basis as well. In the presented case
of data fitting the operator can be split into the data part BT B, which only
needs function evaluations, and the stiffness matrix, the latter can be effi-
ciently computed using the combination grids with the approach presented
in [12]. This way one can avoid building the needed matrices in the hier-
archical basis and can compute the effect of the operator on a sparse grid
function by employing (again in parallel) the combination grids.
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