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Abstract

Sparse grids were recently introduced for
classification and regression problems. In
this article we apply the sparse grid ap-
proach to semi-supervised classification. We
formulate the semi-supervised learning prob-
lem by a regularization approach. Here, be-
sides a regression formulation for the labeled
data, an additional term is involved which
is based on the graph Laplacian for an ad-
jacency graph of all, labeled and unlabeled
data points. It reflects the intrinsic geomet-
ric structure of the data distribution. We
discretize the resulting problem in function
space by the sparse grid method and solve the
arising equations using the so-called combi-
nation technique. In contrast to recently pro-
posed kernel based methods which currently
scale cubic in regard to the number of overall
data, our method scales only linear, provided
that a sparse graph Laplacian is used. This
allows to deal with huge data sets which in-
volve millions of points. We show experimen-
tal results with the new approach.

1. Introduction

In semi-supervised classification in addition to labeled
data also unlabeled data is used by a machine learn-
ing algorithm in the training phase. Here, the aim is
to improve the quality of generalization results in com-
parison to approaches which use the labeled data only.
The semi-supervised ansatz is furthermore motivated
by the observation that in many application areas, like
remote sensing, text classification, or medical imaging,
data observations can be obtained cheaply and easily,
whereas a precise labeling of the samples is expensive
and time consuming, often involves processing by hu-
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man experts and needs sophisticated and expensive
tests, or is sometimes even almost infeasible. Also,
in the business domain of costumer relationship man-
agement, where often a large amount of labeled data
is available, like current profitable and un-profitable
customers, typically even more unlabeled data, like
new potential customers, can be easily obtained. In
all these applications there is the potential for a bet-
ter performance of machine learning algorithms by the
additional use of unlabeled data.

One approach in semi-supervised learning is to ex-
ploit the geometric structure of the data distribution.
The underlying assumption, often utilized indirectly,
is that nearby data points should belong to the same
class. A stronger condition is the so-called cluster
assumption, which states that the decision boundary
should lie in regions of low data density. Then points
which are connected by a path through regions with
high data density have the same label. For example
in (Bousquet et al., 2004; Chapelle & Zien, 2005) dif-
ferent algorithms based on the cluster assumption are
proposed. The former uses the gradient weighted by
an empirical estimate of the density of the data dis-
tribution as a regularization operator, the latter uses
a transductive support vector machine (Vapnik, 1998)
with a graph-distance derived kernel.

Manifold learning algorithms implicitly use the clus-
ter assumption. They attain classifiers which vary lit-
tle along the manifolds described by the data. When
classes form different manifolds the decision boundary
will therefore be in-between the manifolds, which indi-
rectly implements the cluster assumption. In (Belkin
et al., 2004; Belkin et al., 2005) the regularization net-
work approach of (Girosi et al., 1995) is extended with
ideas from manifold learning. There, an additional
regularization term is introduced for the smoothness
with respect to the intrinsic structure of the data
distribution. Furthermore, they propose new kernel
based algorithms which extend support vector ma-
chines (SVM) and regularized least squares in this re-
spect. Their approach is formulated in a Reproducing
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Kernel Hilbert Space and a Representer theorem is
proved which gives the theoretical foundation for the
algorithms. The additional regularization term em-
ployed is the graph Laplacian of a weighted data ad-
jacency graph. It resembles an empirical estimate of
the Laplace operator defined on the manifold on which
the data is situated.

In this article, we apply the ansatz of (Garcke et al.,
2001; Garcke & Griebel, 2002) to this extended reg-
ularization network approach. In contrast to kernel
based methods, where global ansatz functions associ-
ated to data points are employed, in our approach a
point grid, independent of the data, with associated
local ansatz functions is used to discretize the func-
tion space and represent the classifier. This is similar
to the numerical treatment of partial differential equa-
tions by finite element methods.

Conventional grid-based techniques usually suffer from
the curse of dimensionality, i.e., the complexity of the
computation grows exponentially with the dimension.
This is probably the reason why these methods were
not used in machine learning until recently. However,
a discretization using so-called sparse grids (Zenger,
1991) allows to cope with the curse of dimensional-
ity to some extent. It is based on a hierarchical ba-
sis and a tensor product construction. This method
has been originally developed for the solution of par-
tial differential equations and is now successfully used
for integral equations, interpolation and approxima-
tion, eigenvalue problems, and integration problems,
see (Bungartz & Griebel, 2004) for an overview ar-
ticle. This ansatz is also known as ’hyperbolic cross
points’ and the idea can be traced back to (Smolyak,
1963).

We apply sparse grids in the form of the combination
technique (Griebel et al., 1992) to the extended reg-
ularization network from (Belkin et al., 2004; Belkin
et al., 2005). The problem is discretized and solved
on a certain sequence of anisotropic grids, i.e., grids
with in general different uniform mesh sizes in each
coordinate direction. A linear combination of the par-
tial solutions then gives the sparse grid representation.
Thus the classifier is built with ansatz functions associ-
ated to grid points and not data points. The resulting
method scales linear in the number of instances, i.e.,
the amount of labeled and unlabeled data (as long the
graph Laplacian is sparse). This allows to deal with
huge data sets with millions of points. Due to complex-
ity reasons, the number of attributes is currently lim-
ited to 20 dimensions in practical applications, which
however often can be reached by a suitable preprocess-
ing of the data.

The remainder of this paper is organized as follows: In
section 2 we state the semi-supervised learning prob-
lem in the regularization network formulation with
an additional regularization term which involves the
graph Laplacian derived from the data points. In sec-
tion 3 we discuss the discretization and solution in a
sparse grid function space where we employ the so-
called sparse grid combination technique. In section
4 we comment on the computational complexities of
our method. Section 5 describes experimental results
of our new method for the two moons toy problem,
two large 10-dimensional data sets, and a task from
the Data-Mining-Cup 2000, where the profit of a di-
rect mailing campaign has to be maximized. We give
some final remarks in section 6.

2. Semi-supervised Learning

Semi-supervised learning, also called learning from
partially classified examples, has been first explored in
statistics, where it is modeled as a missing data prob-
lem. There, mixture models are used where mixture
components are identified as classes. Most approaches
adapt the EM algorithm and perform maximum likeli-
hood estimation, see (McLachlan, 1992). An overview
of more recent approaches to semi-supervised learning
including co-training, Fisher kernels, and transductive
interference can be found in the review paper (Seeger,
2000). In (Belkin et al., 2004) a list of recent devel-
opments for semi-supervised classification using graph
based approaches is given. Furthermore, (Smola &
Kondor, 2003) describe kernels and regularization op-
erators on graphs in a more general framework, in-
cluding diffusion kernels and the graph Laplacian as
special cases.

We interpret classification of data as a scattered data
approximation problem in a possibly high-dimensional
space. Given is a set of already labeled data

Sl = {(xi, yi)}
ml

i=1 xi ∈
� d, yi ∈ {−1, 1},

and an additional set of unlabeled data

Su = {xi}
ml+mu

i=ml+1 xi ∈
� d.

We denote in the following m := ml +mu as the num-
ber of all, labeled and unlabeled data.

First, let us briefly consider the conventional case,
where we only make use of the labeled data set Sl.
Assume that the data has been obtained by sampling
an unknown function f which belongs to some space
V of functions defined over

� d. The sampling pro-
cess may be disturbed by noise. The aim is to re-
cover the function f from the given data as good
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as possible. To achieve a well-posed (and uniquely
solvable) problem to recover f from the given data
Tikhonov-regularization theory (Tikhonov & Arsenin,
1977; Wahba, 1990) imposes a smoothness constraint
on the solution. This leads to the variational problem

min
f∈V

R(f)

with

R(f) =
1

ml

ml
∑

i=1

(f(xi) − yi)
2 + λ||Sf ||22. (1)

Here, S is a linear operator. Typical examples are

Sf = ∇f, or Sf = ∆f,

where ∇ denotes the gradient and ∆ the Laplace
operator. The first term in (1) measures the error
and therefore enforces closeness of f to the labeled
data, the second term ||Sf ||22 enforces smoothness of
f , and the regularization parameter λ balances these
two terms. This formulation was introduced for ma-
chine learning in (Girosi et al., 1995) under the name
regularization network.

Here and in the following we only consider the squared
error

∑ml

i=1(f(xi) − yi)
2 as a cost function, but note

that other terms, e.g. soft margin loss for SVM classi-
fication, can be used as well.

In (Belkin et al., 2004; Belkin et al., 2005) the for-
mulation (1) is extended to the case of labeled and
unlabeled data with an additional regularization term
‖f‖I , which controls the smoothness with respect to
the intrinsic geometry. This is motivated by the as-
sumption that two points which are nearby in the in-
trinsic geometry of the data distribution might have
a higher likelihood to be in the same class. One then
has to minimize

R(f) =
1

ml

ml
∑

i=1

(f(xi) − yi)
2 + λA||Sf ||22 + λI‖f‖

2
I .

There are now two regularization parameters λA, λI

which control the amount of smoothing of the function
in the ambient space and the amount of smoothing
with respect to the data distribution, respectively.

Furthermore, (Belkin et al., 2004; Belkin et al., 2005)
propose to choose the Laplace operator defined on the
manifold M which is formed by the data

‖f‖2
I =

∫

M

〈∇Mf,∇Mf〉

as the intrinsic regularizer. This approach is based on
ideas from manifold learning, where in recent years

various algorithms were suggested. There, the aim
is to obtain a lower-dimensional embedding of data
which form a nonlinear manifold M ⊂

�
d. Algorithms

like Isomap, Locally Linear Embedding (LLE), Lapla-
cian Eigenmap, Hessian LLE, or Semidefinite Embed-
ding (SDE) achieve this roughly as follows: First, for
each point a neighborhood in input space is computed
and, depending on which kind of mapping is to be
learned and which geometric signature is to be pre-
served, a matrix is derived from it. Then, the top or
bottom eigenvectors of this matrix are determined for
a spectral embedding, see the recent paper on SDE
(Weinberger & Saul, 2004) for details and references.
Note that Isomap, LLE, Laplacian Eigenmaps, and
SDE can also be linked to kernel PCA (Bengio et al.,
2004; Ham et al., 2004; Weinberger et al., 2004).

To achieve an empirical estimate for ‖f‖2
I (Belkin

et al., 2004; Belkin et al., 2005) now first compute an
adjacency graph with k-nearest neighbors or, alterna-
tively, ε-neighborhoods from the labeled and unlabeled
data to approximate the manifold structure. The asso-
ciated graph Laplacian, using appropriate weights, can
then be taken as an approximation of

∫

M
〈∇Mf,∇Mf〉.

This results in the new objective function

R(f) =
1

ml

ml
∑

i=1

(f(xi) − yi)
2
+ λA‖Sf‖2

2

+
λI

m2

m
∑

i,j=1

(

f(xi) − f(xj)
)2

Wi,j ,

where Wi,j are edge weights in the data adjacency
graph. Here, the weights are chosen as a function
of the distance between xi and xj . Possible choices

are the heat kernel exp(−‖xi − xj‖
2/σ) or the in-

verted squared Euclidean distance. Alternatively bi-
nary weights might be used, i.e., Wi,j = 1 if there is
an edge between vertices i and j and 0 otherwise. In
text classification angles are commonly used instead of
distances. The fore-factor 1/m2 is usually suggested
as the natural scale for the empirical estimate of the
Laplace operator, it may be replaced by

∑m

i,j Wi,j for
a sparse adjacency graph.

This formulation can be rewritten as

R(f) =
1

ml

ml
∑

i=1

(f(xi) − yi)
2

+ λA‖Sf‖2
2 (2)

+
λI

m2
f>Lf.

Here f = (f(x1), . . . , f(xm))> and L denotes the re-
spective graph Laplacian L = D−W with the diagonal
matrix D given by Di,i =

∑m

j=1 Wi,j .
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Note that the graph Laplacian L is the empirical
counterpart of the Laplace operator defined on the
manifold only if the data distribution is uniform on
M. In the general case the continuous equivalent of
f>Lf is 〈p∇f, p∇f〉, where p denotes the density of
the marginal distribution, see (Bousquet et al., 2004).
There, in an approach called measure based regular-
ization, the term 〈p∇f, p∇f〉L2

is used for regular-
ization but a corresponding term for ||Sf ||22 is miss-
ing. For two-dimensional examples this method im-
plements the cluster assumption, but for real world
experiments no successful results could be reported.
Furthermore, in (Bousquet et al., 2004), a method is
proposed which uses a density based change of geom-
etry which is linked to Isomap. Its implementation is
discussed in (Chapelle & Zien, 2005). It is also shown
that for the standard L2-norm of the gradient ”modify-
ing the measure [according to the density] and keeping
the geometry, or modifying the geometry [to a density
based one] and keeping the Lebesgue measure leads to
the same regularizer”.

Let us now assume that we have a basis of the function
space V given by {ϕj(x)}∞j=1. We can then represent
every f ∈ V as

f(x) =

∞
∑

j=1

αjϕj(x). (3)

We plug (3) into (2) and obtain

R(f) =
1

ml

ml
∑

i=1





∞
∑

j=1

αjϕj(xi) − yi





2

+λA

∞
∑

i,j=1

αiαj〈Sϕi,Sϕj〉2

+
λI

m2

∞
∑

i,j=1

αiαj

m
∑

k,l=1

ϕi(xk)Lk,lϕj(xl).

Setting ∂R(f)
∂αq

= 0 gives (q = 1, . . . ,∞)

∞
∑

j=1

αj

[

ml
∑

i=1

ϕj(xi) · ϕq(xi) + λAml〈Sϕq ,Sϕj〉L2

+
λI

m2
ml

m
∑

k,l=1

ϕq(xk)Lk,l ϕj(xl)



=

ml
∑

i=1

yiϕq(xi). (4)

This is equivalent to the system of linear equations
(

B>
ml

Bml
+ λAml · C +

λIml

m2
B>LB

)

α = B>
ml

y, (5)

with infinite-dimensional matrices and vectors, where
the data matrix B is a ’rectangular’ matrix (B>)j,k =

(B>
ml

B>
mu

)j,k = ϕj(xk), j = 1, . . . ,∞, k = 1, . . . , M ,
and the ’quadratic’ regularization matrix C is positive
semi-definite with entries Cj,k = 〈Sϕj ,Sϕk〉L2

, j, k =
1, . . . ,∞. This can be rewritten as

(

λAml · C + B>

(

Iml
+

λIml

m2
L

)

B

)

α = B>
ml

y, (6)

where Iml
consists of the identity matrix for the ml

labeled data and is zero everywhere else, i.e., Iml
=

(

I 0
0 0

)

provided that the vector α and the other

matrices are accordingly block-partitioned.

3. Discretization with Sparse Grids

In the following we restrict the problem explicitly to
a finite dimensional subspace VN ⊂ V with an appro-
priate basis. Such an explicit restriction to a discrete
space is fundamentally different to kernel approaches.
There, a finite representation of the solution in an in-
finite dimensional space is given via the representer
theorem (Wahba, 1990) as a sum over kernel functions
associated to the data points. Thus kernel based meth-
ods can be seen as working in the data space. In our
approach we work in the function space induced by
the smoothing operator S and discretize the function
space by means of sparse grids, as explained in more
detail in the following. Note beforehand that any dis-
cretization involves additional regularization by pro-
jection (Natterer, 1977) and that there is an interplay
between regularization by projection and Tikhonov-
regularization, see (Binder et al., 2002).

To be precise we use sparse grids (Zenger, 1991), which
are based on a hierarchical subspace splitting and
a suitable limited tensor product construction. We
apply this approach in the form of the combination
technique (Griebel et al., 1992) to approximate func-
tions f ∈ V . We discretize and solve the problem
(5) on a suitable sequence of small anisotropic grids
Ωl = Ωl1,...,ld with uniform mesh sizes ht = 2−lt in the
t-th coordinate direction. For ease of presentation we
assume the domain [0, 1]d here and in the following.

A finite element approach with piecewise d-linear func-
tions

φl,j(x) :=

d
∏

t=1

φlt,jt
(xt)

on each grid Ωl, where the one-dimensional basis func-
tions φl,j(x) are defined as the so-called hat functions

φl,j(x) =

{

1 − | x
hl

− j|, x ∈ [(j − 1)hl, (j + 1)hl]

0, otherwise,
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now gives the representation

fl(x) =
2l1
∑

j1=0

...
2ld
∑

jd=0

αl,jφl,j(x).

Each d-linear function φl,j(x) is one at grid point j
and zero at all other points of grid Ωl.

The variational procedure (2) - (5) now results in the
discrete system

(

B>
ml,l

Bml,l + λAml · Cl +
λIml

m2
B>

l LBl

)

αl = B>
ml,l

y,

Note that the matrices on the left hand side can be
stored in one N ×N matrix, where N = Πd

t=1(2
lt +1),

and on the right hand side the evaluation of the ma-
trix is only needed once. We then solve these prob-
lems by a feasible method. Due to the use of local ba-
sis functions the combined matrix has a sparse struc-
ture as long as the graph Laplacian L is sparse, there-
fore we can use an iterative method, currently a di-
agonally preconditioned conjugate gradient algorithm.
But also multigrid approaches or the algebraic multi-
grid method are in principle possible to achieve itera-
tion numbers independent of the mesh size, resulting
in an O(N) method.

We now in particular consider all grids Ωl with

|l|1 := l1 + ... + ld = n − q, q = 0, .., d − 1, lt ≥ 0,

set up and solve the associated problems (5) and lin-
early combine the resulting discrete solutions fl(x)
from the partial grids Ωl according to the combina-
tion formula (Griebel et al., 1992)

f c
n(x) :=

d−1
∑

q=0

(−1)q

(

d − 1

q

)

∑

|l|1=n−q

fl(x). (7)

Note the varying sign of the fore-factor, which ”off-
sets” the fact that some sparse grid points occur sev-
eral times within the combination technique.

For the two-dimensional case, we display the grids
needed in the combination formula of level 4 in Figure
1 and give the resulting sparse grid.

The resulting function f c
n lives in the sparse grid space

V s
n :=

⋃

|l|1 = n − q
q = 0, ..., d − 1 lt ≥ 0

Vl,

where

Vl := span{φl,j , jt = 0, ..., 2lt , t = 1, ..., d}, (8)

p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p
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Figure 1. Grids involved for the combination technique of
level n = 4 in two dimensions

is the space of piecewise d-linear functions on
grid Ωl. The V s

n space has dimension of order
O(h−1

n (log(h−1
n ))d−1) in contrast to O(hd

n) for conven-
tional grid based approaches. It is spanned by a piece-
wise d-linear hierarchical tensor product basis. Note
that the summation of the discrete functions from dif-
ferent spaces Vl in (7) involves d-linear interpolation
which resembles just the transformation to a repre-
sentation in the hierarchical basis, see (Bungartz &
Griebel, 2004).

Note that we never explicitly assemble the function f c
n

but keep instead the solutions fl which arise in the
combination formula. Therefore, if we now want to
evaluate a newly given set of data points {x̃i}

mn

i=1 by

ỹi := f c
n(x̃i), i = 1, ..., mn

we just form the combination of the associated values
for fl according to (7).

For second order elliptic PDE model problems it was
proven that the combination solution f c

n is almost as
accurate as the standard full grid solution fn, i.e., the
discretization error satisfies

||e(c)
n ||Lp

:= ||f − f (c)
n ||Lp

= O(h2
n log(h−1

n )d−1)

provided that a slightly stronger smoothness require-
ment holds on f than for results with the full grid
approach. One needs the seminorm

|f |∞ :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2df
∏d

j=1 ∂x2
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

to be bounded. Furthermore, a series expansion of the
error is necessary for formal convergence proofs of the
combination technique for general problems. Its ex-
istence was shown for PDE model problems in (Bun-
gartz et al., 1994), see also (Pflaum & Zhou, 1999) for
an alternative convergence proof.
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(1,1,1)

(0,0,0)

Figure 2. A simplicial discretization divides each rectangu-
lar block formed by grid points into d! simplices.

Note that the combination technique is only one of
the various methods to solve problems on sparse grids.
There exist also finite difference and Galerkin finite
element approaches which work directly in the hierar-
chical product basis on the sparse grid, see (Bungartz
& Griebel, 2004) for detailed references. But the com-
bination technique is conceptually much simpler and
easier to implement. Moreover, it allows to reuse stan-
dard solvers for its different subproblems.

4. Complexity

During the computation of the sparse grid solution
we have to deal with O(d · nd−1) problems of size
dim(Vl) = O(2d−1·h−1

n ) = O(2d−1·2n). All these prob-
lems can be solved independently, which allows for a
straightforward parallelization, for details see (Garcke
et al., 2003). Note that the term 2d−1 in the above or-
der complexity of dim(Vl) limits our approach in the
number of attributes.

The original derivation of the combination technique
is based on d-linear basis functions stemming from a
tensor product approach. This way 2d basis functions,
associated to the nodes of a finite element cube, are
non-zero for each data point inside a cube. In (Garcke
& Griebel, 2002) linear basis functions for a simplicial
discretization are used for the combination technique
instead. With a simplicial discretization, see Figure
2, only d + 1 basis functions which are associated to
the vertices of each simplex have to be evaluated for
each data point. This reduces the number of opera-
tions needed for the processing of one data point dur-
ing the computation of the entries of B>

ml
Bml

in (5)
from costs which are exponential in d to costs which
are only quadratic in d.

The situation is similar for the computation of the ma-
trix entries which correspond to the additional regu-
larization term

(B>LB)i,j =

m
∑

k,l=1

ϕi(xk) · Lk,l · ϕj(xl).

For each data point xk the values of all basis func-
tions ϕi which are non-zero on it have to be com-

puted. Furthermore, all basis functions ϕj which are
non-zero on data points xl which are connected to xk,
i.e., with Lk,l 6= 0, have to be evaluated. In the case
of a sparse graph with degree k the work count for
one data point is thus O(k · (d + 1)2) using the sim-
plicial discretization. This results in a complexity of
the order O(k · (d + 1)2 · m) to compute all non-zero
entries of B>LB. As already mentioned, in this case
the combined matrix B>

ml
Bml

+ λAml · C + λIml

m2 B>LB
is sparse. Then, the cost of the actual solution of the
linear equation system (5) has order O(N), provided
that an appropriate multigrid method is used. The
cost is independent of m in any case.

For a full graph Laplacian the complexity for the com-
putation of B>LB would be O((d + 1)2 · m2) since all
data points are connected. Furthermore the combined
N×N matrix is now in general full which requires a dif-
ferent solution strategy. In the worst case O(N 3) op-
erations are needed. This can be reduced to O(N 2.376)
operations if Strassen’s approach or related techniques
are employed. Nevertheless, for complexity reasons, it
is better to a-priori approximate the full graph by a
sparse one by e.g. choosing a similarity measure and
a nearest neighbor cut-off which leads directly to a
sparse matrix.

The complexity of recently proposed kernel based ap-
proaches (Belkin et al., 2004; Belkin et al., 2005;
Chapelle & Zien, 2005) is currently of the order
O(m3) which significantly limits the amount of data
that can be handled by them. Related to these al-
gorithms (Delalleau et al., 2005) introduce a semi-
supervised approach using a heuristic subset selection
and an approximate training algorithm with complex-
ity O(n2(m − n)), where n is the size of the subset.

Note that for the computation of a sparse adjacency
graph from the data points in a preprocessing step,
spatial indexing structures such as kd-trees can be
used for the efficient computation of neighbors in vec-
tor spaces. But kd-trees suffer from the curse of di-
mensionality and degenerate to linear searches in high
dimensions, see (Weber et al., 1998) for a quantitative
study. There also exist various methods to compute
approximate nearest neighbors (Berrani et al., 2003)
which avoid these disadvantages, trading accuracy for
computation time. In our context such an approach
is most favorable for the economical construction of a
sparse adjacency graph from the data.

It can be observed in practice and verified theoreti-
cally, that with high dimensions the distances between
a point and its neighbors become almost constant, so
that all data are close to a hypersphere around the
point. The concept of nearest neighbor is no longer
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λA = 0.01, γI = 0 λA = 0.01, γI = 0.02 λA = 0.01, γI = 0.1 λA = 0.01, γI = 0.5

Figure 3. Two moons toy problem, 200 data points, one labeled sample for each class (the square and the circle). Sparse
grid of level 8.

meaningful, see e.g. (Beyer et al., 1999). Already for
20 dimensions nearest neighbors can become unstable
(Beyer et al., 1999). This is an effect of the concen-
tration of measure phenomenon observed in higher di-
mensions, see e.g. (Ledoux, 2001). The applicability
of the proposed geometry based approaches for truly
high dimensional data has to be studied further under
this aspect.

5. Examples

For the following experiments we compute the graph
Laplacian for a k-nearest neighbor adjacency graph,
which we symmetrize beforehand, i.e., if xi is a k-
nearest neighbor of xj , then this is also valid vice versa.
We fix the number of nearest neighbors to k = 7 and
we use binary weights in the graph. As smoothing op-
erator we employ S = ∇ due to the piecewise linear
basis functions. Note that the qualitative behavior of
the results is similar for slightly modified values of k
and for the choice of the Euclidean distance instead
of binary weights. In the following we use an intrinsic
regularization parameter γI , where γI := λIml

(m)2 .

5.1. Two Moons

The two moons example is a common toy problem to
visualize the behavior of semi-supervised learning al-
gorithms in just two dimensions (Belkin et al., 2004;
Bousquet et al., 2004). It contains 200 samples points
with one labeled sample for each class.

In Figure 3 we show the results of our numerical ex-
periments with the new sparse grid method for semi-
supervised learning. We use a sparse grid of level 8,
fix λA to 0.01, and vary the intrinsic regularization pa-
rameter γI . For the value γI = 0 we obtain just the
standard classification problem where the geometric
structure of the distribution of the labeled and unla-
beled data has no effect. We now gradually turn the

intrinsic regularization term on and set γI to 0.02, 0.1
and 0.5. We clearly see that the two clusters get
properly separated. Note that since we enforce Neu-
mann boundary conditions, the layer separating the
two classes is orthogonal to the boundary.

5.2. ndcHard data set

With the 10-dimensional synthetic ndcHard1 data set
we compare our numerical results with the approach
of (Belkin et al., 2004). We use a subset for train-
ing of 2000 data with 200 labeled data and evaluate
on the original test set of 20000 points. For the ap-
proach of (Belkin et al., 2004) we optimize the pa-
rameters (width of the RBF kernel, γI and λA) on
the test set and achieve an error rate of 26.6%. Note
that using a linear kernel and all 2-million labeled
data an error rate of 30.1% was achieved in (Fung &
Mangasarian, 2001) using the so-called proximal SVM,
which is a variant of regularized least squares classifi-
cation. For the supervised sparse grid approach using
all data a 15.1% classification error is reported (Garcke
& Griebel, 2002).

For our sparse grid approach we pick the parameters
γI and λA using the labeled data of the training set
and 5-fold cross-validation. Note that here and in the
following we only use the grid Ω0 with 2d grid points,
i.e., n = 0. A higher level sparse grid combination
technique does not yield better results, this somewhat
surprising result was observed before for higher dimen-
sional supervised cases in (Garcke & Griebel, 2002;
Garcke, 2004) and is being further investigated. Using
the subset of 2000 data, i.e., 200 labeled and 1800 un-
labeled data as above, we achieve a classification error
of 28.9% on the test set. Using 20000 training data and
the same 200 labeled data we get 27.8% classification
error and if we go to 200 000 training data the clas-

1www.cs.wisc.edu/dmi/svm/ndc/, see (Fung & Man-
gasarian, 2001) for ndcHard
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data (labeled) AUC test test error time (sec.)
200 (200) 0.691 36.9 % 1.2
2000 (200) 0.695 36.6 % 1.9
20000 (200) 0.700 36.1 % 8.7
200000 (200) 0.703 36.2 % 73.1
2000 (2000) 0.754 30.6 % 1.3
20000 (2000) 0.755 30.6 % 8.8
200000 (2000) 0.764 29.7 % 73.7

Table 1. Results for the forest covertype data set. The time
shown is for the computation of one parameter combina-
tion without the time for the computation of the graph
Laplacian L, which only needs to be computed once for all
parameters.

sifcation error reduces to 27.3%. The computation for
the small size of 2000 data takes about 2 seconds for
our approach in comparison to the approach of (Belkin
et al., 2004) which takes about 5 seconds. For larger
data set sizes the latter scales currently cubically (in
time and memory usage) in the number of data and
soon becomes intractable. Especially for m > 15000
the resulting kernel matrix cannot be stored anymore
on current workstations, whereas our approach scales
linearly in m for time and required memory.

5.3. Forest Covertype

We here use a subset of the Forest Covertype2 data
set, utilizing its 10 numerical attributes. Furthermore,
we make the classification problem binary by learning
class 2, roughly half of the data, against the rest.

We take a set of 200 000 points for training and pa-
rameter fitting. We learn with 200, 2000, 20 000, and
200 000 data where only the first 200 are used as la-
beled, the rest as unlabeled data. We solve for a range
of λA and γI and pick good parameters with 5-fold
cross-validation over the labeled data.

To be able to compare over different sizes of unlabeled
data we now compute results on a separate test set of
200 000 points, but use the data from the training set
as unlabeled data, the experimental results are given in
Table 1. Using the unlabeled data increases the area
under ROC curve (AUC) and reduces the test error
for about 2%. The Lift-chart presented in Figure 4,
which gives the ratio between the result predicted by
our model and the result using no model, shows a more
significant improvement for the high ranked data.

Using more labeled data, i.e., 2000 instead of 200, im-
proves the results substantially. Here the use of un-
labeled data gives results with even less change than

2UCI KDD archive, http://kdd.ics.uci.edu
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Figure 4. Lift-chart for the forest covertype data set

before, furthermore the gain now seems to be equally
distributed over the ranking of the data.

We also give the computational time for computing the
result for one parameter set in Table 1. Here we do not
include the time for computing the graph Laplacian,
which we compute once with an outside tool, store
and load for each computation of B>LB. We see that
the method scales only linear in the number of data
(labeled and unlabeled).

5.4. Data-Mining-Cup 2000

We now apply our method to a real life data set which
was used for a data mining competition3. The task
is to identify the most likely responders to a direct
mailing campaign, the aim is to maximize the profit of
the marketing activity. The cost for a non-responder
is 12 DEM, the average profit for a responder is 185
DEM. The data set consists of 10,000 training data
with 40 attributes. The evaluation set contains 34,820
data points.

First, we perform a PCA on the training data to reduce
the number of attributes to the 18 most important
ones for which still 93.5% of the variance is captured.
The same transformation is applied to the evaluation
set. We then split the training data, using 6000 points
for the actual learning and 4000 points as a test data
set for the model selection of the method. Our model
involves the free parameters λA, γI and cut-off %. The
latter is the top percentage of the data points xi sorted
in descending order according to the value of f(xi),
which are then chosen for the direct mailing campaign.
Again it turned out that a sparse grid discretization
of the coarsest level, i.e., level n = 0, was already
sufficient.

3http://www.data-mining-cup.de/2000/
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The winner of the original Data-Mining-Cup 2000
competition achieved a profit of 67,038 DEM on the
evaluation set, non-competing data mining specialists
achieved 84,995 DEM. Using a sparse grid approach
for conventional supervised classification, i.e., γI = 0,
we achieve 87,705 DEM (Garcke, 2004).

We now additionally use the evaluation data set in
the semi-supervised ansatz. To this end the graph
Laplacian is computed for all 44,820 data points, but
the parameter selection still takes place over the same
6000:4000 split of the training data. We now achieve
a profit of 93,812 DEM on the evaluation set. This is
a gain of 7% in comparison to our supervised results
and a gain of 10% in comparison to the results of the
data mining specialists.

As a consistency check we also computed the optimal
results, i.e., we picked the maximum profit attained
on the evaluation set over a wide range of parameters,
instead of using the proper model parameter selection
on the training data as above. Again the maximum
profit achieved with the semi-supervised approach is
higher than with the supervised one.

6. Conclusions

In this article we presented a sparse grid method
for semi-supervised learning problems using a graph-
based approach for the unlabeled data. In contrast to
most kernel based approaches which show a O(m3)
complexity, its complexity only scales linear in the
number of data. This allows to treat huge data sets
which involve millions of points.

The number of attributes our method can handle is
limited since the sparse grid based approach involves
at least 2d grid points. But the method can be im-
proved to deal with higher dimensional problems as
well. To this end, generalized sparse grids (Gerstner
& Griebel, 1998) or dimension-adaptive sparse grids
(Gerstner & Griebel, 2003; Hegland, 2003) can be
used. For the grid selection in the dimension-adaptive
approach, suitable refinement criteria still have to be
developed, though.

Also the incorporation of other intrinsic regularization
operators from manifold learning into our approach,
coming from Isomap, LLE, or SDE, has to be inves-
tigated in more detail. Finally, the relation to the
concept of diffusion maps and distances (Coifman &
Lafon, 2004), which are constructed from Markov pro-
cesses defined on data sets, is surely worth further
studies.
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