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Abstract We propose a model-based online reinforcement learning approach for
continuous domains with deterministic transitions using a spatially adaptive sparse
grid in the planning stage. The model learning employs Gaussian processes regres-
sion and allows a low sample complexity. The adaptive sparse grid is introduced to
allow the representation of the value function in the planning stage in higher dimen-
sional state spaces. This work gives numerical evidence that adaptive sparse grids
are applicable in the case of reinforcement learning.

1 Introduction

We consider function approximation techniques for reinforcement learning (RL).
Reinforcement learning is a computational approach to learning, where an agent
tries to maximise the total amount of reward it receives when interacting with a
complex, uncertain environment [34]. The setting is very closely related to solving
optimal control problems using Hamilton-Jacobi Bellman (HJB) equations, but in
contrast to that only a partial amount of the data describing the system is known.
For example the state dynamics describing the evolution of a system are unknown
and can only be observed by performing actions.

Formally the evolution of the problem in the control space is determined by the
differential equation

∂x(t)
∂ t

= f (x(t),β (t)),
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where x(t) is the state, β (t) the action and f is called state dynamics. The latter
describes the effect of an action β taken in a particular state x, and gives the new
state f (x,β ) after the action is taken. Although we consider deterministic dynamics
in this work, they could also be stochastic, to which situation our approach can be
extended. For an initial state x0 the choice of actions β therefore leads to a unique
trajectory x(t). Further, there is the reinforcement or reward function r(x,β ), which
assigns each state (or state-action pair) a numerical value indicating the intrinsic
desirability of that state. The aim is to find a policy which maximises the total reward
in the long run, where rewards in states reached by a trajectory through the state
space are taken into account. For simplicity we consider a deterministic policies
π(x), which assign each state a unique action, i.e., β = π(x); it is a mapping from
perceived states of the environment to actions to be taken when in those states.

There are many types of reinforcement learning problems: state dynamics known
or not, discrete or continuous case, model-based or model-free, deterministic or
stochastic [34]. What they all have in common is that they solve an optimal control
problem, at least implicitly. The difference of reinforcement learning in comparison
to optimal control problems is that the state dynamics and the reinforcement func-
tion are, a priori, at least partially unknown. Nevertheless, it is a problem of optimal
control and the dynamic programming method is usually employed to estimate the
best future cumulative reinforcement.

In this work we consider a deterministic model-based reinforcement learning
approach in a continuous state space with unknown state dynamics, but known re-
wards. As in [9, 23] and related methods our approach consists of two ingredients,
a model-learner and a planner. By performing an action β in a state x the algorithm
interacts with the environment and observes a sample f (x,β ) of the state dynamics.
Based on such sample transitions {xk,βk, f (xk,βk)}k=1,...,K the model-learner then
estimates the state dynamics. On the other hand, given the current model the plan-
ner aims to find the best possible action β in a state x, i.e. those which is part of
the trajectory starting at x with the highest total reward, and thereby determines an
approximation π to the optimal policy π∗. With more and more samples of the state
dynamics the model-learner is assumed to become more accurate, while the derived
actions are supposed to get closer to the optimal ones from π∗.

For model-learning we use Gaussian process regression as in [23], while for the
planner we employ adaptive sparse grid interpolation. The discretization technique
of sparse grids allows to cope with the curse of dimensionality to some extent. It is
based on a hierarchical multilevel basis [36] and a sparse tensor product construc-
tion. The underlying idea was first used for numerical integration and interpola-
tion [33]. Subsequently, the sparse grid method has been developed for the solution
of partial differential equations [37]. By now, it is also successfully used for, e.g.,
integral equations, stochastic differential equations, machine learning, or approxi-
mation, see the overview articles [10, 17] and the references cited therein.

For the representation of a function f defined over a d-dimensional domain,
the conventional sparse grid approach employs O(h−1

n · log(h−1
n )d−1) grid points

in the discretization process, where hn := 2−n denotes the mesh width. It can be
shown that the order of approximation to describe a function f , provided that cer-
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tain mixed smoothness conditions hold, is O(h2
n · log(h−1

n )d−1). This is in contrast
to conventional grid methods, which need O(h−d

n ) for an accuracy of O(h2
n), albeit

for less stringent smoothness conditions. Thus, the curse of dimensionality of full
grid methods arises for sparse grids to a much smaller extent. In case the smooth-
ness conditions are not fulfilled, spatially adaptive sparse grids have been used with
good success [6, 10, 15, 31]. There, as in any adaptive grid refinement procedure,
the employed hierarchical basis functions are chosen during the actual computation
depending on the function to be represented. In regard to adaptivity, closely related
work in reinforcement learning was presented in [28, 30], in contrast to these ap-
proaches we investigate sparse grids in the planner and use a model-based setting.

The presented sparse grid approach for reinforcement learning is an extension
of a semi-Lagrangian scheme for HJB-equations on an adaptive sparse grid, which
was introduced in [6]. There it was empirically shown that for problems related to
the front propagation model, the number of grid points needed in higher dimensions
to approximately represent the involved functions with a given threshold error can
be small. Thus, the approach is able to circumvent the curse of dimensionality of
standard grid approaches for Hamilton-Jacobi Bellman equations to some extent.
This work now shows numerical results for the case of reinforcement learning and
gives evidence that adaptive sparse grids can be used there as well.

But note that the sparse grid scheme is not monotone as the interpolation with
sparse grids is not monotone [29, 31]. Thus neither convergence towards the viscos-
ity solutions of Hamilton-Jacobi Bellman equations nor stability of the scheme can
presently be guaranteed, even for the linear advection equation. Consequently, these
properties do not necessarily hold in the case of reinforcement learning either; nu-
merically divergent behaviour of the adaptive sparse grid approach can be observed
in certain situations. To this end, further analytical work on the scheme, both for the
HJB and the RL case, is necessary.

2 Reinforcement Learning

Our reinforcement learning approach is based on the procedure presented in [23], a
model-based online reinforcement learning approach for continuous domains with
deterministic transitions. It separates function approximation in the model learner
from the interpolation in the planner. For model-learning we use Gaussian process
regression as in [23], but we replace the equidistant grid in the planner by an adap-
tive sparse grid procedure similar to the one used for HJB equations [6]. The overall
approach assumes some properties of the reinforcement learning problems under
consideration: We consider discrete actions, a smooth transition function, i.e. an ac-
tion performed on states which are close in state space must lead to successor states
that are close, deterministic transitions, and known reward functions. The latter two
are mainly for simplicity, the ingredients of the approach can be extended to the non-
deterministic case, and learning a reward function would just be one more function
to be learned. Since our goal is to investigate the applicability of adaptive sparse
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grids in the planning stage of a reinforcement learning setting, a simple setting is
advantageous to concentrate on the effect of, and interplay with, unknown and only
approximately learned state dynamics, which is the extension in comparison to [6].

We assume that the state space X is a hyperrectangle in Rd , which is justi-
fied for many applications, and that we have a finite action space B, this might
involve discretizations of continuous controls. For simplicity we assign each ac-
tion a unique number 1, . . . , |B|. Note that we use here a setting where all actions
involve the same time horizon τ , which therefore can be omitted from the exposi-
tion for simplification. In general, temporal aspects need to be taken into account,
see e.g. [26, 30]. The function f : X ×B→X describes the state dynamics. In
our setting the state dynamics are (at least partially) unknown, only an approximate
model f̂ : X ×B→X , which will be learneded from samples, is available with
f ≈ f̂ . Finally r : X ×B→ R is the reward function.

For a state x∈X one is interested in determining a sequence of actions β0,β1, . . .
such that the accumulated reward is maximised, this is given by the optimal value
function v∗(x)

v∗(x) := max
β0,β1,...

{
∞

∑
t=0

γ
t · r(xt ,βt) | x0 = x,xt+1 = f (xt ,βt)

}
,

where 0 < γ < 1 is the discount factor, which determines the importance of future
rewards [5, 34].

The value iteration, the employed basic numerical scheme, is based on the dy-
namic programming principle and can be formulated as

vn+1(x) = max
β∈B

[
γ · vn( f̂ (x,β ))+ r(x,β )

]
, (1)

which computes the value function v∗(x) in the limit n→ ∞, see e.g. [1, 25, 26].
Note that in a similar fashion the value function vπ for a fixed policy π can be com-
puted. This formulation for the computation of the value function, the planning, is
valid for both situations, a known model f and a to be learned model f̂ . In addi-
tion, a numerical discretization of the value function is necessary, in particular for
continuous domains.

For any given value function v, e.g. a suitable numerical approximation v̂ of the
optimal value function v∗ computed by value iteration using a discretization ap-
proach, the corresponding control policy π(x) determined by v can easily be ob-
tained, since at each state the optimal action can be chosen depending on the given
value function v as follows

π(x) ∈ argmax
β∈B

[
γ · v( f̂ (x,β ))+ r(x,β )

]
.
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The overall reinforcement learning approach now consists of three parts as out-
lined in the following algorithm.

Algorithm: Generic Model-based Reinforcement Learning Approach

while learning do
interact with system and store observed transitions
learn model f̂ based on observed transitions
for planning use model f̂ to determine v̂π

In the following we will describe the model learning using Gaussian process
regression and the planning procedure in the next sections, where for the represen-
tation of the value function v we use a finite element approach, similar to [1, 25, 26],
but based on a sparse grid.

2.1 Model Learning with Gaussian Processes

We now describe how we, following [23], learn the model from samples which are
obtained by interactions with the environment. In its core, model learning is a re-
gression problem. In this work we aim to concentrate on evaluating sparse grids
for the planning stage, and therefore apply for the model learning a regression ap-
proach successfully used before in reinforcement learning, namely Gaussian pro-
cesses (GPs) [13, 23, 32]. As the kernel the squared exponential is employed

k(x,x′;v0,b,θ) = v0 exp
{
−0.5(x− x′)2

θ
}
,

where v0,b,θ are the to be determined hyperparameters. In our view, a main ad-
vantage of Gaussian processes in this application is the possible automatic determi-
nation of the hyperparameters in a controlled fashion using a maximum likelihood
approach. This is here in particular relevant since, as we will see, one needs to
repeatedly compute, or update, regression models. Nevertheless, it would be inter-
esting to investigate sparse grid regression [16, 31] in the model learning phase as
well.

The input data for the regression algorithm are the taken actions and their
resulting state, i.e. S = {xk,βk,xk+1}k=1,2,..., where xk+1 = f (xk,βk). As noted
before, the transition function f : X ×B → X is d-dimensional: f (x,β ) =
[ f1(x,β ), . . . , fd(x,β )]T . One can either estimate f directly, i.e. the absolute transi-
tions, or the relative change xk+1− xk, the latter we do as in [23]. We train multiple
Gaussian processes, one for each action and output dimension, and use the com-
bined predictions afterwards. In other words, a GPi j is trained for the output in the
i-th dimension of the j-th action, using the data when that action was taken, i.e. the
input data for GPi j is Si j =

{
xk,x

(i)
k+1− x(i)k

}
βk= j,k=1,2,...

. The hyperparameters are

computed for each individual GPi j by optimizing the marginal likelihood. For any
test point x the GPi j gives a distribution over target values N (µi j,σi j) with mean
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µi j(x) and variance σ2
i j(x). The change in the i-th coordinate of the state under the

j-th action is predicted by the mean µi j, where the variance can be interpreted as
the uncertainty of the prediction. The full learned model consists of d · |B| Gaussian
processes and the predicted successor state f̂ (x,β ) for any action β taken in state x
is then

f̂ (x,β ) :=

x(1)
...

x(d)

+
µ1β (x)

...
µdβ (x)

 ,
see [23] for more details on model learning with Gaussian processes.

3 Planning with Sparse Grids

We consider in the following the discretization needed for the planner in the case of a
continuous state-space and concentrate on the function approximation aspect. These
techniques are used in the context of Hamilton-Jacobi Bellman equations as a device
for having a numerical representation of the value function. They discretize an HJB-
equation (with a resolution ε) into a dynamic programming (DP) problem for some
stochastic Markov Decision Process (MDP). Using DP techniques the MDP can
then be solved. The convergence of the solution V ε of the discrete MDP to the value
function V of the continuous problem for ε→ 0 can be proven under assumptions on
the discretization scheme, namely it being (using suitable definitions) a consistent,
monotone and uniformly continuous numerical procedure to solve the underlying
HJB-equation. Generalizing these proofs (in regard to the deterministic or stochastic
setting, the regularity of the value function and the properties of the discretization
scheme) is an active field of research [2, 3, 4, 24, 26, 28]. Typical discretization
schemes are of finite-difference type [8, 7, 25], (operator) splitting methods [35], or
control schemes based on the dynamic programming principle (e.g. [11]).

The idea of a discretized HJB-equation was adopted to the field of reinforcement
learning [26, 28, 30]. Since the state dynamics and the reinforcement function are
not perfectly known, the original convergence proof [4] for DP was generalized to
the case where only approximations of these are known. Convergence was shown
when the number of iterations of the RL scheme (for the approximation of the state
dynamics and the reinforcement function) goes to infinity and the discretization step
tends to zero. The result applies in a general form to model-based or model-free RL
algorithms, for off-line or on-line methods, for deterministic or stochastic dynamics
and finite element or finite difference discretization [26].

Adaptive finite difference grids and a posteriori error estimates using the method-
ology from the numerical solution of partial differential equations were studied for
the deterministic HJB-equation [19] and later generalized to the stochastic case [20].
Adaptive schemes are particularly important since often the value function is non-
smooth. In [28] different spatial refinement strategies were studied, in particular a
heuristic is proposed which refines the grid mostly where there is a transition in
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the optimal control. These discretization approaches are limited in the number of
dimensions due to the curse of dimensionality, i.e. the complexity grows exponen-
tially with the number of dimensions.

An important aspect of these grid based approaches is the inherent locality in
the schemes and its properties. Although, for example, formulated using a finite
element representation, one does not solve a ’global’ Galerkin-type problem, but
the convergence is due to local properties of a function defined on a simplex (or
box). This local view unfortunately does not hold for sparse grids, which renders the
usual theoretical justifications of these grid approaches for HJB-equations invalid.
Nevertheless, the empirical observations in [6] and this work give evidence that
spatial adaptive sparse grids can be used in this setting, although further detailed
investigations are necessary to provide criteria when this is the case.

In case of a suitably chosen, for now fixed, discretization grid Ω with corre-
sponding function space V the planning step based on dynamic programming and
using a model f̂ can be written as

• Suitably initialize v0 ∈V .
• Iterate for n = 0,1,2, . . . until convergence, e.g. |vn+1(x)−vn(x)|< tol ∀x∈Ω ,

vn+1(x) = max
β∈B

[γ · vn( f̂ (x,β ))+ r(x,β )] ∀x ∈Ω . (2)

Here, vn ∈V is the numerical solution computed by the scheme at DP step n, which
in some cases can be interpreted as a time step, and the value vn

(
f̂ (x,β )

)
denotes

the interpolation of vn at point f̂ (x,β ). Note that for our later experiment the min-
imization over the set B can be done in a straightforward way by evaluating the
function values for each possible action b ∈B. In case this number is too large, or
if the set B is infinite, then a minimisation procedure which uses only evaluations of
the objective function, and not its derivatives, could be performed without changing
the main steps of the scheme.

Note that many reinforcement learning algorithms in continuous state-space, e.g.
the ones employing approximate value iteration (AVI) [27, 28, 34] for the dynamic
programming part, use supervised machine learning methods (i.e. regression algo-
rithms [21]) to achieve the function approximation, also called generalization in
this context [5, 34]. For example neural networks [5] or decision trees [12] can be
used. But there is no general convergence of the algorithms, and the combination of
DP methods with function approximation may produce unstable or divergent results
even when applied to very simple problems [34]. Nevertheless, for schemes which
are linear in the model parameters, a convergence proof is available (see [34]). Fi-
nally note that there are recent results indicating that the contribution of the error
due to the approximation of the Bellman operator at each iteration is more promi-
nent in later iterations of AVI and the effect of an error term in the earlier iterations
decays exponentially fast [14]. To put more emphasis on having a lower Bellman
error at later iterations one could increase the number of samples during the scheme
or use more powerful function approximators in the end.
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Having set the background for function approximation for the value function in
the planning stage we now describe our adaptive sparse grid procedure, which is
based on [6].

3.1 Sparse Grids

For ease of presentation we will consider the domain Ω = [0,1]d in this section. Let
l = (l1, . . . , ld) ∈ Nd denote a multi-index. We define the anisotropic grid Ωl on Ω

with mesh width hl := (hl1 , . . . ,hld ) := (2−l1 , . . . ,2−ld ). It has, in general, different
but equidistant mesh widths hlt in each coordinate direction t, t = 1, . . . ,d. The grid
Ωl thus consists of the points xl, j := (xl1, j1 , . . . ,xld , jd ), with xlt , jt := jt ·hlt = jt ·2−lt

and jt = 0, . . . ,2lt . For any grid Ωl we define the associated space Vl of piecewise
d-linear functions

Vl := span{φl, j | jt = 0, . . . ,2lt , t = 1, . . . ,d}, (3)

which is spanned by the conventional basis of d-dimensional piecewise d-linear hat
functions

φl, j(x) :=
d

∏
t=1

φlt , jt (xt). (4)

The one-dimensional functions φl, j(x) are defined by

φl, j(x) =

{
1−|x/hl− j|, x ∈ [( j−1)hl ,( j+1)hl ]∩ [0,1],

0, otherwise.
(5)

The multi-index l ∈ Nd denotes the level, i.e. the discretization resolution, be it
of a grid Ωl , of a space Vl , or of a function fl , whereas the multi-index j ∈Nd gives
the position of a grid point xl, j or its corresponding basis function φl, j.

We now define a hierarchical difference space Wl via

Wl := Vl \
d⊕

t=1

Vl−et , (6)

where et is the t-th unit vector. In other words, Wl is spanned by all φk, j ∈Vl which
are not included in any of the spaces Vk smaller1 than Vl . To complete the definition,
we formally set Vl := /0, if lt = 0 for at least one t ∈ {1, . . . ,d}. As can be easily seen
from (3) and (6), the definition of the index set

1 We call a discrete space Vk smaller than a space Vl if ∀t kt ≤ lt and ∃t : kt < lt . In the same way a
grid Ωk is smaller than a grid Ωl .
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Bl :=

{
j ∈ Nd

∣∣∣∣∣ jt = 1, . . . ,2lt −1, jt odd, t = 1, . . . ,d, if lt > 1,
jt = 0,1,2, t = 1, . . . ,d, if lt = 1

}
(7)

leads to
Wl = span{φl, j| j ∈ Bl}. (8)

The family of functions {
φl, j
∣∣ j ∈ Bl

}(n,...,n)

l=(1,...,1)
(9)

is just the hierarchical basis [36] of Vn(:= V(n,...,n)), which generalizes the one-
dimensional hierarchical basis to the d-dimensional case with a tensor product
ansatz. Observe that the supports of the basis functions φl, j(x), which span Wl , are
disjoint for l > 1.

Zenger [37] introduced so-called sparse grids, where hierarchical basis functions
with a small support, and therefore a small contribution to the function representa-
tion, are not included in the discrete space of level n any more.

Formally, the sparse grid function space V s
n ⊂Vn is defined as

V s
n :=

⊕
|l|1≤n+d−1

Wl . (10)

Every f ∈V s
n now can be represented as

f s
n(x) = ∑

|l|1≤n+d−1
∑
j∈Bl

αl, jφl, j(x). (11)

The resulting grid which corresponds to the approximation space V s
n is called sparse

grid and is denoted by Ω s
n.

The sparse grid space V s
n has a size of order dimV s

n = O(2n · nd−1), see [10]. It
thus depends on the dimension d to a much smaller degree than a standard full grid
space whose number of degrees of freedom is O(2nd). Note that for the approxima-
tion of a function f by a sparse grid function f s

n ∈V s
n the error relation

‖ f − f s
n‖2 = O

(
2−2n ·nd−1

)
holds, provided that f fulfils the smoothness requirement | f |H2

mix
< ∞ [10]. There-

fore, sparse grids need much fewer points in comparison to a full grid to obtain an
error of the same size.
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3.2 Spatially Adaptive Sparse Grids

The sparse grid structure (10) defines an a priori selection of grid points that is opti-
mal if certain smoothness conditions are met, i.e. if the function has bounded second
mixed derivatives, and no further knowledge of the function is known or used. If the
aim is to approximate functions which either do not fulfil this smoothness condition
at all or show strongly varying behaviour due to finite but nevertheless locally large
derivatives, adaptive refinement may be used. There, depending on the characteris-
tics of the problem and the function at hand, adaptive refinement strategies decide
which points and corresponding basis functions should be incrementally added to
the sparse grid representation to increase the accuracy.

In the sparse grid setting, usually an error indicator stemming directly from the
hierarchical basis is employed [15, 18, 31]: depending on the size of the hierarchical
surplus αl, j it is decided whether a basis function is marked for further improvement
or not. This is based on two observations: First, the hierarchical surplus indicates
the absolute change in the discrete representation at point xl, j due to the addition
of the corresponding basis function φl, j, i.e. it measures its contribution to a given
sparse grid representation (11) in the maximum-norm. And second, a hierarchical
surplus represents discrete second mixed derivatives and hence can be interpreted
as a measure of the smoothness of the considered function at point xl, j.

In the adaptive procedure we use an index set I to track the indices of the em-
ployed basis functions and denote the corresponding sparse grid by ΩI and the as-
sociated sparse grid space by VI , respectively. We start with a coarse initial sparse
grid function f s

n ∈ V s
n for some given small n as in (11). The index set is thus ini-

tialized as I := {(l, j) | |l|1 ≤ n+d−1}. We proceed as follows: If, for any given
index (l, j) ∈I , we have

|αl, j| · ‖φl, j‖> ε (12)

for some given constant ε > 0, then the index will be marked. Here, ‖ · ‖ is typi-
cally either the L∞- or L2-norm, but other norms or weighted mixtures of norms are
used in practice as well. If an index is marked, all its 2d so-called children will be
added to the index set I to refine the discretization, i.e. all (l̃, j̃) with l̃ = l + et
and j̃ = j+ jt et ±1 will be added to I for t = 1, . . . ,d. For the indices added that
way it is possible that not all parents in all dimensions are already contained in the
grid; note that in such cases, for algorithmic and consistency reasons, these missing
parents have to be added to I as well. Thus for any (l, j) ∈I all parents (l̃, j̃) with
l̃ ≤ l and supp(φl̃, j̃)∩ supp(φl, j) 6= /0 are also in the index set I . In other words,
“holes” in the hierarchical structure are not allowed. In Algorithm 1 we give the
adaptive refinement procedure. If the function values at the newly added grid points
are easily available, the refinement step can be repeated until no indices are added
any more [6]. Note that if a global error criterion is available one can perform an
additional outer loop with successively decreasing ε until the measured global error
falls below a given threshold εglob.

In a similar way one can use the value |αl, j| · ‖φl, j‖ to coarsen the grid in case
of over-refinement. If this value is smaller than some coarsening constant η , and
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Algorithm 1: Spatially Adaptive Refinement Step
Data: initial index set I , to be refined function vI , refinement threshold ε

Result: refined index set I , refined function vI

for (l, j) ∈I do . look at all indices
if |αl, j| · ‖φl, j‖> ε then . hierarchical surplus is large

for t = 1, . . . ,d do
if (l̃, j̃) /∈I for l̃ = l + et and j̃ ∈ { j+ jt et ±1} then

I = I ∪ (l̃, j̃) . add children which are not in I

check ∀(l, j) ∈I holds: (l̃, j̃) ∈I for l̃ ≤ l and supp(φl̃, j̃)∩ supp(φl, j) 6= /0

for all added indices (l, j) ∈I do
initialize αl, j = 0

no children of (l, j) are in I , the index will be removed from this set. In Algo-
rithm 2 we give the coarsening step, where the procedure is repeated until no indices
are being removed. The coarsening will in particular be relevant once we consider
problems where the region in need of a higher resolution changes during the com-
putation. This is relevant for time-dependent problems, but also for the planning
considered in this work, which in some sense can be viewed as a time-dependent
problem. More importantly, the value function to be represented can change during
the computation due to changes in the learned model.

Algorithm 2: Spatially Adaptive Coarsening
Data: index set I , coarsening threshold η , and αl, j ∀(l, j) ∈I
Result: coarsened index set I
while indices are removed from I do

for (l, j) ∈I do . look at all indices
if |αl, j| · ‖φl, j‖< η then . hierarchical surplus is small

if ∀t = 1, . . . ,d: (l̃, j̃) /∈I for l̃ = l + et and j̃ ∈ { j+ jt et ±1} then
I = I \(l, j) . remove if no children in I

4 Sparse Grid Based Scheme for Reinforcement Learning

With these ingredients we now can formulate our approach, which in the end is quite
similar to the semi-Lagrangian scheme for Hamilton-Jacobi Bellman equations us-
ing spatial adaptive sparse grids introduced in [6], but with only an approximate
model for the state dynamics.
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The planning scheme is given in Algorithm 3. We perform p steps of the DP
equation (2) and then do one refinement step. Note that the initial steps are randomly
chosen since no infomation is exploitable, i.e. no samples from the state dynamics
exist. This is repeated a certain number of times, or stops early in case the change
in a DP step is small. Observe that it is not useful to aim for a convergence of
the DP scheme in the initial stages of the overall RL procedure [14]. Since the
learned model will take some time to be a reasonable approximation of the state
dynamics, and can be quite coarse in the beginning, aiming for convergence of the
planning step can even lead to wrong behaviour. Therefore we limit the number of
DP steps per planning stage. The same reasoning is behind the idea of calling the
refinement algorithm only after every p DP steps, the resolution of the discretization
of the value function shall only grow slowly. Once the value iteration is finished we
coarsen the obtained sparse grid to reduce the further computational effort.

Algorithm 3: Adaptive SG-planning in Reinforcement Learning
Data: initial index set I (0), initial function v0, refinement constant ε , coarsening constant

η , model f̂ , k = 0
Result: adaptive sparse grid solution vke ∈VI (ke)

repeat . iterate until convergence or max. number of steps
k = k+1
vk(x) = maxβ∈B [γ · vk−1( f̂ (x,β ))+ r(x,β )] ∀x ∈ΩI . DP step (2)

if k mod p = 0 then
call Alg. 1 with I (k−1), vk, ε . refine vk ∈VI (k) every p steps

until |vk(x)− vk−1(x)|< tol ∀x ∈ΩI (k) and k < kmax

ke = k
call Alg. 2 with I (ke), η and vke . coarsen vke

The overall reinforcement learning procedure is presented in Algorithm 4. The
algorithm performs a number of interactions with the environment and thereby ob-
serves new state transitions (x,β , f (x,β )). Every T actions first the model is up-
dated to integrate the newly observed data, and then the value function is updated
in the planning step. Updating after every new transition information would be a
quite costly procedure, which we hereby avoid. Like in [23] the experiment we are
investigating is performed in episodes, i.e. the trajectory through the state space is
re-started once the target state, if defined, is reached or after a certain number of
steps, i.e. T · #epmax. The latter prevents the algorithm from investigating uninter-
esting regions of the state space when the transition path does not follow a ’good’
trajectory after ’bad’ choices of actions due to model uncertainty or early stages of
convergence to the value function.
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Algorithm 4: SG-GP-scheme in reinforcement learning
Data: suitable initial index set I (0), refinement constant ε , coarsening constant η , initial

state xinit , and episode length #epmax
Result: adaptive sparse grid solution vne ∈VI (ne)

#ep = 0,n = 0,x0 = xinit
repeat . iterate

for t = 1, . . . ,T do . interact with system in chunks
action βt is chosen according to βt = argmax

β∈B
[γ · vn( f̂ (xt−1,β ))+ r(xt−1,β )]

interact with system by executing action βt
observe next state xt and store transition S = S ∪{xt−1,βt ,xt}

based on S learn model f̂ = {GPi j}i=1,...,d, j=1,...,|B|
call Alg. 3 with I (n), vn, ε , η , f̂

. for planning compute value function vn+1 on ΩI (n+1)

n = n+1,#ep = #ep+1 . count number of chunks
if #ep mod #epmax = 0 or xT is target state then . limit length of episode

x0 = xinit

else
x0 = xT

until |vn(x)− vn−1(x)|< tol ∀x ∈ΩI (n)
ne = n

5 Experiments

We evaluate our approach on a well-known reinforcement learning benchmark, the
mountain car problem [34]. The goal is to drive a car from the bottom of a valley
to the top of a mountain. Since the car is underpowered it cannot climb the moun-
tain directly, but instead has to build up momentum by first going in the opposite
direction. The state space is two-dimensional, the position of the car is described
by x1 ∈ [−1.2,0.5] and x2 ∈ [−0.07,0.07] is its velocity. The actions are accel-
erating by a fixed value to the left, right, or no acceleration, encoded by actions
β ∈ {−1,+1,0}. Every step gives a reward of −1, until the top of the mountain on
the right satisfying x1 ≥ 0.5 is reached, the goal is therefore to have as few steps as
possible to reach the top. This experimental setup is the same as in [23], which in
modification to [34] sets a maximal episode length of 500, while model and value
function are relearned every 50 steps, uses a discount factor γ = 0.99 and every
episode starts at x0 = (π/6,0). The parameters of the sparse grid approach were
ε = 0.01 and η = 0.002, while an initial grid of n = 3 was used. In Algorithm 3 we
used p = 20 and kmax = 200.

In Figure 1 we give the final value function vne and the employed adaptive sparse
grid ΩI (ne), which consists of 4054 grid points. We observe that, as expected, the
majority of the grid points are where the value function has a large gradient. In
context of the problem there is a high gradient, where on one side the mountain can
be reached directly, on the other side only with first gaining momentum by going in
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(a) value function vne (b) adaptive sparse grid ΩI (ne)

Fig. 1 Results for the mountain car problem.

the opposite direction. The algorithm converged after 5 episodes, with 479 different
states visited in total. The goal was reached in each episode as follows:

episode 1 2 3 4 5
steps to goal 159 105 103 104 104

Note that the optimal number of steps for this problem is 103 [23] and the number
steps we observe per episode is essentially (only a graph is shown) as in that paper,
which uses a full grid. The standard online model-free RL algorithm Sarsa(λ ) with
tile coding [34] needs many more episodes to get below 150 steps and still is a
couple of steps away from 103 even after 1000 episodes [23]. During the course of
the Sarsa(λ ) algorithm many more states are visited than in our procedure.

6 Conclusion

The combination of the Gaussian processes approach for model learning, which
achieves a low sample complexity, with the adaptive sparse grid procedure, which
breaks the curse of dimensionality to some extent and allows function representation
in higher dimensional state spaces, is applicable for reinforcement learning.

However, due to the lack of monotonicity of the sparse grid approach, the stability
of the scheme presently cannot be guaranteed. In practise, we do observe divergent
behaviour of the proposed scheme with unfavourable settings of the parameters of
the refinement algorithm. Additionally, the initial randomly chosen steps can lead
the algorithm off-track, although this can also happen for other reinforcement learn-
ing approaches. In such a case the combination of adaptivity and a too wrong model
of the state dynamics can lead to divergence, even with otherwise, i.e. for other ini-
tial samples, suitable refinement parameters. In any case, theoretical investigations
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are needed to provide criteria, in particular useable for the actual computation, un-
der which conditions on the problem and which settings of the algorithm the scheme
can successfully be used in reinforcement learning.

Furthermore, a bottleneck in the time complexity of the algorithm is the evalu-
ation of the adaptive sparse grid function, which at this stage prevents us from de-
tailed numerical experiments in higher dimensions, although an adaptive sparse grid
would cope with the higher dimensional setting. Recently it was shown that using a
specific reordering of the steps of the point evaluations together with a GPU-based
parallelisation can achieve speed-ups of almost 50 in comparison to the standard im-
plementation of adaptive sparse grid [22], employing this procedure in our scheme
would improve the runtime significantly and allow higher dimensional examples to
be finished in reasonable time.
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