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Abstract 

The growing complexity in the design space of finite element models and increasing 

requirements and regulations for crash safety together lead to large development trees in the 

CAE crashworthiness development process. That is, during the virtual product development 

numerous design changes are applied and analysed until the final model satisfies given design 

criteria. The biggest challenge is how to compare several simulation results to detect global 

events, examples are unexpected deformation behavior or unusual distribution of mesh 

functions such as plastic strain. We observe a lack of simple to use procedures that analyse 

and automatically categorize design measures together with their impact on simulation results. 

To address these challenges, we have developed a workflow to easily analyse the impact of 

design variations as an important step in the overall simulation data analysis. Our software, 

called SimExplore, enables an overview over many simulations pointing out their similarities 

and exceptions in deformations and mesh functions automatically.  

The capabilities of SimExplore are demonstrated on data from a robustness analysis of a 

frontal vehicle crash, where the wall thicknesses of several selected components have been 

varied. Our automated workflow detects different deformation modes and identifies distinctly 

different behavior. 

 

1. Introduction 

Numerical simulations play an important role in the CAE product development process. 

Especially in the CAE crashworthiness analysis process, the growing complexity in the design 

space of finite element models (FEM) an increasing requirements and regulations for crash 

safety lead to large so-called development trees. These reflect the many undertaken design 

measures and corresponding simulation runs, which are performed until given design criteria 



are satisfied. Following a path in the obtained development tree, the differences from one 

simulation to its predecessor, or root of the tree, consist of one or several design variations on 

the one hand, while on the other hand the simulation results can show numerous changes in 

the crash behaviour.  

Decisions about the product are based on engineering judgement as well as economic 

constraints. The evaluation of specific designs requires fast evaluation and comparison of 

multiple variants of a model based on quantities derived from simulations such as the head 

injury criterion (HIC) index, intrusion values at points in the structure, energy absorption and 

so on. Multiple scalar values or curves have to be evaluated and compared for each variant.  

 

Such complex tasks suggest the use of artificial intelligence (AI) methods to manage the 

evaluation complexity. Specifically, machine learning has gotten impressive results for image 

recognition as well as for learning tasks using data. Methods that can learn from existing data 

and then make predictions for related, but new situations are indeed very attractive for product 

development. An example is to make predictions for design parameter combinations that have 

not been simulated so far, i.e. estimate the effect of design changes on quantities of interest. 

To identify the main trends in a bundle of simulations, computed by varying several 

parameters, is another possible data analysis application. But, existent machine learning 

methods are not easily applicable to the analysis of CAE simulations. On the one hand 

because they typically require large amounts of training data, which are not available since 

simulations are expensive to compute, and on the other hand because the data is high-

dimensional, where the dimensionality is given by the size of the finite element meshes. We 

have developed approaches that can overcome these limitations and are adapted to CAE 

simulations, which has the potential to significantly improve phases of the virtual product 

development. 

 

With the software tool SimExplore we have implemented a new and easily applicable analysis 

approach, which allows the study of the impact of design variations as an important step in the 

overall simulation data analysis workflow. Our workflow applies novel machine learning 

approaches to provide an overview over many simulations, in particular automatically pointing 

out similarities and exceptions, respectively, in deformations and mesh functions, as well as 

their propagation over time. In detail, we investigate suitable concepts of similarity to arrange 

simulation results in an overview diagram reflecting the different deformation modes. A 

dimensionality reduction approach based on the Laplace-Beltrami operator is used, which can 

be thought of as a „Fourier“-decomposition for geometries. This novel approach enables a 



clustering of many simulations based on their crash-behavior using these geometric "Fourier"-

modes.  

With our proposed methodology, the CAE engineer is provided with a browsable overview of 

all the simulations, analysed in terms of clusters as well as outliers, due to deformations or 

other mesh functions. Here, the simulations within a cluster show similar deformation behavior, 

and the automated workflow identifies representative simulations for the different clusters of 

deformation modes. Moreover, outliers are detected, which show different, and most often 

unwanted, behaviour. All these deformation modes and outliers are identified, documented 

and visualized using a structured data representation, which allows a smooth integration in 

any simulation process data management tool for documentation and further analysis. Thus, 

our SimExplore approach marks a breakthrough towards an automatic global event detection 

for car crash simulations within the overall crashworthiness data analysis process.  

 

The capabilities of our analysis workflow are demonstrated on an industrial use case. We 

investigate simulation data from a robustness analysis of a frontal vehicle crash load case 

where the wall thicknesses of several selected components have been varied. The simulation 

results are analysed to search for similarities as well as outliers in the deformation behaviour.  

 

2. Workflow for Event Detection 

The workflow for event detection is made of two main phases. First, a longer running off-line 

batch-process, which can run at the simulation cluster where the raw data is available, and a 

second interactive exploring phase, which can run on a client computer and where in particular 

the raw data does not need to be available. A schematic representation of the first phase is 

shown in Figure 1. 

 

Figure 1 Schematic representation of phase 1 of the workflow 



The results of the first phase are a list of most affected PIDs and the so called shape features 

necessary for the second phase. A schematic representation of this second explorative phase 

is shown in Figure 2. 

 

Figure 2 Schematic representation of phase 2 of the workflow. 

 

In the following we describe some of the components of the workflow in more in detail. 

 

Design Measures 

The first step of the workflow consists of a comparison of the different input configurations for 

two numerical simulations using ModelCompare [2]. Thereby an identification of the design 

measures performed through model adaptation between the two simulations is achieved. This 

is based on the geometric parts and their discretization (mesh), and thus independent of the 

parts meta data, such as an identifier or a name. Examples of design measures (groups) are 

changes in geometry, multi-parts, that is several parts are merged into one part, changes in 

spot welds and rigid body elements, material ID and thickness changes. All the identified 

design measures are stored in a structured format, namely in JSON files. This allows an easy 

storage and integration, in particular for a later investigation together with the detected events. 

 

Local Event Detection 

The second step of the overall approach deals with the comparison of two simulation results 

based on the design measures applied by SimCompare [4], using the full output data, namely 

displacement and functions on meshes. The approach analyses functions on meshes rather 

than scalar data or sensor / curve data. More precisely, the impact of design changes can be 

analysed in terms of data functions either on the nodes (such as displacements or nodal mass) 

or elements (such as plastic strains, stresses, or failed elements) depending on the analysis 

objective. Thereby, detailed insight in local influences can be evaluated with respect to a 

certain design change. The comparison results, that is the local events found, are stored 

partwise in structured JSON files supporting further post processing. In particular, for each part 



selected, the part-ID, part-name, metric value, as well as minimum and maximum deviation in 

the part is stored. 

The determination of the most affected parts is based on two-sided comparisons using 

SimCompare, where each simulation is compared to a reference simulation, typically the root 

of the variant tree. Using all these comparison results, the most affected parts over all 

simulations are determined depending on a threshold and a suitable output quantity as 

selected by the user. This identifies those parts where large changes can be seen over all the 

simulations being investigated. 

 

Global Event Detection 

In the next step a series of geometry-driven features (so-called geometric Fourier spectra [3]) 

representing the displacements or mesh functions are computed for all time steps for selected 

parts. In particular, the selection can be based on the SimCompare-based local event 

detection, as just described.  

Note that a common practice in CAE-based engineering design is to choose a specific set of 

PIDs (car parts) that are considered to be important by the user. Furthermore, the list of parts 

is typically organized in groups such as frontal beams, firewall, pillars, support frames, seats 

supports, fuel tank compartment and so on. This user-driven group or functionality-based 

selection can be combined with the local event detection. The parts selected for the global 

event detection in such a combined case either fulfil both criteria, i.e. those PIDs of the B-pillar 

that are identified as most affected, or at least one criteria, i.e. all PIDs of the B-pillar and all 

PIDs that are identified as most affected. 

 

From the obtained geometric features for the selected parts an optimization algorithm will 

select three coefficients that shows the best overall separation of the simulation outcomes into 

clusters, which is done for each time step and for all parts. In addition, at each time step a 

clustering score is computed, which allows a selection of those time steps that show increased 

separation from the point of view of clustering, which we call peaks of the clustering score. 

 

The analysis results are stored for further analysis and reproducibility. For example, we store 

information about the found clusters or outliers in JSON files, i.e. a simulation is labelled as 

part of a cluster or as an outlier per time step and mesh function. The data analysis information 

saved during the global event detection is relatively compact, so that it can be transferred to a 

client desktop for further data exploration or can be explored via a web-based visualization. 

Finally, for each of the found peaks, several images can be saved with different views of the 



simulation results for the PID(s) involved for later visual exploration, but note that these 

automatically generated images can take significant disk space and compute time. 

 

Clustering and outlier identification finalizes the first phase of the SimExplore workflow.  

 

Interactive Exploration 

Using the information computed in the previous steps, an interactive part allows the user to 

seamlessly explore and analyze different parts or part combinations. The visual representation 

of the simulations and parts is based on a 3D representation using the geometric features. 

Each point in this representation represents a simulation and the overall visualization provides 

an intuitive overview of the similarities and exceptions in the simulations with respect to the 

chosen functions. Such an interactive visualization allows an easy-to-use exploration of the 

simulation results. In particular, clustering and outlier detection can be easily visualized by this 

representation. Currently for the interactive view a web based app is used, but an integration 

into other data visualization software is feasible via plugin-architectures. 

 

3. Experimental Results 

As an example to test the workflow we consider a DOE (design of experiment) of a frontal 

vehicle crash. A total of 38 random thickness changes for the parts as shown in Figure 3 have 

been used. The study has been done as part of a PhD study [1]. From there, a total of 300 

frontal crash LS-Dyna simulations have been considered in the following.    

 

Figure 3 Structural members with thickness changes as considered in this study. 

 



Results of the Local Event Detection 

Simulation results are compared in pairs (299 simulations vs. the chosen reference) using 

SimCompare to detect the local differences in the mesh functions. An exemplary comparison 

with SimCompare between two simulations is shown in Figure 4.  

 

Figure 4 Example of a SimCompare result for two simulation, at time step 6 early in the crash. 
Shown are the parts with a difference in the plastic strain between the simulations above a 
given threshold, 33 parts are on the left, 23 parts on the right. The intensity of green indicates 
the magnitude of the difference. As one would expect from the design difference of the two 
simulations, the structural beams show the largest difference. 

For further analysis of individual results, an investigation of the difference between two 

simulations can be performed. For the two identified parts with the largest difference in 

behavior for the two chosen simulations we show in Figure 5 an example of the difference in 

plastic strain on these parts. 

 

Figure 5 The difference in plastic strain between the structural beams at time step 6.  

The most affected parts are then selected using a threshold for a user-chosen mesh function 

and suitable metric over all the pairwise comparison. An exemplary outcome of a filtering based 

on local event detection is shown in Figure 6.   



 

Figure 6 Visualization of the parts selected by the local event detection. 

 

From these PIDs we select those from the structural components in the front of the car. In 

other words, for this study we use those parts that fulfil both criteria, most affected according 

to the above local event detection and the functionality-based criteria. The selected parts for 

the following global event detection are shown in Figure 7. 

 

 

 

 

 

 

 

 

 

Results of the Global Event Detection  

Now, the geometrical features are computed for each time step for each PID (or group of PIDs) 

selected before. The cluster finder module returns scores for each time step (see Figure 8), 

from which the peaks can be identified, i.e. those clusters that are more separated. 

     

In the following we use two chosen PIDs for an illustration of the results that can be obtained. 

 

Figure 7 Parts (PIDs) of the car selected for the analysis of Global events. 



 

Figure 8 Clustering score for a selected PID. The x axis are the time steps considered, peaks 
are indicated by red crosses in the plot. For the peak at time t=7 a high peak indicates a 
separation in the clusters for the geometric Fourier coefficients (see Figure 10 for the 
corresponding 3D plot of the coefficients). 

For a chosen time step (a peak) a 3D point cloud is determined, which is a 3D representation 

based on the geometric Fourier coefficients. Each point corresponds to one deformation of the 

PID considered. So we have in total 300 points corresponding to the 300 simulations of the 

DOE analysis. The color of the points represents the clustering obtained. In the case of Figure 

9 using the firewall we have 2 clusters marked with orange and blue and in between we can 

see green points that corresponds to points not in any of the clusters, while additional green 

points are further away. By clicking on each point, the image of the corresponding simulation 

for a chosen view is shown in the web browser. For illustration, we superpose images along 

the simulation point cloud. From Figure 9, it can be seen that as we go from cluster 1 (orange) 

to cluster 2 (blue), the plastic strain shows different severity between the two clusters, but 

similar behavior per cluster. There are some parts interspersed between the clusters, while 

some parts are outliers further away. In other words, the point cloud as intended represents 

similarity between simulations in a global overview.  

As another example we show the structural beams in Figure 10. Here it can be seen that as 

we go from cluster 1 (yellow) to cluster 2 (orange), the plastic strain shows a gradual change 

along the points.   

 



 

Figure 9 Example of an explorative analysis of the firewall, where the plastic strain at time step 
27 is investigated. Note that the shown static two-dimensional picture of the three dimensional 
interactive visualization is limited. For example, the outlier on the bottom right appears close 
to the orange cluster, while it is actually further away, which one be seen by interactively 
rotating the three-dimensional visualization.  

 

Sensitivity Analysis in Geometric Fourier Space 

The DOE study [1] was focused on the sensitivity of thickness changes in view of the crash 

performance of the car. An investigation was performed on the basis of several post-

processing quantities like intrusion values at some critical points in the structure and cross 

sectional forces of the main structural members. Statistical measures of sensitivity such as 

Sobol indexes based on the evaluated post-processing quantities showed that from the 38 

thickness only a few are considered sensitive. 

We now investigate if and how instead of taking the post-processing quantities, a preliminary 

analysis of the sensitivity can be done based on the 3D geometric Fourier representation. First 

results show that the same parts detected by [1] can also be determined using our approach. 

As an example, we present a visual analysis for one of the sensitive parts.  

As seen in Figure 10, the points are not randomly colored, but they show a sequential change 

along the point cloud reflecting not only the sensitivity but also how the thickness variation 

affects the deformation. Furthermore, on the left one sees the changes in behavior along the 

clusters, while points not in the clusters are also detected by the event detection workflow. As 

a consistency check, we considered the change of thickness value of other non-sensitive parts 

and repeated the same evaluation. We could not identify the structured color change obtained 

for the sensitive parts, but rather observe a random distribution of the thickness colors.        

 



 

Figure 10 On the left is a point cloud of geometric Fourier coefficients for the selected part. 
Cluster 1 is in yellow, 2 in orange and points not assigned to a cluster are blue. For chosen 
simulations we show the corresponding plastic strain in the middle. On the right is the same 
point cloud, but now the coloring reflects the thickness value of one sensitive part.  

 

Conclusions 

This work described a workflow able to explore many simulations. One obtains in an automatic 

way clusters of similar deformations and outliers having distinctly different behaviour. The 

detection of events has been done locally with respect to pairs of simulations and globally with 

respect to all simulations. Low dimensional 3D point clouds with geometric Fourier coefficients 

capturing similarity were used for clustering and outlier detection. Finally, preliminary 

investigations on sensitivity analysis in geometric Fourier space show promising results that 

warrant further studies. 
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