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Abstract The technique of sparse grids allows to overcome the curse of dimension-
ality, which prevents the use of classical numerical discretization schemes in more
than three or four dimensions, under suitable regularity assumptions. The approach
is obtained from a multi-scale basis by a tensor product construction and subsequent
truncation of the resulting multiresolution series expansion. This entry level article
gives an introduction to sparse grids and the sparse grid combination technique.

1 Introduction

The sparse grid method is a special discretization technique, which allows to cope
with the curse of dimensionality of grid based approaches to some extent. It is based
on a hierarchical basis [13, 42, 43], a representation of a discrete function space
which is equivalent to the conventional nodal basis, and a sparse tensor product
construction.

The sparse grid method was originally developed for the solution of partial dif-
ferential equations [45, 22, 5]. Besides working directly in the hierarchical basis a
sparse grid representation of a function can also be computed using the combina-
tion technique [25], here a certain sequence of partial functions represented in the
conventional nodal basis is linearly combined. The sparse grid method in both its
formulations is nowadays successfully used in many applications.

The underlying idea of sparse grids can be traced back to the Russian mathemati-
cian Smolyak [37], who used it for numerical integration. The concept is also closely
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related to hyperbolic crosses [2, 38, 39, 40], boolean methods [11, 12], discrete
blending methods [4] and splitting extrapolation methods [31].

For the representation of a function f defined over a d-dimensional domain the
sparse grid approach employs O(h−1

n · log(h−1
n )d−1) grid points in the discretization

process, where hn := 2−n denotes the mesh size and n is the discretization level. It
can be shown that the order of approximation to describe a function f , under certain
smoothness conditions, is O(h2

n · log(h−1
n )d−1). This is in contrast to conventional

grid methods, which need O(h−d
n ) for an accuracy of O(h2

n). Therefore, to achieve a
similar approximation quality sparse grids need much less points in higher dimensions
than regular full grids. The curse of dimensionality of full grid method arises for
sparse grids to a much smaller extent and they can be used for higher dimensional
problems.

For ease of presentation we will consider the domain Ω = [0,1]d in the following.
This situation can be achieved for bounded rectangular domains by a proper rescaling.

2 Sparse grids

We introduce some notation while describing the conventional case of a piecewise lin-
ear finite element basis. Let l = (l1, . . . , ld) ∈Nd denote a multi-index. We define the
anisotropic grid Ωl on Ω̄ with mesh size hl := (hl1 , . . . ,hld ) = 2−l := (2−l1 , . . . ,2−ld );
Ωl has different, but equidistant mesh sizes hlt in each coordinate direction t,
t = 1, . . . ,d. This way the grid Ωl consists of the points

xl, j := (xl1, j1 , . . . ,xld , jd ), (1)

with xlt , jt := jt ·hlt = jt ·2−lt and jt = 0, . . . ,2lt . For a grid Ωl we define an associated
space Vl of piecewise d-linear functions1

Vl := span{φl, j | jt = 0, . . . ,2lt , t = 1, . . . ,d}= span{φl, j | 0≤ j ≤ 2l}, (2)

which is spanned by the usual basis of d-dimensional piecewise d-linear hat functions

φl, j(x) :=
d

∏
t=1

φlt , jt (xt). (3)

The one-dimensional functions φl, j(x) with support [xl, j − hl ,xl, j + hl ]∩ [0,1] =
[( j−1)hl ,( j+1)hl ]∩ [0,1] are defined by:

φl, j(x) =

{
1−|x/hl− j|, x ∈ [( j−1)hl ,( j+1)hl ]∩ [0,1],

0, otherwise.
(4)

1 “≤” refers to the element-wise relation for multi-indices: k ≤ l :⇔∀t kt ≤ lt . Furthermore, a≤ l
implies ∀t a≤ lt .
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(a) Nodal basis for V3
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(b) Hierarchical basis for V3

Fig. 1: Nodal and hierarchical basis of level n = 3.

Fig. 2: Basis function φ1,1 on grid Ω2,1.

In Figure 1a we give an example for the one-dimensional case and show all φl, j ∈V3.
Figure 2 shows a two-dimensional basis function.

2.1 Hierarchical subspace-splitting

Till now and in the following the multi-index l ∈ Nd denotes the level, i.e. the
discretization resolution, be it of a grid Ωl , a space Vl , or a function fl , whereas the
multi-index j ∈Nd gives the spatial position of a grid point xl, j or the corresponding
basis function φl, j(·).

We now define a hierarchical difference space Wl via
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Wl :=Vl \
d⊕

t=1

Vl−et , (5)

where et is the t-th unit vector. In other words, Wl consists of all φk, j ∈ Vl (using
the hierarchical basis) which are not included in any of the spaces Vk smaller2 than
Vl . To complete the definition, we formally set Vl := 0, if lt = −1 for at least one
t ∈ {1, . . . ,d}. As can easily be seen from (2) and (5), the definition of the index set

Bl :=

{
j ∈Nd

∣∣∣∣∣
jt = 1, . . . ,2lt −1, jt odd, t = 1, . . . ,d, if lt > 0,
jt = 0,1, t = 1, . . . ,d, if lt = 0

}
(6)

leads to
Wl = span{φl, j| j ∈ Bl}. (7)

These hierarchical difference spaces now allow us the definition of a multilevel
subspace decomposition. We can write Vn :=Vn as a direct sum of subspaces

Vn :=
n⊕

l1=0

· · ·
n⊕

ld=0

Wl =
⊕

|l|∞≤n

Wl . (8)

Here, |l|∞ := max1≤t≤d lt and |l|1 := ∑
d
t=1 lt are the discrete `∞- and the discrete

`1-norm of l, respectively.
The family of functions

{φl, j| j ∈ Bl}n
l=0 (9)

is just the hierarchical basis [13, 42, 43] of Vn, which generalizes the one-dimensional
hierarchical basis [13], see Figure 1b, to the d-dimensional case with a tensor product
ansatz. Observe that the supports of the basis functions φl, j(x), which span Wl , are
disjunct for l > 0. See Figure 3 for a representation of the supports of the basis
functions of the difference spaces Wl1,l2 forming V3.

Now, each function f ∈Vn can be represented as

f (x) = ∑
|l|∞≤n

∑
j∈Bl

αl, j ·φl, j(x) = ∑
|l|∞≤n

fl(x), with fl ∈Wl , (10)

where αl, j ∈R are the coefficients of the representation in the hierarchical tensor
product basis and fl denotes the hierarchical component functions. The number of
basis functions which describe a f ∈Vn in nodal or hierarchical basis is (2n +1)d .
For example a resolution of 17 points in each dimensions, i.e. n = 4, for a ten-
dimensional problem therefore needs 2 ·1012 coefficients, we encounter the curse of
dimensionality.

Furthermore, we can define

2 We call a discrete space Vk smaller than a space Vl if ∀t kt ≤ lt and ∃t : kt < lt . In the same way a
grid Ωk is smaller than a grid Ωl .
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W0,3 W1,3 W2,3 W3,3

W0,2 W1,2 W2,2 W3,2

W0,1 W1,1 W2,1 W3,1

W0,0 W1,0 W2,0 W3,0

Fig. 3: Supports of the basis functions of the hierarchical subspaces Wl of the space V3. The sparse
grid space V s

3 contains the upper triangle of spaces shown in black.

V := lim
n→∞

⊕

k≤n

Wk,

which by a completion with respect to the H1-norm, is simply the underlying Sobolev

space H1, i.e. V H1
= H1. Any function f ∈V can be uniquely decomposed as [8]

f (x) = ∑
l∈Nd

fl(x), with fl ∈Wl .

Note also, that for the spaces Vl the following decomposition holds
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Vl :=
l1⊕

k1=0

· · ·
ld⊕

kd=0

Wk =
⊕

k≤l

Wk.

φ3,7φ3,1 φ3,3
φ2,1

φ1,1 φ3,5 φ2,3

Fig. 4: Interpolation of a parabola with the hierarchical basis of level n = 3.

2.2 Properties of the hierarchical subspaces

Now consider the d-linear interpolation of a function f ∈ V by a fn ∈ Vn, i.e. a
representation as in (10). First we look at the linear interpolation in one dimension,
for the hierarchical coefficients αl, j, l ≥ 1, j odd, holds

αl, j = f (xl, j)−
f (xl, j−hl)+ f (xl, j +hl)

2
= f (xl, j)−

f (xl, j−1)+ f (xl, j+1)

2

= f (xl, j)−
f (xl−1,( j−1)/2)+ f (xl−1,( j+1)/2)

2
.

This and Figure 4 illustrate why the αl, j are also called hierarchical surplus, they
specify what has to be added to the hierarchical representation from level l−1 to
obtain the one of level l. We can rewrite this in the following operator form

αl, j =

[
−1

2
1 − 1

2

]

l, j
f

and with that we generalize to the d-dimensional hierarchization operator as follows

αl, j =

(
d

∏
t=1

[
−1

2
1 − 1

2

]

lt , jt

)
f . (11)
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Note that the coefficients for the basis functions associated to the boundary are just
α0, j = f (x0, j), j = 0,1.

Now let us define the so-called Sobolev-space with dominating mixed derivative
H2

mix in which we then will show approximation properties of the hierarchical basis.
First we consider mixed derivatives and define

Dk f :=
∂ |k|1 f
∂xk =

∂ |k|1 f

∂xk1
1 · · ·∂xkd

d

With that we define the norm as

‖ f‖2
Hs

mix
= ∑

0≤k≤s

∣∣∣∣∣
∂ |k|1

∂xk f

∣∣∣∣∣

2

2

= ∑
0≤k≤s

∣∣∣Dk f
∣∣∣
2

2
,

and the space Hs
mix in the usual way:

Hs
mix :=

{
f : Ω →R

∣∣∣‖ f‖2
Hs

mix
< ∞

}
.

Obviously it holds Hs
mix⊂Hs. Furthermore we define the semi-norm | f |H2

mix
:= | f |H2

mix
by

| f |
Hk

mix
:=

∣∣∣∣∣
∂ |k|1

∂xk f

∣∣∣∣∣
2

=
∣∣∣Dk f

∣∣∣
2
.

Note that the continuous function spaces Hs
mix, like the discrete spaces Vl , have a

tensor product structure [41, 28, 24, 29] and can be represented as a tensor product
of one dimensional spaces:

Hs
mix = Hs⊗·· ·⊗Hs.

We now look at the properties of the hierarchical representation of a function f ,
especially at the size of the hierarchical surpluses. We recite the following proofs
from [5, 6, 7, 8], see these references for more details on the following and results in
other norms like ‖ · ‖∞ or ‖ · ‖E . For ease of presentation we assume f ∈ H2

0,mix(Ω̄),
i.e. zero boundary values, and l > 0 to avoid the special treatment of level 0, i.e. the
boundary functions in the hierarchical representation.

Lemma 1 For any piecewise d-linear basis function φl, j holds

‖φl, j‖2 =

(
2
3

)d/2

·2−|l|1/2.

Proof. Follows by straightforward calculation.

Lemma 2 For any hierarchical coefficient αl, j of f ∈ H2
0,mix(Ω̄) in (10) it holds
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αl, j =
d

∏
t=1
−hlt

2

∫

Ω

φl, j ·D2 f (x)dx. (12)

Proof. In one dimension partial integration provides

∫

Ω

φl, j(x) ·
∂ 2 f (x)

∂x2 dx =
∫ xl, j+hl

xl, j−hl

φl, j(x) ·
∂ 2 f (x)

∂x2 dx

=

[
φl, j(x) ·

∂ f (x)
∂x

]xl, j+hl

xl, j−hl

−
∫ xl, j+hl

xl, j−hl

∂φl, j(x)
∂x

· ∂ f (x)
∂x

dx

=−
∫ xl, j

xl, j−hl

1
hl
· ∂ f (x)

∂x
dx+

∫ xl, j+hl

xl, j

1
hl
· ∂ f (x)

∂x
dx

=
1
hl
·
(

f (xl, j−hl)−2 f (xl, j)+ f (xl, j +hl)
)

=− 2
hl
·αl, j.

The d-dimensional result is achieved via the tensor product formulation (11).

Lemma 3 Let f ∈ H2
0,mix(Ω̄) be in hierarchical representation as above, it holds

|αl, j| ≤
1

6d/2 ·2
−(3/2)·|l|1 ·

∣∣∣ f |supp(φl, j)

∣∣∣
H2

mix

.

Proof.

|αl, j|=

∣∣∣∣∣
d

∏
t=1
−hlt

2

∫

Ω

φl, j ·D2 f (x)dx

∣∣∣∣∣≤
d

∏
t=1

2−lt

2
· ‖φl, j‖2 ·

∥∥∥D2 f |supp(φl, j)

∥∥∥
2

≤ 2−d ·
(

2
3

)d/2

·2−(3/2)·|l|1 ·
∣∣∣ f |supp(φl, j)

∣∣∣
H2

mix

Lemma 4 For the components fl ∈Wl of f ∈ H2
0,mix(Ω̄) from (10) holds

‖ fl‖2 ≤ 3−d ·2−2·|l|1 · | f |H2
mix
. (13)

Proof. Since the supports of all φl, j of fl are mutually disjoint we can write

‖ fl‖2
2 =

∥∥∥∥∥∥∑
j∈Bl

αl, j ·φl, j

∥∥∥∥∥∥

2

2

= ∑
j∈Bl

|αl, j|2 · ‖φl, j‖2
2.

With Lemma 3 and 1 it now follows
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‖ fl‖2
2 ≤ ∑

j∈Bl

1
6d ·2

−3·|l|1 ·
∣∣∣ f |supp(φl, j)

∣∣∣
2

H2
mix

·
(

2
3

)d

·2−|l|1

≤ 1
32d ·2

−4·|l|1 · | f |2H2
mix

which completes the proof.

2.3 Sparse grids

Motivated by the relation (13) of the “importance” of the hierarchical components fl
Zenger [45] introduced the so-called sparse grids, where hierarchical basis functions
with a small support, and therefore a small contribution to the function representation,
are not included in the discrete space of level n anymore.

Formally we define the sparse grid function space V s
n ⊂Vn as

V s
n :=

⊕

|l|1≤n

Wl . (14)

We replace in the definition (8) of Vn in terms of hierarchical subspaces the condition
|l|∞ ≤ n with |l|1 ≤ n. In Figure 3 the employed subspaces Wl are given in black,
whereas in grey are given the difference spaces Wl which are omitted in comparison
to (8). Every f ∈V s

n can now be represented, analogue to (10), as

f s
n(x) = ∑

|l|1≤n
∑
j∈Bl

αl, jφl, j(x) = ∑
|l|1≤n

fl(x), with fl ∈Wl . (15)

The resulting grid which corresponds to the approximation space V s
n is called sparse

grid. Examples in two and three dimensions are given in Figure 5.
Note that sparse grids were introduced in [45, 22], and are often used in this form,

with a slightly different selection of hierarchical spaces using the definition

V s
0,n :=

⊕

|l|1≤n+d−1

Wl , lt > 0. (16)

This definition is especially useful when no degrees of freedom exist on the bound-
ary, e.g. for the numerical treatment of partial differential equations with Dirichlet
boundary conditions. Using V s

0,n the finest mesh size which comes from the level
of refinement n in the sparse grid corresponds to the full grid case again when only
interior points are considered.

The following results hold for both definitions V s
n and V s

0,n. The proofs are some-
what easier without basis functions on the boundary, therefore we only consider
this case here, full results can be found in the given literature, e.g. [5, 6, 7, 30, 8].
Furthermore, in the following we use the sparse grid space V s

0,n, this allows us to
have the same smallest mesh size h−n inside the sparse grid of level n as in the
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Fig. 5: Two-dimensional sparse grid (left) and three-dimensional sparse grid (right) of level n = 5.

corresponding full grid of level n and more closely follows the referenced original
publications.

First we look at approximation properties of sparse grids. For the proof we follow
[8] and first look at the error for the approximation of a function f ∈H2

0,mix, which can
be represented as ∑l fl , i.e. an infinite sum of partial functions from the hierarchical
subspaces, by f s

0,n ∈ V s
0,n which can be written as a corresponding finite sum. The

difference therefore is

f − f s
0,n = ∑

l
fl− ∑

|l|1≤n+d−1
fl = ∑

|l|1>n+d−1
fl .

For any norm now holds

‖ f − f s
0,n‖ ≤ ∑

|l|1>n+d−1
‖ fl‖. (17)

We need the following technical lemma to estimate the interpolation error

Lemma 5 For s ∈N it holds

∑
|l|1>n+d−1

2−s|l|1 = 2−s·n ·2−s·d
∞

∑
i=0

2−s·i ·
(

i+n+d−1
d−1

)

≤ 2−s·n ·2−s·d ·2 ·
(

nd−1

(d−1)!
+O

(
nd−2

))
,

Proof. First we use that there are
( i−1

d−1

)
possibilities to represent i as a sum of d

natural numbers
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∑
|l|1>n+d−1

2−s|l|1 =
∞

∑
i=n+d

2−s·i · ∑
|l|1=i

1

=
∞

∑
i=n+d

2−s·i ·
(

i−1
d−1

)

= 2−s·n ·2−s·d ·
∞

∑
i=0

2−s·i ·
(

i+n+d−1
d−1

)
.

We now represent the sum as the (d−1)-derivative of a function and get

∞

∑
i=0

xi ·
(

i+n+d−1
d−1

)

=
x−n

(d−1)!

(
∞

∑
i=0

xi+n+d−1

)(d−1)

=
x−n

(d−1)!
·
(

xn+d−1 · 1
1− x

)(d−1)

=
x−n

(d−1)!
·

d−1

∑
k=0

(
d−1

k

)
·
(

xn+d−1
)(k)
·
(

1
1− x

)(d−1−k)

=
d−1

∑
k=0

(
d−1

k

)
· (n+d−1)!
(n+d−1− k)!

· xd−1−k · (d−1− k)!
(d−1)!

·
(

1
1− x

)d−1−k+1

=
d−1

∑
k=0

(
n+d−1

k

)
·
(

x
1− x

)d−1−k

· 1
1− x

.

With x = 2−s it follows

∞

∑
i=0

2−s·i ·
(

i+n+d−1
d−1

)
≤ 2 ·

d−1

∑
k=0

(
n+d−1

k

)
.

The summand for k = d−1 is the largest one and it holds

2 · (n+d−1)!
(d−1)!n!

= 2 ·
(

nd−1

(d−1)!
+O

(
nd−2

))

which finishes the proof.

Theorem 1 For the interpolation error of a function f ∈ H2
0,mix in the sparse grid

space V s
0,n holds

|| f − f s
n ||2 =O(h2

n log(h−1
n )d−1). (18)

Proof. Using Lemma 4 and 5 we get

|| f − f s
n ||2 ≤ ∑

|l|1>n+d−1
‖ fl‖2 ≤ 3−d ·2−2|l|1 · | f |H2

mix

≤ 3−d ·2−2·n · | f |H2
mix
·
(

nd−1

(d−1)!
+O(nd−2)

)
,
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which gives the desired relation.

Note that corresponding results hold in the maximum-norm as well:

|| f − f s
n ||∞ =O

(
h2

n log(h−1
n )d−1

)

for f ∈ H2
0,mix and that for the energy norm one achieves O(hn), here the order is the

same as in the full grid case [8].
We see that the approximation properties in the L2-norm for functions from H2

0,mix
when using sparse grids are somewhat worse in comparison to full grids, which
achieve O(h2

n). But this is offset by the much smaller number of grid points needed,
as we will see when we now look at the size of the sparse grid space.

Lemma 6 The dimension of the sparse grid space V̊ s
0,n, i.e. the number of inner grid

points, is given by ∣∣V̊ s
0,n
∣∣=O

(
h−1

n · log(h−1
n )d−1

)
(19)

Proof. We again follow [8] and use in the first part the definition (16) and the size of
a hierarchical subspace |Wl |= 2|l−1|1 . The following steps use similar arguments as
in the preceding Lemma 5.

∣∣V̊ s
0,n
∣∣=

∣∣∣∣∣∣
⊕

|l|1≤n+d−1

Wl

∣∣∣∣∣∣
= ∑
|l|1≤n+d−1

2|l−1|1 =
n+d−1

∑
i=d

2i−d · ∑
|l|1=i

1

=
n+d−1

∑
i=d

2i−d ·
(

i−1
d−1

)
=

n−1

∑
i=0

2i ·
(

i+d−1
d−1

)
.

We now represent the summand as the (d−1)-derivative of a function evaluated at
x = 2
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n−1

∑
i=0

xi ·
(

i+d−1
d−1

)

=
1

(d−1)!

n−1

∑
i=0

(
xi+d−1

)(d−1)
=

1
(d−1)!

(
xd−1 · 1− xn

1− x

)(d−1)

=
1

(d−1)!

d−1

∑
k=0

(
d−1

k

)
·
(

xd−1− xn+d−1
)(k)
·
(

1
1− x

)(d−1−k)

=
d−1

∑
k=0

(
d−1

k

)
· (d−1)!
(d−1− k)!

· xd−1−k · (d−1− k)!
(d−1)!

·
(

1
1− x

)d−1−k+1

−
d−1

∑
k=0

(
d−1

k

)
· (n+d−1)!
(n+d−1− k)!

· xn+d−1−k · (d−1− k)!
(d−1)!

·
(

1
1− x

)d−1−k+1

=
d−1

∑
k=0

(
d−1

k

)
·
(

x
1− x

)d−1−k

· 1
1− x

− xn ·
d−1

∑
k=0

(
n+d−1

k

)
·
(

x
1− x

)d−1−k

· 1
1− x

.

We observe that the first sum is constant in n and therefore not relevant for the order,
but note that for x = 2 that sum falls down to (−1)d anyway and get

(−1)d +2n ·
d−1

∑
k=0

(
n+d−1

k

)
· (−2)d−1−k.

The summand for k = d−1 is again the largest one and it holds

2n · (n+d−1)!
(d−1)!n!

= 2n ·
(

nd−1

(d−1)!
+O(nd−2)

)

which gives a total order of O(2n · nd−1) or in other notation, with hn = 2−n, of
O(h−1

n · log(h−1
n )d−1).

This is far less than the size of the corresponding full grid space |V̊n|=O(h−d
n ) =

O(2d·n) and allows the treatment of higher dimensional problems while still achiev-
ing good accuracy.

Note that a practical realisation of sparse grids involves suitable data structures
and special algorithms, e.g. for efficient matrix-vector multiplications in Galerkin
methods for the numerical solution of partial differential equations. Further details
and references can be found for example in [14, 34, 44]3. Also note that sparse grid
functions do not possess some properties which full grid functions have, e.g. a sparse

3 Note that for the purpose of interpolation a sparse grid toolbox for Matlab is available at http:
//www.ians.uni-stuttgart.de/spinterp/.



14 Jochen Garcke

grid function need not be monotone [32, 34].

The sparse grid structure introduced so far defines an a priori selection of grid
points that is optimal if certain smoothness conditions are met, i.e. if the function
has bounded second mixed derivatives, and no further knowledge of the function
is known or used. If the aim is to approximate functions which do not fulfil this
smoothness condition, or to represent functions that show significantly differing
characteristics, e.g. very steep regions beyond flat ones, spatially adaptive refinement
may be used as well. Depending on the characteristics of the problem and function at
hand adaptive refinement strategies decide which points, and corresponding basis
functions, should be incrementally added to the sparse grid representation to increase
the accuracy.

In the sparse grid setting, usually an error indicator coming directly from the
hierarchical basis is employed [23, 14, 35, 34]: depending on the size of the hier-
archical surplus αl, j it is decided whether a basis function should be marked for
further improvement or not. This is based on two observations: First, the hierarchical
surplus gives the absolute change in the discrete representation at point xl, j due to
the addition of the corresponding basis function φl, j, it measures its contribution
in a given sparse grid representation (15) in the maximum-norm. And second, a
hierarchical surplus represents discrete second derivatives according to (12) and
hence can be interpreted as a measure of the smoothness of the considered function
at point xl, j. Further details on spatially adaptive sparse grids, their realisation and
the state of the art can be found in [14, 34, 35].

2.4 Hierarchy using constant functions

An alternative hierarchical representation of a function in Vn is based on a slightly
different hierarchy, which starts at level −1 with the constant. To be precise, we
define the one-dimensional basis functions φ̃l, j(x) by

φ̃−1,0 := 1,

φ̃0,0 := φ0,1,

φ̃l, j := φl, j for l ≥ 1,

with φl, j defined as in (4). Obviously it holds φ0,0 = φ̃−1,0− φ̃0,0. The d-dimensional
basis functions are constructed as a tensor product as before

φ̃l, j(x) :=
d

∏
t=1

φ̃lt , jt (xt). (20)

We introduce index sets B̃l analogue to (6)
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Fig. 6: Supports of the basis functions of the hierarchical subspaces Wl and W̃l of the space V3. The
sparse grid space V s

3 contains the upper triangle of spaces shown in black, the space Ṽ s
3 includes

also W̃4,−1 and W̃−1,4, which are not shown.

B̃l :=

{
j ∈Nd

∣∣∣∣∣
jt = 1, . . . ,2lt −1, jt odd, t = 1, . . . ,d, if lt > 0,
jt = 0, t = 1, . . . ,d, if lt ∈ {0,−1}

}
.

Now we can define slightly modified hierarchical difference spaces W̃l analogue to
(7) by

W̃l = span{φ̃l, j, j ∈ B̃l}, (21)

see Figure 6.



16 Jochen Garcke

It is easy to see that W̃l =Wl holds for l ≥ 0. We now can define a full grid space
Ṽn by using the newly defined modified hierarchical subspaces

Ṽn :=
n⊕

l1=−1

· · ·
n⊕

ld=−1

W̃l =
⊕

|l|∞≤n

W̃l . (22)

Again it holds Ṽn =Vn for n≥ 0.
A corresponding definition of a sparse grid space Ṽ s

n using

Ṽ s
n :=

⊕

|l|1≤n

W̃l (23)

on the other hand does not give the original sparse grid space V s
n . But if we exclude a

few spaces it holds

V s
n = Ṽ s

n \
⊕

|l|1=n and
∃lt=−1

W̃l for n≥ 0, (24)

see Figure 6.
As before, every f ∈ Ṽ s

n can now be represented, analogue to (15), as

f (x) = ∑
|l|1≤n

∑
j∈B̃l

αl, jφl, j(x) = ∑
|l|1≤n

fl(x) with fl ∈ W̃l . (25)

The key observation is now that the partial functions fl with ∃lt = −1 are lower-
dimensional functions: they are constant in those dimensions t where lt = −1; fl
possesses no degree of freedom in these dimensions. Such a function representation
for f (x) can therefore be formally written in the ANalysis Of VAriance (ANOVA)
form, which is well known from statistics,

f (x) = f−1 + ∑
|l|1≤n and

|{lt |lt=−1}|=d−1

fl + · · ·+ ∑
|l|1≤n and
|{lt |lt=−1}|=1

fl + ∑
|l|1≤n and
|{lt |lt=−1}|=0

fl , (26)

with fl ∈ W̃l . The ANOVA order, the number of relevant non-constant dimensions, of
the component functions fl grows from 0 on the left to d on the right.

At this stage this is just a formal play with the representation, but it becomes quite
relevant when one can build such a representation for a given function in an adaptive
fashion, i.e. one chooses which component functions up to which ANOVA order are
used for a reasonable approximation of some f . If the ANOVA order can be limited
to q with q� d, the complexity estimates do not depend on the dimension d but on
the ANOVA order q, allowing the treatment of even higher dimensional problems. An
ANOVA-based dimension adaptive refinement algorithm in the hierarchical sparse
grid basis is presented and evaluated in [14].
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3 Sparse grid combination technique

The so-called combination technique [25], which is based on multi-variate extrapola-
tion [10], is another method to achieve a function representation on a sparse grid. The
function is discretized on a certain sequence of grids using a nodal discretization. A
linear combination of these partial functions then gives the sparse grid representation.
This approach can have numerical advantages over working directly in the hierarchi-
cal basis, where e.g. the stiffness matrix is not sparse and efficient computations of
the matrix-vector-product are challenging in the implementation [1, 3, 6, 14, 34, 44].
There are close connections of the combination technique to boolean [11, 12] and
discrete blending methods [4], as well as the splitting extrapolation-method [31].

In particular, we discretize a function f on a certain sequence of anisotropic grids
Ωl = Ωl1,...,ld with uniform mesh sizes ht = 2−lt in the t-th coordinate direction.
These grids possess in general different mesh sizes for the different coordinate
directions. To be precise, we consider all grids Ωl with

|l|1 := l1 + ...+ ld = n−q, q = 0, ..,d−1, lt ≥ 0. (27)

The grids employed by the combination technique of level 4 in two dimensions are
shown in Figure 7.

Note that in the original [25] and other papers, a slightly different definition was
used:

|l|1 := l1 + ...+ ld = n+(d−1)−q, q = 0, ..,d−1, lt > 0.

This is again in view of situations where no degrees of freedom are needed on the
boundary, e.g. for Dirichlet boundary conditions, see (16) and the remarks afterwards.

A finite element approach with piecewise d-linear functions φl, j(x) on each grid
Ωl now gives the representation in the nodal basis

fl(x) =
2l1

∑
j1=0

...
2ld

∑
jd=0

αl, jφl, j(x).

Finally, we linearly combine the discrete partial functions fl(x) from the different
grids Ωl according to the combination formula

f c
n (x) :=

d−1

∑
q=0

(−1)q
(

d−1
q

)
∑

|l|1=n−q
fl(x). (28)

The resulting function f c
n lives in the sparse grid space V s

n , where the combined
interpolant is identical with the hierarchical sparse grid interpolant f s

n [25]. This
can be seen by rewriting each fl in their hierarchical representation (10) and some
straightforward calculation using the telescope sum property, i.e. the hierarchical
functions get added and subtracted.
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Fig. 7: Combination technique with level n = 4 in two dimensions

Lemma 7 For a given function f the interpolant f c
n using the combination technique

(28) is the hierarchical sparse grid interpolant f s
n from (15).

Proof. We write it exemplary in the two dimensional case, using f̂l1+l2 ∈Wl1,l2
instead of all the basis functions of Wl1,l2 for ease of presentation:

f c
n = ∑

l1+l2=n
fl1,l2 − ∑

l1+l2=n−1
fl1,l2

= ∑
l1≤n

∑
k1≤l1

∑
k2≤n−l1

f̂k1,k2 − ∑
l1≤n−1

∑
k1≤l1

∑
k2≤n−l1−1

f̂k1,k2

= ∑
k1≤l1=n

∑
k2=0

f̂k1,k2 + ∑
l1≤n−1

∑
k1≤l1

(
∑

k2≤n−l1

f̂k1,k2 − ∑
k2≤n−l1−1

f̂k1,k2

)

= ∑
k1≤l1=n

∑
k2=n−l1

f̂k1,k2 + ∑
l1≤n−1

∑
k1≤l1

∑
k2=n−l1

f̂k1,k2

= ∑
l1≤n

∑
k2=n−l1

∑
k1≤n−k2

f̂k1,k2

= ∑
k2≤n

∑
k1≤n−k2

f̂k1,k2 = ∑
k1+k2≤n

f̂k1,k2

This last expression is exactly (15).

Alternatively, one can view the combination technique as an approximation of a
projection into the underlying sparse grid space. The combination technique is then
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an exact projection into the sparse grid space if and only if the partial projections
commute, i.e. the commutator [PV1 ,PV2 ] := PV1PV2 −PV2PV1 is zero for all pairs of
involved grids [27].

Note that the solution obtained with the combination technique f c
n for the numeri-

cal treatment of partial differential equations, i.e. when the solutions on the partial
grids are combined according to the combination formula (28), is in general not the
sparse grid solution f s

n . However, the approximation property is of the same order as
long as a certain series expansion of the error exists [25]. Its existence was shown for
model-problems in [9].

Lemma 8 Assume that the exact solution f is sufficiently smooth and that the point-
wise error expansion

f − fl =
d

∑
i=1

∑
j1,..., jm⊂1,...,d

c j1,..., jm(h j1 , . . . ,h jm) ·h
p
j1
· . . . ·hp

jm , (29)

with bounded c j1,..., jm(h j1 , . . . ,h jm)≤ κ , holds for l ≤ n. Then

| f − f c
n |=O

(
h2

n · log(hd−1
n )

)
. (30)

Proof. Let us again consider the two dimensional case and consider the pointwise
error of the combined solution f − f c

n following [25]. We have

f − f c
n = f − ∑

l1+l2=n
fl1,l2 + ∑

l1+l2=n−1
fl1,l2

= ∑
l1+l2=n

(
f − fl1,l2

)
− ∑

l1+l2=n−1

(
f − fl1,l2

)
.

Plugging in the error expansion (29) leads to

f − f c
n = ∑

l1+l2=n

(
c1(hl1) ·h

2
l1 + c2(hl2) ·h

2
l2 + c1,2(hl1 ,hl2) ·h

2
l1h2

l2

)

− ∑
l1+l2=n−1

(
c1(hl1) ·h

2
l1 + c2(hl2) ·h

2
l2 + c1,2(hl1 ,hl2) ·h

2
l1h2

l2

)

=

(
c1(hn)+ c2(hn)+ ∑

l1+l2=n
c1,2(hl1 ,hl2)

−4 ∑
l1+l2=n−1

c1,2(hl1 ,hl2)

)
·h2

n.

And using ci ≤ κ we get the estimate (30)
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| f − f c
n | ≤ 2κ ·h2

n +

∣∣∣∣∣ ∑
l1+l2=n

c1,2(hl1 ,hl2)−4 ∑
l1+l2=n−1

c1,2(hl1 ,hl2)

∣∣∣∣∣ ·h
2
n

≤ 2κ ·h2
n + ∑

l1+l2=n

∣∣c1,2(hl1 ,hl2)
∣∣ ·h2

n +4 ∑
l1+l2=n−1

∣∣c1,2(hl1 ,hl2)
∣∣ ·h2

n

≤ 2κ ·h2
n +κ ·nh2

n +4κ(n−1)h2
n

= κ ·h2
n(5n−2) = κ ·h2

n(5log(h−1
n )−2)

=O
(
h2

n · log(h−1
n )
)
.

Observe that cancellation occurs for hli with li 6= n and the accumulated h2
l1

h2
l2

-
terms result in the log(h−1

n )-term. The approximation order O(h2
n · log(h−1

n )) is just
as in Theorem 1. See [25, 33, 36] for results in higher dimensions.

Similar to (26) one can consider an ANOVA representation in the form of a
combination technique, which in general terms is a function representation for f (x)
of the type

f (x) = ∑
{ j1,..., jq}⊂{1,...,d}

c j1,..., jq f j1,..., jq(x j1 , . . . ,x jq), (31)

where each f j1,..., jq(x j1 , . . . ,x jq) depends only on a subset of size q of the dimensions
and may have different refinement levels for each dimension. Again, one especially
assumes here that q� d, so that the computational complexity depends on the so-
called superposition (or effective) dimension q. The hierarchy here again starts with a
level −1 of constant functions and we note again that if one builds the tensor product
between a constant in one dimension and a (d− 1)-linear function the resulting
d-dimensional function is still (d− 1)-linear, one gains no additional degrees of
freedom. But formally introducing a level −1, and using this as coarsest level, will
allow us to write a combined function in the ANOVA-style (31), in other words each
partial function might only depend on a subset of all dimensions. The size of each
grid Ωl is now of order O(2q(|l|1 +(d−q)), where q = #{li|li ≥ 0}.

An advantage of such a viewpoint arises if one can select which grids to employ
and does not use the grid sequence (27). In such a so-called dimension adaptive
procedure one considers an index set I which only needs to fulfil the following
admissibility condition [21, 26]

k ∈ I and j ≤ k ⇒ j ∈ I, (32)

in other words an index k can only belong to the index set I if all smaller grids j belong
to it. The combination coefficients for a dimension adaptive combination technique,
which are related to the “inclusion/exclusion” principle from combinatorics, depend
only on the index set [20, 26, 27]:

f c
I (x) := ∑

k∈I

(
1

∑
z=0

(−1)|z|1 ·χ I(k+ z)

)
fk(x) (33)
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where χ I is the characteristic function of I defined by

χ
I(k) :=

{
1 if k ∈ I,

0 otherwise.

Further details on dimension adaptive algorithms and suitable refinement strategies
for the sparse combination technique can be found in [21, 17, 19].

3.1 Optimised combination technique

As mentioned, the combination technique only gives the same order if the above
error expansion exists. In some cases even divergence of the combination technique
can be observed [15, 16, 27]. But an optimised combination technique [27] can be
used instead to achieve good approximations with a combination technique and
especially to avoid the potential divergence. Here the combination coefficients are
not fixed, but depend on the underlying problem and the function to be represented.
Optimised combination coefficients are in particular relevant for dimension adaptive
approaches [17, 19].

For ease of presentation we assume a suitable numbering of the involved spaces
from (28) for now. To compute the optimal combination coefficients ci one minimises
the functional

J(c1, . . . ,cm) =

∥∥∥∥∥Ps
n f −

m

∑
i=1

ciPi f

∥∥∥∥∥

2

,

where one uses a suitable scalar product and a corresponding orthogonal projection
P stemming from the problem under consideration. By Ps

n f we denote the projection
into the sparse grid space V s

n , by Pi f the projection into one of the spaces from (28).
By simple expansion and using

〈Ps
n f ,Pj f 〉= 〈Ps

n f ,P∗j Pj f 〉= 〈PjPs
n f ,Pj f 〉= 〈Pj f ,Pj f 〉

one gets

J(c1, . . . ,cm) =
m

∑
i, j=1

cic j〈Pi f ,Pj f 〉−2
m

∑
i=1

ci‖Pi f‖2 +‖Ps
n f‖2.

While this functional depends on the unknown quantity Ps
n f , the location of the mini-

mum of J does not. By differentiating with respect to the combination coefficients ci
and setting each of these derivatives to zero we see that minimising this expression
corresponds to finding ci which have to satisfy
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‖P1 f‖2 · · · 〈P1 f ,Pm f 〉
〈P2 f ,P1 f 〉 · · · 〈P2 f ,Pm f 〉

...
. . .

...
〈Pm f ,P1 f 〉 · · · ‖Pm f‖2







c1
c2
...

cm


=




‖P1 f‖2

‖P2 f‖2

...
‖Pm f‖2


 .

The solution of this small system creates little overhead. However, in general to
compute the scalar product 〈Pi f ,Pj f 〉 of the two projections into the discrete spaces
Vi and Vj one needs to embed both spaces into the joint space Vk, with kt =max(it , jt),
into which the partial solutions Pl f = fl , l = i, j have to be interpolated. One easily
observes that Vk is of size O(h−2

n ) in the worst case, as opposed to O(h−1
n ) for the

Vl , l = i, j; an increase in computational complexity thus results, but does not depend
on d. In specific situations the computational complexity can be smaller though [16].

Using these optimal coefficients ci the combination formula for a sparse grid of
level n is now just

f c
n (x) :=

d−1

∑
q=0

∑
|l|1=n−q

cl fl(x). (34)

Finally note that one also can interpret the optimised combination technique as
a Galerkin formulation which uses the partial solutions as ansatz functions. That
way one can formulate an optimised combination technique for problems where the
projection arguments do not hold and are replaced by Galerkin conditions, which for
example is the case for eigenvalue problems [18].

4 Sparse grids in python

We give the listing of some python code for a sparse grid without functions on
the boundary, i.e. according to formula (16). In this code the action is done in the
hierarchical subspaces, so everything is done while going through all subspaces Wl .
A different way, especially needed for adaptive sparse grids, is to work directly in the
hierarchical basis structure and go to the left and right neighbours in each dimension
and that way run over all grid points.

If you are interested in the source files, they can be found at https://github.
com/jgarcke/sparse-grid-py.

A MATLAB implementation of sparse grids can be found here
http://www.ians.uni-stuttgart.de/spinterp/ and here
http://sparse-grids.de/.

A C++ code is available here
http://www5.in.tum.de/SGpp.
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Listing 1: function representation on a regular sparse grid
# T h i s s p a r s e g r i d code works f o r a r e g u l a r s p a r s e g r i d a l l o p e r a t i o n s
# work over t h e h i e r a r c h i c a l s u b s p a c e s .
# I t was w r i t t e n as an e x e r c i s e t o s e e what o p e r a t i o n s can be done t h i s way
# ( and t o l e a r n py tho n ) .
#
# The o t h e r , and maybe more n a t u r a l , way t o do s p a r s e g r i d s i s u s i n g a
# h i e r a r c h i c a l s t r u c t u r e w i t h l e f t and r i g h t sons .
# I f one needs a d a p t i v e s p a r s e g r i d one p r o b a b l y needs t o do i t t h a t way

import math , copy

c l a s s g r i d P o i n t :
””” p o s i t i o n o f a g r i d p o i n t ,

a l s o s t o r e s f u n c t i o n v a l u e ”””
def i n i t ( s e l f , i n d e x =None , domain=None ) :

s e l f . hv = [ ] # h i e r a r c h i c a l v a l u e
s e l f . fv = [ ] # f u n c t i o n v a l u e
i f i n d e x i s None :

s e l f . pos = [ ] # p o s i t i o n o f g r i d p o i n t
e l s e :

s e l f . pos = s e l f . p o i n t P o s i t i o n ( index , domain )

def p o i n t P o s i t i o n ( s e l f , index , domain=None ) :
coo rd = l i s t ( )
i f domain i s None :

f o r i in r a n g e ( l e n ( i n d e x ) / 2 ) :
coo rd . append ( i n d e x [2∗ i + 1 ] / 2 .∗∗ i n d e x [2∗ i ] )

e l s e :
f o r i in r a n g e ( l e n ( i n d e x ) / 2 ) :

coo rd . append ( ( domain [ i ] [ 1 ] − domain [ i ] [ 0 ] ) \
∗ i n d e x [2∗ i +1] / 2.∗∗ i n d e x [2∗ i ] + domain [ i ] [ 0 ] )

re turn coord

def p r i n t P o i n t ( s e l f ) :
i f s e l f . pos i s [ ] :

pass
e l s e :

o u t = ” ”
f o r i in r a n g e ( l e n ( s e l f . pos ) ) :

o u t += s t r ( s e l f . pos [ i ] ) + ”\ t ”
p r i n t o u t

c l a s s s p a r s e G r i d :
””” A s p a r s e g r i d o f a c e r t a i n l e v e l c o n s i s t s o f a s e t o f i n d i c e s and

a s s o c i a t e d g r i d p o i n t s gP on a g i v e n domain o f d i m e n s i o n dim .
A c t i o n i s what happens when one t r a v e r s e s t h e s p a r s e g r i d .

”””
def i n i t ( s e l f , dim =1 , l e v e l =1) :

s e l f . dim = dim
s e l f . l e v e l = l e v e l
s e l f . gP = {} # hash , i n d e x e d by t u p l e ( l 1 , p 1 , l 2 , p 2 , . . . , l d , p d )
s e l f . i n d i c e s = [ ] # e n t r i e s : [ l 1 , p 1 , . . . , l d , p d ] , l e v e l , p o s i t i o n
s e l f . domain = ( ( 0 . 0 , 1 . 0 ) , )∗dim
s e l f . a c t i o n = ( )

def p r i n t G r i d ( s e l f ) :
p r i n t s e l f . hSpace

def e v a l A c t i o n ( s e l f ) :
b a s i s = copy . deepcopy ( s e l f . eva lPerDim [ 0 ] [ s e l f . hSpace [ 0 ] −1 ] [ 0 ] )
v a l u e = s e l f . eva lPerDim [ 0 ] [ s e l f . hSpace [ 0 ] −1 ] [ 1 ]
# compute i n d e x and i t s v a l u e on x o f t h e one non−z e r o b a s i s f u n c t i o n
# i n t h i s h i e r a r c h i c a l sup−space
f o r i in r a n g e ( 1 , s e l f . dim ) :

v a l u e ∗= s e l f . eva lPerDim [ i ] [ s e l f . hSpace [ i ] −1] [1 ]
b a s i s += s e l f . eva lPerDim [ i ] [ s e l f . hSpace [ i ] −1] [0 ]



24 Jochen Garcke

# add c o n t r i b u t i o n o f t h i s h i e r a r c h i c a l space
s e l f . v a l u e += s e l f . gP [ t u p l e ( b a s i s ) ] . hv∗v a l u e

def e v a l F u n c t ( s e l f , x ) :
””” e v a l u a t e a s p a r s e g r i d f u n c t i o n , h i e r a r c h i v a l v a l u e s have t o be s e t ”””
s e l f . v a l u e = 0 . 0
s e l f . eva lPerDim = [ ]
# precompute v a l u e s o f one dim b a s i s f u n c t i o n s a t x f o r t h e e v a l u a t i o n
f o r i in r a n g e ( s e l f . dim ) :

s e l f . eva lPerDim . append ( [ ] )
f o r j in r a n g e ( 1 , s e l f . l e v e l +1) :

# which b a s i s i s un ze r o on x f o r dim i and l e v e l j
pos = ( x [ i ]− s e l f . domain [ i ] [ 0 ] ) / ( s e l f . domain [ i ] [ 1 ] \

− s e l f . domain [ i ] [ 0 ] )
b a s i s = i n t ( math . c e i l ( pos∗2∗∗( j −1) ) ∗2−1)
# t e s t needed f o r x on l e f t boundary
i f b a s i s == −1:

b a s i s = 1
s e l f . eva lPerDim [ i ] . append ( [ [ j , b a s i s ] ] )

e l s e :
s e l f . eva lPerDim [ i ] . append ( [ [ j , b a s i s ] ] )

# v a l u e o f t h i s b a s i s f u n c t i o n on x [ i ]
s e l f . eva lPerDim [ i ] [ j −1] . append ( e v a l B a s i s 1 D ( x [ i ] ,\

s e l f . eva lPerDim [ i ] [ j −1 ] [ 0 ] , s e l f . domain [ i ] ) )
s e l f . a c t i o n = s e l f . e v a l A c t i o n
s e l f . l o o p H i e r S p a c e s ( )
re turn s e l f . v a l u e

def l o o p H i e r S p a c e s ( s e l f ) :
””” go t h r o u g h t h e h i e r a r c h i c a l s u b s p a c e s o f t h e s p a r s e g r i d ”””
f o r i in r a n g e ( 1 , s e l f . l e v e l +1) :

s e l f . hSpace = [ i ]
s e l f . l o o p H i e r S p a c e s R e c ( s e l f . dim−1, s e l f . l e v e l −( i −1) )

def l o o p H i e r S p a c e s R e c ( s e l f , dim , l e v e l ) :
””” d−d i m e n s i o n a l r e c u r s i o n t h r o u g h a l l h i e r a r c h i c a l s u b s p a c e s ”””
i f dim > 1 :

f o r i in r a n g e ( 1 , l e v e l +1) :
s e l f . hSpace . append ( i )
s e l f . l o o p H i e r S p a c e s R e c ( dim−1, l e v e l −( i −1) )
s e l f . hSpace . pop ( )

e l s e :
f o r i in r a n g e ( 1 , l e v e l +1) :

s e l f . hSpace . append ( i )
s e l f . a c t i o n ( )
s e l f . hSpace . pop ( )

def g e n e r a t e P o i n t s ( s e l f ) :
””” f i l l s e l f . gP w i t h t h e p o i n t s f o r t h e i n d i c e s g e n e r a t e d b e f o r e h a n d ”””
# g e n e r a t e i n d i c e s o f g r i d p o i n t s f o r t h e g i v e n l e v e l and dim
s e l f . i n d i c e s = s e l f . g e n e r a t e P o i n t s R e c ( s e l f . dim , s e l f . l e v e l )
# add p o s i t i o n s o f s p a r s e g r i d p o i n t s
f o r i in r a n g e ( l e n ( s e l f . i n d i c e s ) ) :

s e l f . gP [ t u p l e ( s e l f . i n d i c e s [ i ] ) ] = g r i d P o i n t ( s e l f . i n d i c e s [ i ] , s e l f . domain )

def g e n e r a t e P o i n t s R e c ( s e l f , dim , l e v e l , c u r l e v e l =None ) :
””” run over a l l h i e r a r c h i c a l s u b s p a c e s and add a l l t h e i r i n d i c e s ”””
b a s i s c u r = l i s t ( )
i f c u r l e v e l == None :

c u r l e v e l = 1
# g e n e r a t e a l l 1−D b a s i s i n d i c e s o f c u r r e n t l e v e l ( i . e . s t e p 2 )
f o r i in r a n g e (1 ,2∗∗ ( c u r l e v e l ) +1 ,2 ) :

b a s i s c u r . append ( [ c u r l e v e l , i ] )
i f dim == 1 and c u r l e v e l == l e v e l :

re turn b a s i s c u r # we have a l l
e l i f dim == 1 : # g e n e r a t e some i n t h i s dim f o r h i g h e r l e v e l

b a s i s c u r += s e l f . g e n e r a t e P o i n t s R e c ( dim , l e v e l , c u r l e v e l +1)
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re turn b a s i s c u r
e l i f c u r l e v e l == l e v e l :

# c r o s s p r o d u c t o f t h i s dim i n d i c e s and o t h e r ( dim−1) ones
re turn c r o s s ( b a s i s c u r ,\

s e l f . g e n e r a t e P o i n t s R e c ( dim−1, l e v e l−c u r l e v e l +1) )
e l s e :

# c r o s s p r o d u c t o f t h i s dim i n d i c e s and o t h e r ( dim−1) ones
# s i n c e l e v e l s l e f t , g e n e r a t e p o i n t s f o r h i g h e r l e v e l s
re turn c r o s s ( b a s i s c u r , s e l f . g e n e r a t e P o i n t s R e c ( dim−1,\

l e v e l−c u r l e v e l +1) ) \
+ s e l f . g e n e r a t e P o i n t s R e c ( dim , l e v e l , c u r l e v e l +1)

def noda l2Hier1D ( s e l f , node , i , j , dim ) :
””” c o n v e r s i o n from noda l t o h i e r a r c h i c a l b a s i s i n one d i m e n s i o n

( i , j ) g i v e s i n d e x i n t h i s dim c u r r e n t node
node i s t h e ( d−1) i n d e x t o t r e a t ”””

# g e t l e f t / r i g h t n e i g h b o u r s o f node
l e f t = [ i −1, j / 2 ]
r i g h t = [ i −1, j / 2 + 1 ]
# l e f t , r i g h t can be p o i n t s o f upper l e v e l ( i f i n d e x i s even )
whi le l e f t [1]%2 == 0 and l e f t [ 0 ] > 0 :

l e f t = [ l e f t [0]−1 , l e f t [ 1 ] / 2 ]
whi le r i g h t [1]%2 == 0 and r i g h t [ 0 ] > 0 :

r i g h t = [ r i g h t [0]−1 , r i g h t [ 1 ] / 2 ]
# i n d e x o f node i s m u l t i−d i m e n s i o n a l
i f l e n ( node ) > 2 :

# b u i l d d−dim i n d e x f o r c u r r e n t node and i t s n e i g h b o u r s
preCurDim = node [ 0 : 2∗ dim ]
postCurDim = node [2∗ dim : l e n ( node ) +1]
i n d e x = preCurDim + [ i , j ] + postCurDim
l e f t = preCurDim + l e f t + postCurDim
r i g h t = preCurDim + r i g h t + postCurDim

e l s e : # t h i s case can o n l y happen i n 2D
i f dim == 0 :

i n d e x = [ i , j ] + node
l e f t = l e f t + node
r i g h t = r i g h t + node

e l s e :
i n d e x = node + [ i , j ]
l e f t = node + l e f t
r i g h t = node + r i g h t

# i n case we are on t h e l e f t boundary
i f l e f t [2∗ dim ] == 0 :

i f r i g h t [2∗ dim ] != 0 :
s e l f . gP [ t u p l e ( i n d e x ) ] . hv −= 0.5∗ s e l f . gP [ t u p l e ( r i g h t ) ] . hv

e l i f r i g h t [2∗ dim ] == 0 : # or t h e r i g h t boundary
s e l f . gP [ t u p l e ( i n d e x ) ] . hv −= 0.5∗ s e l f . gP [ t u p l e ( l e f t ) ] . hv

e l s e : # normal i n n e r node
s e l f . gP [ t u p l e ( i n d e x ) ] . hv −= 0 . 5∗ ( s e l f . gP [ t u p l e ( l e f t ) ] . hv + s e l f . gP [ t u p l e ( r i g h t )\

] . hv )

# c o n v e r s i o n from noda l t o h i e r a r c h i c a l b a s i s
def n o d a l 2 H i e r ( s e l f ) :

f o r i in r a n g e ( l e n ( s e l f . i n d i c e s ) ) :
s e l f . gP [ t u p l e ( s e l f . i n d i c e s [ i ] ) ] . hv = s e l f . gP [ t u p l e ( s e l f . i n d i c e s [ i ] ) ] . f v

# c o n v e r s i o n i s done by s u c c e s i v e one−dim c o n v e r s i o n s
f o r d in r a n g e ( 0 , s e l f . dim ) :

f o r i in r a n g e ( s e l f . l e v e l ,0 ,−1) :
# g e n e r a t e a l l i n d i c e s t o p r o c e s s
i n d i c e s = s e l f . g e n e r a t e P o i n t s R e c ( s e l f . dim−1, s e l f . l e v e l−i +1)
f o r j in r a n g e (1 ,2∗∗ i +1 ,2 ) :

f o r k in r a n g e ( l e n ( i n d i c e s ) ) :
s e l f . noda l2Hier1D ( i n d i c e s [ k ] , i , j , d )

# compute c r o s s−p r o d u c t o f a rgs
def c r o s s (∗ a r g s ) :

ans = [ ]
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f o r a r g in a r g s [ 0 ] :
f o r a rg2 in a r g s [ 1 ] :

ans . append ( a r g + a rg2 )
re turn ans
# a l t e r n a t i v e l y :
# ans = [ [ ] ]
# f o r arg i n args :

# ans = [ x+y f o r x i n ans f o r y i n arg ]

# r e t u r n ans

# e v a l u a t i o n o f t h e b a s i s f u n c t i o n s i n one d i m e n s i o n
def e v a l B a s i s 1 D ( x , b a s i s , i n t e r v a l =None ) :

i f i n t e r v a l i s None :
re turn 1 . − abs ( x∗2∗∗ b a s i s [0]− b a s i s [ 1 ] )

e l s e :
pos = ( x− i n t e r v a l [ 0 ] ) / ( i n t e r v a l [1]− i n t e r v a l [ 0 ] )
re turn 1 . − abs ( pos∗2∗∗ b a s i s [0]− b a s i s [ 1 ] )

Listing 2: unit test for listing 1
import pysg
import u n i t t e s t
import math
c l a s s t e s t F u n c t e s t ( u n i t t e s t . T e s t C a s e ) :

””” s i m p l e t e s t i f s p a r s e g r i d f o r s p a r s e g r i d i n 3d o f l e v e l 3 ”””
def testSGNoBound3D ( s e l f ) :

sg = pysg . s p a r s e G r i d ( 3 , 3 )
sg . g e n e r a t e P o i n t s ( )
# r i g h t number o f g r i d p o i n t s
s e l f . a s s e r t E q u a l ( l e n ( sg . i n d i c e s ) , 3 1 )
f o r i in r a n g e ( l e n ( sg . i n d i c e s ) ) :

sum = 1 . 0
pos = sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . pos
f o r j in r a n g e ( l e n ( pos ) ) :

sum ∗= 4.∗ pos [ j ]∗ (1 .0− pos [ j ] )
sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . f v = sum

# c o n v e r t t o h i e r a r c h i c a l v a l u e s
sg . n o d a l 2 H i e r ( )
# does t h e e v a l u a t i o n o f s p a r s e g r i d f u n c t i o n i n
# h i e r a r c h i c a l v a l u e s g i v e t h e c o r r e c t v a l u e gv
f o r i in r a n g e ( l e n ( sg . i n d i c e s ) ) :

s e l f . a s s e r t E q u a l ( sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . fv ,\
sg . e v a l F u n c t ( sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . pos ) )

def testSGNoBound2D ( s e l f ) :
sg = pysg . s p a r s e G r i d ( 2 , 3 )
sg . g e n e r a t e P o i n t s ( )
# r i g h t number o f g r i d p o i n t s
s e l f . a s s e r t E q u a l ( l e n ( sg . i n d i c e s ) , 1 7 )
f o r i in r a n g e ( l e n ( sg . i n d i c e s ) ) :

sum = 1 . 0
pos = sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . pos
f o r j in r a n g e ( l e n ( pos ) ) :

sum ∗= 4.∗ pos [ j ]∗ (1 .0− pos [ j ] )
sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . f v = sum

# c o n v e r t t o h i e r a r c h i c a l v a l u e s
sg . n o d a l 2 H i e r ( )
# does t h e e v a l u a t i o n o f s p a r s e g r i d f u n c t i o n i n
# h i e r a r c h i c a l v a l u e s g i v e t h e c o r r e c t v a l u e gv
f o r i in r a n g e ( l e n ( sg . i n d i c e s ) ) :

s e l f . a s s e r t E q u a l ( sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . fv ,\
sg . e v a l F u n c t ( sg . gP [ t u p l e ( sg . i n d i c e s [ i ] ) ] . pos ) )

i f n a m e ==” m a i n ” :
u n i t t e s t . main ( )
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