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Abstract. Modern product design in the engineering domain is in-
creasingly driven by computational analysis including finite-element
based simulation, computational optimization, and modern data anal-
ysis techniques such as machine learning. To apply these methods,
suitable data representations for components under development as
well as for related design criteria have to be found. While a compo-
nent’s geometry is typically represented by a polygon surface mesh,
it is often not clear how to parametrize critical design properties in
order to enable efficient computational analysis. In the present work,
we propose a novel methodology to obtain a parameterization of a
component’s plastic deformation behavior under stress, which is an
important design criterion in many application domains, for exam-
ple, when optimizing the crash behavior in the automotive context.
Existing parameterizations limit computational analysis to relatively
simple deformations and typically require extensive input by an ex-
pert, making the design process time intensive and costly. Hence,
we propose a way to derive a compact descriptor of deformation
behavior that is based on spectral mesh processing and enables a
low-dimensional representation of also complex deformations. We
demonstrate the descriptor’s ability to represent relevant deforma-
tion behavior by applying it in a nearest-neighbor search to identify
similar simulation results in a filtering task. The proposed descriptor
provides a novel approach to the parametrization of geometric defor-
mation behavior and enables the use of state-of-the-art data analysis
techniques such as machine learning to engineering tasks concerned
with plastic deformation behavior.

1 INTRODUCTION
Modern engineering product design relies heavily on computer-aided
engineering (CAE) methods such as finite-element based simulation
or computational optimization. With increasing computational ca-
pabilities and shorter design cycles in many industries, CAE meth-
ods are applied more and more extensively. As a result, a tremen-
dous amount of data has become available, especially due to many
components being repeatedly re-designed or optimized. This data
provides potential to apply state-of-the-art machine learning tech-
niques [2, 7, 25] including deep learning approaches [8, 10, 23] in
order to increase the efficiency and quality of the design process,
but also to handle the amount of generated data itself [2, 20]. One
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Figure 1. Modes of deformation typically encountered in automotive
engineering [5]: (A) Upward and downward bending deformation mode, (B)

axial crushing or folding deformation mode.

obstacle are the unstructured and finely detailed mesh representa-
tions typically used for design parts resulting in high-dimensional
data vectors. Hence, to enable the application of computational tools,
designers have to find suitable representations and parameterizations
for both, components under development as well as related design
criteria [9, 20].

A critical design criterion in many application domains is the plas-
tic deformation of a component under stress. For example, in auto-
motive design, components are developed to exhibit a specific plastic
deformation behavior during a crash in order to protect vehicle occu-
pants [5]. A component’s crash performance is improved if its plas-
tic deformation avoids intrusion into the passenger cabin or allows
for high energy absorption [5, 6, 14]. Hence, the ability to computa-
tionally analyze or optimize for specific deformation behaviors is a
powerful design tool.

Current CAE-approaches typically study deformation behavior of
a design part by representing the part as a polygon surface mesh and
quantifying the displacement of a subset of selected nodes, for in-
stance, during a crash simulation [6] (see also [16] for an example).
Such a parameterization is computationally efficient because it re-
quires to only monitor a small set of quantities of interest during the
simulation—yet, it is limited in terms of the geometric complexity it
is able to represent. For example, a bending of a part may be easily
quantified by the displacement of a single node in a specified direc-
tion (Figure 1A), whereas more complex deformations, such as an
axial crushing of the part, is not as easily quantified by the displace-
ment of pre-selected mesh nodes (Figure 1B). Hence, the evaluation
of deformation behavior, e.g., as a result of a crash simulation, re-
quires an expert to manually check the resulting deformation and to
alter the design if necessary. As a result, the development of a com-
ponent requires many iterations of simulation and visual inspection
(e.g., [21]), which makes the design process costly.

In this paper we present a novel representation for geometric de-
formations using a compact descriptor that allows for the represen-



tation of complex deformation modes using methods from spectral
mesh processing (e.g., [19, 24]). Spectral mesh processing represents
geometric shapes as a set of coefficients with respect to an eigenba-
sis obtained from spectral decomposition of a discrete mesh operator
(see next section). We propose to represent deformations by identify-
ing the subset of spectral coefficients, sufficient to describes a shape’s
plastic deformation with respect to its original form, and present a
workflow to select these relevant spectral coefficients. In the follow-
ing, we will first introduce spectral mesh processing and its appli-
cation in the engineering domain, before we formally introduce our
proposed method and demonstrate its application in a filtering task,
relevant to engineering contexts. We conclude with a discussion of
the results and directions for further research.

2 SPECTRAL MESH PROCESSING IN THE
ENGINEERING DOMAIN

Spectral mesh processing is an approach to geometry processing that,
similar to Fourier analysis in the 1D-domain, is based on the eigen-
decomposition of a suitable, discrete operator defined on the mesh
(e.g., a discrete Laplace-Beltrami operator [24]). The decomposition
returns eigenvectors that form an orthonormal basis into which any
discrete function defined on the mesh can be projected, yielding a set
of spectral coefficients. A common approach is to interpret the mesh
vertices’ Euclidean coordinates as mesh functions and project them
into the eigenbasis to obtain a spectral representation of the mesh
geometry. This transformation is invertible such that the geometry’s
spatial representation can be reconstructed from its spectral represen-
tation.

Representing mesh geometries in the spectral domain has inter-
esting properties and allows to address various geometric processing
tasks more easily. For example, obtained eigenvectors represent dif-
ferent geometric contributions to a geometry, where eigenvectors as-
sociated with smaller eigenvalues describe low-frequency functions
on the mesh, while larger eigenvalues describe high-frequency func-
tions [19] (where the ordering depends on the operator used). This
property is used in spectral mesh compression [13], which efficiently
stores geometries in terms of their first M low-frequency eigenvec-
tors and corresponding spectral coefficients. This approach assumes
that most geometries can be approximated sufficiently by their first
M low-frequency, spectral components. From this reduced set of
spectral components, the geometry’s spatial representation can be
reconstructed with acceptable loss. Similar spectral approximations
have been used to realize shape matching and retrieval based on a
subset of eigenvectors [17, 18]. Selecting a subset of spectral com-
ponents for reconstruction using an orthogonal basis also relates to
nonlinear approximation, see e.g. DeVore [4], and has also been used
in image processing [15].

In the engineering domain, it has been shown that spectral mesh
representations using the Laplace-Beltrami operator are an ade-
quate choice for representing several deformations in a compact way
[7, 11, 12]. Here, an approach has been proposed that uses the de-
composition of one Laplace-Beltrami operator for a series of defor-
mations, which are assumed to be isometric to a base shape. Spec-
tral coefficients obtained by projecting several mesh deformations in
x-, y- and z-directions into a common eigenbasis are used as a di-
mensionality reduction and visualization technique for large sets of
deformed shapes resulting from crash simulations. It has also been
proposed that certain eigenvectors can be interpreted as specific ge-
ometric operations on the shape, e.g., a translation in the Euclidean
space [12]. Furthermore, the presented approach allows to handle

arbitrary discrete functions defined on the mesh, so that additional
functional properties of a part, such as plastic strain or stress, may be
represented in the spectral domain.

Finally, note that in geometry processing the spectral representa-
tion of a shape is often used to find pose invariant representations,
i.e., to distinguish a shape independent of pose changes by using the
eigenfunctions as shape features. On the other hand, in the studied
engineering applications part of the objective is to distinguish them
in a pose dependent way, which is achieved by projecting the defor-
mations as functions into the (joint) eigenbasis.

3 PROPOSED METHOD
Building on previous work in spectral mesh processing, the present
paper proposes to solve the problem of efficiently representing ge-
ometric deformations by constructing a compact, spectral descriptor
through the targeted and adaptive selection of spectral components.
In particular, we propose to select the subset of only those compo-
nents that are relevant for representing application-specific deforma-
tions in the spatial domain, and not just use the eigenvalue order as
a fixed global criteria for the subset selection. Relevant components
can be identified by the relative magnitude of their spectral coeffi-
cients, which indicates the importance of an eigenvector for repre-
senting the geometry in the spatial domain. In other words, opposed
to previous applications such as mesh compression, we propose to
select a subset of spectral components not based on their correspond-
ing geometric frequency, but based on their contribution to the spatial
representation irrespective of frequency, as indicated by the magni-
tude of their spectral coefficients.

In particular, we propose a workflow to find a compact spectral de-
scriptor for deformations found in a set of geometries in three steps:
a) compute a common spectral basis that can be used for all simula-
tions, b) identify deformation modes in the set of simulations (e.g.,
through clustering in the spectral domain), and c) obtain spectral de-
scriptors by identifying relevant spectral components for each defor-
mation mode.

The obtained spectral descriptor is significantly smaller than the
full mesh representation in the spatial domain, while preserving a
high amount of relevant geometric information, yielding an efficient
representation of geometric deformations for further computational
analysis. Furthermore, we demonstrate empirically that the resulting
descriptor provides an abstract representation of the deformation be-
havior by applying it in a nearest-neighbor search to identify similar
simulation results in a filtering task.

3.1 Spectral mesh representation
In order to describe the generation of the descriptor, we first provide
a formal definition of spectral mesh processing. Let K = (G,P ) be
a triangle mesh embedded in R3 with a graph G = (V, E) describ-
ing the connectivity of the mesh, where V are mesh vertices with
|V | = N and E ⊆ V × V the set of edges. The matrix P ∈ RN×3

describes the coordinates of mesh vertices in Euclidean space such
that each vertex has coordinates pi = (xi, yi, zi). We view K as
an approximation of the Riemannian manifoldM, isometrically em-
bedded into R3. Furthermore, let f :M→ R be a continuous func-
tion onM. Evaluating this function at vertices V yields the discrete
mesh function fK : K → R.

We may now define a discrete, linear operator onM (see [24] for
a discussion of possible operators). We here consider the Laplace-
Beltrami operator, which is defined as the divergence of the gradient



in the intrinsic geometry of the shape and is a generalization of the
Laplace operator to Riemannian manifolds. The operator is invariant
under isometric transformations, i.e., transformations that preserve
geodesic distances on the shape. In the following, we thus assume
that we operate on sets of shapes that are isometries of each other
in order to assume constant eigenbases between deformed shapes. In
practice, numerically ε-isometries will be present, which will result
in only approximately the same eigenbasis. Spectral mesh decompo-
sition still can be used accordingly since under suitable conditions
the Laplacians only differ by a scaling factor in such a case [12].

The eigendecomposition of the operator returns eigenvectors E =
[ψ1, ψ2, . . . , ψN ], ordered by the magnitude of the corresponding
eigenvalues, λ1 < λ2 < . . . < λN , where each eigenvector corre-
sponds to a frequency component of the mesh function in increasing
order [19]. Note that opposed to classical Fourier transform where
basis functions are fixed, the orthonormal basis obtained from the
spectral decomposition of a mesh operator depends on the mesh ge-
ometry and operator used. Often, only the set of the firstM eigenvec-
tors ordered by the magnitude of eigenvalues,EM , is used for further
processing such that high-frequency components are discarded.

The normalized eigenvectors E of a symmetric operator form an
orthonormal basis. We therefore may map any discrete mesh function
fK , given by a vector f , into this basis to obtain a representation, or
encoding, in the spectral domain,

f̂ = E>f , (1)

where the columns ofE are eigenvectors {ψi}Ni=1 and f̂ contains cor-
responding spectral coefficients {αi}Ni=1. The spectral coefficients
are thus obtained by calculating {αi}Ni=1 = 〈f , ψi〉. The inverse
transform reconstructs, or decodes, the mesh function in the spatial
domain,

f = E f̂ . (2)

By considering Euclidean coordinates, P = [fx, fy, fz], as mesh
functions we project the mesh geometry into the spectral domain,

P̂ = E>P, (3)

such that each row of P̂ , p̂i = [αx
i , α

y
i , α

z
i ] , i = 1, . . . , N , con-

tains spectral coefficients that can be used to express x-, y-, and z-
coordinates as

fx =

N∑
i=1

αx
i ψi, fy =

N∑
i=1

αy
i ψi, fz =

N∑
i=1

αz
iψi. (4)

An approximation of the mesh geometry is obtained by using the
coefficients corresponding to the first M � N eigenfunctions, or
suitably selected ones.

In a CAE-application, the spectral representation may now be used
to project a set of geometries, each represented as three-valued mesh
functions, into the same spectral basis, allowing for a joint handling
of the data in a common space. This approach assumes that geome-
tries are available in a regular mesh format and that the mesh is the
same, or is suitably interpolated, for all geometries in the set. A single
Laplace-Beltrami operator is then computed for the set of deforma-
tions [7, 12]. Observe that the operator is computed using geodesic
distances along the surface of a shape, where one assumes that the
deformations do not modify this distance. As a result, the approach
yields a common representation for deformations using the spectral
coefficients obtained by projecting three functions, each for mesh de-
formations in x-, y- and z-directions, to the eigenvectors of only one
shape.

We would like to explain some of the properties of the data rep-
resentation by comparing to principal component analysis (PCA). In
that data-driven approach, a data matrix (e.g., comprising of the de-
formations as vectors) gets compressed into a small number compo-
nents based on the variance of the data, where the largest variance
will be contained in the first principal component. As an example
let us consider a series of deformations that puts two areas of a part
nearby. Here, the PCA will provide principal components that con-
centrate on those sections of the part and will reproduce behavior
similar to this one. Now, let us assume one did not include data for
a deformation that affects only one area of the part. The principal
components will not be able to suitably represent such an unseen and
strongly different deformation behavior since it was not trained for
that.

On the other hand, take the basis obtained from the Laplace-
Beltraim operator, where only the shape geometry is taken into ac-
count. In this basis, the (new) deformation of the shape can be repro-
duced in the same fashion as the earlier ones. In other words, whereas
in the PCA higher variance, which can be interpreted as higher fre-
quencies of the input data, is discarded, in the Laplace-Beltrami basis
higher (geometric) frequencies of the underlying shape are discarded.
Note here also, it was shown using suitable assumptions that for func-
tions bounded in the H1-Sobolev norm the L2-approximation using
the orthonormal basis obtained from the Laplace operator is optimal
in a certain best basis sense [1]; this result can be extended to the
Laplace-Beltrami operator and functions in the Sobolev space H2,2

on the underlying manifold [22].

3.2 Finding an efficient spectral descriptor for
plastic deformations

In the spectral domain, individual eigenvectors, ψi, can be inter-
preted as geometric contributions to the spatial representation of
the shape (geometric frequencies), where in general eigenvectors
with low eigenvalues represent more low-frequency contributions
and those with high eigenvalues high-frequency contributions (de-
pending on the operator used). Furthermore, eigenvectors may be as-
sociated with specific geometric transformations of the shape, such
that changes in the corresponding spectral coefficients can even have
a mathematical (e.g., rotation of a shape in the underlying space) or
physical interpretation (e.g., deformation in parts of the shape).

When projecting Euclidean coordinates, P = [fx, fy, fz], into the
eigenbasis, the magnitude of resulting spectral coefficients associated
with each eigenvector, {αx

i , α
y
i , α

z
i }Ni=1, represents the relevance of

that eigenvector’s geometric contribution to the deformed shape’s
spatial representation [12]. Based on this property, we propose to
find a compact spectral descriptor, S, for a deformation, by select-
ing only those coefficients, α(·)

j , that have a high relative magnitude
compared to a suitable baseline. This is a further filtering in com-
parison to [12] or mesh compression, where a fixed number of the
spectral components is used, based on the order of the corresponding
eigenvalues. We assume that coefficients with high values indicate
that corresponding eigenvectors, ψj , represent geometric informa-
tion relevant for the description of the deformation in the spatial do-
main. Figure 2 shows an exemplary workflow for finding S, which is
described in detail in the following.

To find S, we first have to provide a mesh representing the geome-
try of a desired deformation behavior. For example, in the automotive
context we may wish to describe an axial folding of a beam during
a frontal crash, because this deformation mode leads to high energy
absorption. Such a geometry may be selected from a set of k exist-
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Figure 2. Exemplary workflow for finding and applying the proposed
spectral shape descriptor: preprocessing (red box); construction of S by

selection of spectral coefficients (blue box); application of selected
descriptor (green box). See main text for detailed description.

ing, different simulations. The desired deformation may be identified
either through manual selection by an expert motivated by functional
requirements, or through data-driven approaches in either the spatial
or spectral domain. For example, clustering of spectral coefficients
may be used to reveal main modes of deformations present in the set
of simulations (Figure 3), e.g., bending or folding behavior (Figure
1). We may either cluster the geometries based on their deformation
in the final time step of a simulation run, the transient data from the
full simulation run over time, or some other physical quantities such
as plastic strain or stress on the surface of the geometry. In particular,
a suitable visual representation of the coarse behavior of the deforma-
tion can often be obtained by using the x-, y-, z-spectral coefficients
of the first eigenvector in eq. (4) [7, 12].

Note that the application of the descriptor requires that the defor-
mation, or other quantities of interest, is sufficiently represented by
the initial surface mesh. In particular, the mesh resolution has to be

fine enough to represent the deformation. For application domains
concerned with more high-frequency deformations, this results in
fine meshes with a high number of nodes. Here, the applicability of
the method may be limited by the practical run time of the proposed
method, which depends on the number of nodes in the mesh (see
also the asymptotic run time of the proposed approach, discussed in
section Computational complexity of the proposed workflow).

Once a mesh representing the target deformation is identified, we
calculate its spectral representation according to eq. (3) (Figure 2, red
box) to obtain coefficients p̂i. Now, several approaches to defining S
by selecting relevant coefficients are conceivable. In many applica-
tions, e.g., computer graphics, typically the first M eigenfunctions
are used. In contrast to this approach, we propose to identify relevant
eigenfunctions based on the magnitude of their coefficients. For a sin-
gle shape exhibiting the targeted deformation, we may thus select all
coefficients exceeding a threshold t,

S =
{
αx
j , α

y
j , α

z
j |αx

j > t ∨ αy
j > t ∨ αz

j > t
}
, (5)

where t may be set based on a statistical criterion, e.g., relative to
the mean of coefficients, to identify those coefficients that indicate a
high relevance for representing the shape.

Alternatively, the shape describing the desired deformation may
be contrasted against the undeformed baseline shape, such that rel-
evant coefficients can be identified by the largest differences in co-
efficients between baseline and deformed shape (Figure 4B,C). Here
again the setting of a threshold t for selecting the highest differences
is required.

Both procedures identify components that contribute to the spatial
representation of the targeted deformation while ignoring less rele-
vant geometric components. Hence, we obtain a sparse description
of the geometric information relevant to characterize a specific de-
formation in the spatial domain.

For both approaches, t may be either set based on a statistical cri-
terion, but may also be found through an iterative process that alter-
nates between lowering or increasing t and evaluating the reconstruc-
tion quality in the spatial domain (Figure 2, blue box). Reconstruc-
tion quality may either be judged through visual inspection by an
expert or through calculation of an error metric between the original
and reconstructed shape. Adjusting t controls for the size of the de-
scriptor, |S| =M , and thus allows for a trade-off between compact-
ness and the level of geometric detail captured by the descriptor. Note
that recovering the original mesh representation requires all spectral
coefficients (according to eq. 2), hence—even though S is sufficient
to represent the geometric deformation of a part—it is not possible to
recover the original mesh representation from S alone. Nevertheless,
an approximate reconstruction is still possible.

In our experiment, we demonstrate that, for a part typically en-
countered in engineering contexts, setting t based on a statistical cri-
terion resulted in a small descriptor size, M � N , where N is the
number of nodes in a triangular surface mesh. This descriptor was
able to robustly filter simulation results based on their deformation
mode despite the considerable reduction in description length, in-
dicating that a high amount of application-relevant geometric detail
was retained.

3.3 Application scenarios
Once the descriptor S is constructed, it can be applied in further
computational tasks (Figure 2, green box). For example, the descrip-
tor may be used as a feature in a machine learning task, encoding
the plastic deformation behavior of a part. A possible application is



Figure 3. Visualization of the spectral coefficients for the first eigenvector of the x-, y-, z-coordinates for all simulation runs and all time steps (color coding
indicates simulation time steps, where red denotes the first time step). Note how the spectral representation allows for an identification of the different

deformation modes based on the distance of simulation runs in the spectral domain. Coefficients in the bottom left correspond to a downward bend, top right
corresponds to upward bend, and left and right correspond to axial crushing along the length of the part. Color coding of parts indicates the difference to the

undeformed baseline geometry, where red indicates smaller and blue larger distances.

meta-modelling, which aims at replacing costly simulations or op-
timization runs by a cheaper evaluation of statistical models. The
descriptor can be used in case the design process investigates the re-
lationship between a geometry and an objective function of interest.
Learning such a meta-model requires the efficient parametrizations
of the properties of interest, such as deformation behavior. Further
tasks may include optimization of the part with respect to some prop-
erty, e.g., material thickness, while the shape descriptor is used as a
constraint or part of the objective function to ensure the desired de-
formation behavior. Here, the descriptor can be used to describe the
targeted deformation behavior and to describe the deformation be-
havior of parts in intermediate steps of the optimization. As soon
as the desired and actual deformation behavior diverge, measurable
by an increasing distance between the descriptors, the optimization
can be stopped automatically. Alternatively, the distance may be used
as part of the objective function, e.g., when using evolutionary opti-
mization techniques.

A further task, common in the engineering design process, is the
filtering and verification of simulation results based on geometric
properties. Often, large numbers of simulation runs are performed
in order to investigate the impact of variations in design parameters
on the component under development. This results in large amounts
of simulation data that typically require time-intensive visual inspec-
tion by an expert in order to verify the success of individual simula-
tions [25, 2]. Our descriptor can be used both, to automatically verify
the outcome of a simulation with respect to the desired deformation
behavior, and to filter simulation results based on the deformation
behavior (see section Experiments). In particular, the proposed work-
flow may again be used to find the spectral descriptor for the targeted
deformation behavior and the actual deformation behavior of the part
being optimized. To verify a result, a threshold on the acceptable dis-
tance between both descriptors can be set, allowing for the verifica-

tion of large sets of simulation results without the need for manual
inspection by an expert.

Note that since the Laplace-Beltrami operator is only invariant un-
der isometric transformations, the presented approach is limited to
scenarios where all shapes involved in finding and using the descrip-
tor represent the same baseline geometry in different states of (iso-
metric) deformation. This is however the case for many engineer-
ing applications, where properties of the structure are determined
by variables that can be varied independently of the mesh geome-
try. Two examples are thickness of shell finite elements or material
properties of finite elements such as failure criteria. Another appli-
cation scenario is the variation of loading or boundary conditions
whose variation can lead to different deformation behaviors while the
base geometry of the component of interest stays the same. In these
scenarios, our method has relevance for robustness or optimization
studies, where certain deformation modes are desired as a main ob-
jective. Additionally, small changes to the geometry can be handled
by interpolating the mesh to a joint reference mesh.

3.4 Computational complexity of the proposed
workflow

In terms of computational efficiency, the most costly operations in
constructing the descriptor are the preprocessing phase (Figure 2,
red box) comprising the calculation of the mesh operator, its eigen-
decomposition, and the projection of Euclidean coordinates into the
eigenbases, eq. (3). The asymptotic time complexity of the prepro-
cessing is dominated by the matrix multiplications performed as part
of the operator definition and its eigendecomposition, which is cu-
bic in the number of mesh vertices, O(N3). This operation is done
only once and can be performed offline with respect to the applica-
tion of the descriptor in a subsequent task (Figure 2, green box). The



time complexity is cubic if a naive algorithm is used, but also algo-
rithms with subcubic runtimes are available (e.g., [3]). Furthermore,
since the discrete Laplace-Beltrami matrix is inherently data sparse,
fast computations of the first, say, 1000 eigenvectors using numeri-
cal approaches exploiting this data sparseness seem possible, which
is part of future work. In any case, this one-time pre-processing step
is small in comparison to the runtime of a single numerical simula-
tion performed to generate one datum.

The application of the descriptor to new geometries in the online
phase (Figure 2, green box) requires the projection of the new ge-
ometry’s Euclidean coordinates, P , into the bases indicated by the
descriptor, ES. The projection consists of a matrix multiplication,
ET

SP , eq. (3), which has asymptotic time complexity O(3MN),
with M � N .

4 EXPERIMENTS
4.1 Data generation
To demonstrate the effectiveness of our method, we used the pro-
posed descriptor to represent the deformation behavior of a hat sec-
tion beam in a crash simulation and filter simulation results based on
deformation mode.

A hat section beam is a structural element common in engineering
domains such as civil or automotive engineering (Figure 4A). It con-
sists of a top-section with a hat-shaped cross-section that is joined
together with a base plate.

We simulated an axial crush of the beam using LS-DYNA mpp
R7.1.1 (Figure 4B,C), double precision, while inducing various de-
formation modes. On the resulting data, we used the proposed de-
scriptor to filter results based on a desired deformation behavior.

Variation in the deformation behavior was introduced by adding
“notches” in the flange of the hat section at defined locations along
the length of the part (Figure 4A) and varying the material thick-
ness of the part between 1 mm and 10 mm. A notch was simulated
by setting the material thickness to 0.0001 mm in order to simulate a
removal of the material at that point. The setup resulted in a simula-
tion bundle consisting of k = 100 simulations with a large variety of
deformation modes, each with several saved time steps.

4.2 Calculation of mesh spectral coefficients and
selection of shape descriptor

For further analysis, we considered the set of deformed shapes from
the final time step of all simulation runs. The spectral representa-
tion according to eq. (3) was computed, where we used the first
500 eigenvectors with smallest eigenvalues. We selected geometries
representative of one of three deformation modes, namely upward
bend, downward bend, and axial crush (Figure 1A, B), identified
through clustering of the first 500 coefficients in the spectral domain.
Alternatively, Figure 3 shows the spectral coefficients of x-, y-, z-
coordinates corresponding to the first eigenvector for all simulation
runs and time steps, from this visualization the different modes could
also be selected.

For each deformation mode we obtained the spectral descriptor
according to eq. (5) by setting t to one standard deviation above the
mean over all coefficients for a representative shape. This approach
resulted in descriptor sizes of M = 14 for axial crush, M = 17 for
upward bend, M = 16 for downward bend, compared to an original
mesh size, N , of around 9000 nodes. The quality of the descriptor
was validated through visual inspection of the spatial reconstruction
(Figure 5A). Note that to allow for proper reconstruction, for each

Figure 4. (A) Hat section beam used for data generation. Colored markers
indicate notches introduced at various locations along the length of the

shape, which lead to various different deformation behaviors shown to the
left (notches denote areas of material thickness of 0.0001 mm). (B)

Simulation setup with undeformed baseline shape. (C) Exemplary final time
step of simulation run showing deformed shape.

selected coefficient, α(·)
j ∈ S, also the spectral coefficients corre-

sponding to the remaining two 3D coordinates were added if not al-
ready contained in the descriptor. Furthermore, eigenvectors ψ1 and
ψ2 were added to the reconstruction.

We compared the spatial reconstruction of the meshes from our
descriptor of length M to the reconstruction from the first M low-
frequency components (eigenvectors with smallest eigenvalues), i.e.
N = M in eq. (4) (Figure 5A, bottom row). The latter is a common
approach in dimensionality reduction or compression applications
[13, 7]. The comparison shows that our descriptor obtained a bet-
ter reconstruction quality than the reconstruction from low-frequency
components alone. In particular, the high-frequency components in-
cluded in the descriptor captured also finer detail on the mesh, for
example, the edge of the hat section in the center of the bent parts.
An approximate decoding from the sparse encoding of size M is
therefore possible, where the quality is good enough to reconstruct
the main behavior, but not the details, e.g., the location of the axial
crush is not preserved.

4.3 Application of spectral descriptor for filtering
and shape retrieval

We used the spectral descriptors to filter the set of simulation results
for geometries exhibiting a specific crash behavior. As described
in section Application scenario, filtering large-scale simulation runs
based on geometric properties is a common application scenario in
the engineering design process.

To filter simulation runs using the proposed descriptor, S, we first
obtained spectral coefficients for all shapes through projection into
the spectral domain; we then calculated the similarity between these
coefficients and coefficients in S using the cosine similarity. Figure
5B shows the similarity between the descriptor of the axial crush de-
formation mode and all simulation results. Our approach correctly
identified all simulation results exhibiting an axial crushing as most
similar to the spectral descriptor, with the exception of one geometry
showing an upward bend. Figure 5C shows the nine simulation re-
sults most similar to the descriptor, which all show an axial crushing
of the beam. Note that the approach was able to identify simulation



Figure 5. (A) Mesh reconstruction for three deformation modes (color
scale indicates displacement in z-direction): top row shows mesh

reconstructions from the first 500 eigenvectors ordered by magnitude of
eigenvalues; middle row shows reconstruction from the proposed descriptor
with sizes M = 14 for axial crush, M = 17 for upward bend, M = 16 for
downward bend, bottom row shows reconstruction from the first M = 14,

M = 17, and M = 16 eigenvectors ordered by magnitude of their
eigenvalues. (B) Cosine similarity between axial crush descriptor and all

simulation runs. (C) First nine most similar simulation results for axial crush
spectral descriptor (color scale indicates displacement in z-direction).

results exhibiting an axial crushing irrespective of the exact location
of the axial folding along the part.

In summary, the descriptor provided an abstract description of the
deformation behavior that did not require the specification of an exact
deformation, e.g., in terms of the displacement of individual nodes.
The descriptor successfully represented application-relevant geomet-
ric information through the targeted selection of coefficients while

being of much smaller size than the full mesh representation in the
spatial domain.

5 CONCLUSION AND FUTURE WORK

We proposed a novel approach for the efficient representation of ge-
ometric deformations using a spectral descriptor comprising com-
ponents selected in a targeted and adaptive fashion. The selection
procedure ensures that only geometric components relevant for spec-
ifying the targeted deformation are included, which makes the de-
scriptor much smaller in size than a full geometric representation
of the deformation, e.g., by a surface mesh, and also smaller and
more focused than using the first few hundred spectral components
as in [12]. Despite its compactness, the descriptor was able to cap-
ture a high amount of application-relevant geometric information and
provided the necessary descriptive power to distinguish between de-
formation modes in a filtering task. The trade-off between size and
represented geometric detail makes the descriptor a promising tool
for the parametrization of also complex geometric deformations in
various computational tasks.

Future work may explore the applicability of the descriptor, for ex-
ample, in tasks such as structural optimization with plastic deforma-
tion as design criterion. Here, the proposed descriptor offers a pow-
erful design tool and may improve on current approaches that require
extensive manual intervention and evaluation by an expert. Further-
more, the descriptor may be used in post-processing of simulation
data by identifying or filtering results based on geometric deforma-
tion. Especially in large-scale data sets, such an approach allows to
automatically verify the success of a simulation instead of requiring
the visual inspection of large sets of simulation results by an expert.
Lastly, the descriptor may be used as a feature in machine learning
tasks on large-scale engineering data sets, representing a central de-
sign property in many application domains.

ACKNOWLEDGEMENTS

The authors thank Emily Nutwell of the OSU SIMCenter for support
in generating the hat section model.

REFERENCES
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Thomas Bäck, and Michael Lew, ‘Learning fluid flows’, in 2018 In-
ternational Joint Conference on Neural Networks (IJCNN), pp. 1–8,
(2018).

[9] Lars Graening and Bernhard Sendhoff, ‘Shape mining: A holistic data
mining approach for engineering design’, Advanced Engineering Infor-
matics, 28(2), 166–185, (2014).

[10] Tinghao Guo, Danny J. Lohan, Ruijin Cang, Max Yi Ren, and
James T. Allison, ‘An indirect design representation for topology
optimization using variational autoencoder and style transfer’, 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, 804, (2018).

[11] Rodrigo Iza-Teran, Geometrical Methods for the Analysis of Simulation
Bundels, Ph.D. dissertation, University of Bonn, Bonn, Germany, 2016.

[12] Rodrigo Iza-Teran and Jochen Garcke, ‘A geometrical method for low-
dimensional representations of simulations’, SIAM/ASA Journal on Un-
certainty Quantification, 7(2), 472–496, (2019).

[13] Zachi Karni and Craig Gotsman, ‘Spectral compression of mesh geom-
etry’, Proceedings of the 27th Annual Conference on Computer Graph-
ics and Interactive Techniques, 279–286, (2000).

[14] Shu Tian Liu, Ze Qi Tong, Zhi Liang Tang, and Zong Hua Zhang, ‘De-
sign optimization of the S-frame to improve crashworthiness’, Acta Me-
chanica Sinica, 30(4), 589–599, (2014).
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