Dynamic load-balancing of hierarchical tree algorithms on

a cluster of multiprocessor PCs and on the Cray T3E.

Attila Caglar, Michael Griebel, Marc A. Schweitzer and Gerhard Zumbusch'

Abstract

The solution of many problems in science and engineering is based on computa-
tional kernels for the numerical treatment of partial differential equations (PDEs) or
N-body problems. Traditional solution methods however reduce these to linear algebra
or brute force algorithms on structured data sets. Larger and larger simulations require
smarter algorithms to be tractable. Hierarchical tree algorithms represent such a class,
both for PDEs and for N-body problems. However, their efficient parallelization is not
straightforward. Some difficulties can be removed, if one can provide a fast dynamic
load-balancing scheme to cope with the tree variations of the unstructured data sets.
In this paper we propose a very cheap yet very efficient load-balancing scheme for tree
algorithms based on space-filling curves. Furthermore we present the Parnass2 cluster,
on which such parallel codes perform extremely well. The cluster consists of SMP PCs
and a Myrinet network at Gigabit/s speed configured with full bisection bandwidth. It
turns out that it does not only has the obvious price/performance advantage, but also

an absolute performance, which is comparable to the latest commercial Cray T3E.

1 Algorithmic Problem

Hierarchical numerical methods belong to the
most effective sequential methods for solv-
ing problems in a wide range of applications.
For example in the treatment of partial dif-
ferential equations they allow for a multi-
level solver like multigrid or the BPX pre-
conditioner, see [5, 10] as well as adaptive
refinement techniques, see [1, 3]. Here, the
aim is to obtain an approximation to the
continuous solution within a prescribed error
tolerance with an amount of work which is
proportional to N, i.e. the number of un-
known of the finest adapted grid. The ac-
tual approximation error should be smaller
than some given . To this end, in most
practical three-dimensional applications (po-
tential problems, temperature and diffusion
processes, flow problems, elasticity problems
etc.), the solutions of interest are in general
not smooth, but exhibit steep variations and
singularities. Here, uniform grids should not
be employed but the use of adaptively refined

grids is a must for reasons of efficiency. Thus
the underlying tree algorithm leads to data
which are not equi-distributed over the do-
main (see Figure 1 (left) for a simple exam-

ple).

A partial tree of an N-body algorithm.

Furthermore, hierarchical tree codes are
found in the treatment of integral equations,

tSonderforschungsbereich 256 Nonlinear Partial Differential Equations, Institut fiir Angewandte Math-
ematik, Universitat Bonn, Wegelerstr. 6, D-53115 Bonn, {caglar, griebel, schweitz, zumbusch}@iam.uni-

bonn.de, http://wissrech.iam.uni-bonn.de

in particle simulations and N-body problems,
where a fast, approximative evaluation of
forces between particles in a force field with
long range potential is to be computed. Here,
applications range from astrophysics (sim-
ulation of structure formation of the uni-
verse, galaxy formation), over fluid flow prob-
lems (tree-SPH) and physics (particle meth-
ods) to material science, chemistry and bi-
ology (molecular dynamics), see [2, 9]. The
two major tree algorithms are the Barnes-
Hut method and the fast multipole technique.
They are of orders O(NlogN) and O(N)
complexity, respectively. Here, we encounter
clustered data sets due to the movement of
the particles in time. The distribution of the
particles is adaptively resolved by the respec-
tive tree algorithm. Examples are given in
Figure 1 (right and bottom).

Within both classes of hierarchical algo-
rithmes, i.e. the adaptive multilevel solution of
PDEs and the fast algorithms for the N-body
problem, we have to deal with tree-like data
structures. They are in general not well bal-
anced due to the non-uniform distribution of
the data. Furthermore, the trees also change
dynamically due to either adaptive grid re-
finement or the movement of the particles.

In the sequential case this imbalance of
the trees does not affect efficiency. However,
when it comes to parallelization, this imbal-
ance poses a major problem. A straightfor-
ward parallelization based on a simple, static
domain decomposition approach would lead
to severe load imbalance between processors
which can hamper the parallel efficiency sub-
stantially.

tree algorithm

To overcome this difficulty we have to deal
with a load balance problem. Due to the
dynamically changing data distribution, load
balancing has to be performed during run
time of the respective algorithms and cannot
be done in a pre-processing step. Note that

the problem is in general N-P hard. There-
fore one has to settle for cheaper subopti-
mal heuristics. In [21] we find a survey on
mesh partitioning and data balancing tech-
niques. Note furthermore, that our above-
mentioned tree algorithms possess an opti-
mal complexity of O(N) or O(N logN), re-
spectively. Thus the applied heuristics should
also have at most this complexity. Note fi-
nally that, after parallelization, our hierarchi-
cal tree algorithms would have a parallel com-
plexity of O(N/P +log P) or O(N/Plog N +
log P), respectively. Consequently a dynam-
ical load balancing heuristics must also run
in parallel and must have a comparable par-
allel complexity. Otherwise, the load balanc-
ing part of the overall algorithm would domi-
nate the solution part which is not acceptable
from the efficiency point of view. This prob-
lem of a cheap parallel load balancing heuris-
tics rules out most of the existing approaches
which work nicely for many other numerical
algorithms with higher sequential complexi-
ties. The load-balancing becomes more chal-
lenging in the presence of more advanced, op-
timal complexity algorithms like the ones we
will consider in this paper.

2 Parallel Approach

The search for optimal algorithms to solve
a problem up to a given approximation er-
ror lead us to tree-type algorithms, e.g. for
partial differential equations or integral equa-
tions. However, unbalanced trees due to
adaptivity and clustering in space causes seri-
ous trouble for the parallelization. Especially
it requires extremly cheap dynamic load-
balancing methods. In order to accomplish
these goals, we employ a very cheap heuristic,
tightly integrated into the code and the sur-
rounding tree algorithms. Of course, such a
heuristic does perform only sub-optimal and
in general leads to a larger communication
overhead than the optimum partition would
need. However, no heuristic can find an op-
timal solution for any large data set of in-
terest, neither some polynomial complexity
methods, nor the constant time method we
propose here. In the past it has been a ma-
jor undertaking to parallelize certain kinds of
tree codes, see [17, 28, 7, 18, 25, 8, 3]. If the
load-balancing problem was tackled at all, ei-
ther based on different heuristics or on graph

Figure 1: An adaptively refined grid for the solution of a PDE (upper left) and a clustered
set of particles in a molecular dynamics simulation (upper right) and in crack propagation

simulations in 3D (bottom).

based partitioning methods, the time spent
in load-balancing and the quality were always
the limiting factor for truly un-balanced trees
and larger number of processors. Hence we
propose a new balancing method.

R l’ﬁﬁ? _%_'
| — [7 — 1 ~ = T
et | N

I 10T] ™~ i \lr N
Co A \“\\D&QK
T G -E

tion. The pictures indicate a simple exam-
ple. The final algorithm shifts and rotates
the space-filling curve in order to reduce the
partition boundaries.

The Hilbert space-filling curve in 2D and 3D.

The load-balancing method to be de-
scribed is based on space-filling curves, see
[15, 22, 31].
of the three-dimensional geometric space to
the one-dimensional real axis. The one-
dimensional problem is cut into P intervals
of the same amount of nodes/particles/work.
The inverse space-filling curve mapping re-
sults in a data partition that can be inter-
preted as a sophisticated domain decomposi-

The curve defines a mapping

s
]

01 2

Mapping a 2D adapted grid to a space-filling
curve (left) and mapping points on a space
filling curve to a parallel processor (right).

gl
A decomposition of the domain induced by
the space filling curve mapping.

While the one-dimensional partition is op-
timal, the three-dimensional is not: Com-
pared to the optimum, roughly 30% over-
head in communication is added. However,
the load-balancing scheme itself is very cheap
and runs efficiently also in parallel. It can be
implemented by a simplistic parallel sort al-
gorithm operating on a pre-sorted set which
is given by the previous data partition. The
tree algorithms can be tightly integrated into
the load-balancing scheme: Due to the de-
terministic nature of the partition, it is pos-
sible to compute the positions where nodes
such as neighbors or hierarchical parent or
child nodes are located. Hence one gets rid of
the standard administration and bookkeep-
ing which gives both savings in memory, lines
of code and computational efficiency. Space-
filling curves have been proposed for load-
balancing by [26, 23, 20, 19] and further de-
tails can be found in [12, 13, 14, 29, 6].

While the data is partitioned and mapped
onto the parallel processors, the data-tree of
the algorithm spans all processors. A tree
traversal e.g. has to be implemented in a
clever way in order to match the results of
the sub-trees located on the processors. How-
ever, the whole traversal procedure can be
re-interpreted as a re-balancing of the unbal-
anced tree, like it is done in the re-balancing
algorithms with balanced trees such as the
AVL tree, for example.

Due to the unbalanced tree, the precise
communication patterns are not predictable
a priori. Hence a parallel computer network
is required, where geometric distances in the
network topology do not matter. Further-
more, network bandwidth must be sufficiently
high in that case. As we will see later, the
Myrinet interconnection tree of the Parnass2
cluster fulfills this requirement, along with
very low communication latencies needed in
some other parts of the algorithm.

3 Hardware and Configu-
ration of Parnass?2 Cluster

Parnass2 is a dedicated cluster of personal
computers (PCs) used for research in scien-
tific computing at the Department of Applied
Mathematics at the University of Bonn. This
resource is used as a supercomputer to carry
out computational tasks which are too large
for conventional workstations or servers. The
cluster utilizes off-the-shelf components (In-
tel Pentium-IT, Myrinet, Linux), hence it can
achieve 8.5 Gflops performance per $100K.
But more importantly, on real applications it
competes surprisingly well with systems cost-
ing 10-100 times more. Because the system
is inexpensive (about the cost of a high-end
workstation), it can be used as a personal
supercomputer, rather than a resource that
must be shared by many people, see [11].

In the current installation Parnass2 con-
sists of 96 CPUs (48 Dual-Pentium-IT 400
MHz) with 256 MB RAM, see [30]. The oper-
ating system of Parnass2 is Linux, currently
with a 2.2.7 kernel, together with compilers
for C, C++4, Fortran77 and Fortran95. In
contrast to standard numerical algorithms,
tree based algorithms rely to a certain extend
on integer operations and irregular memory
access patterns. Hence processors of the
Intel Pentium line with a theoretical ratio
of 2.5 Operations per Flop together with
small cache lines achieve much higher effi-
ciencies than e.g. Compaq Alpha processors
or traditional vector processors. Furthermore
the space-filling curve load-balancing requires
some additional integer operations to be exe-
cuted frequently.

The 48 SMP computing nodes of Parnass2
are connected in a two-level fat-tree topology
(Figure 4) with full bisection bandwidth of 61
Gbit/s. Using an MPI implementation from
RWCP tailored for Myrinet and SMP nodes,
a communication bandwidth of 850 Mbit/s
and a latency of 11us can be measured in
application codes. There are even compet-
ing uniprocessor MPI implementations with
latencies as low as 3us. In addition to this
high-speed computing network, Parnass2 em-
ploys Fast-Ethernet for file /O to/from an
external file server.

Overall this hard- and software configu-
ration enabled us to measure 18.3 GFlop/s

H I
H [

Figure 2: 2D refined grid, mapped to 8 processors, full domain left, zoomed image on the

right, grid and color coded partition.

Figure 3: A sequence of adaptively refined grids mapped to 8 processors, partition is color

coded.

in a Linpack benchmark on Parnass2, which
is roughly 45% of the peak-performance. In
the final installation of 128 CPUs connected
with a Myrinet in a three-level fat-tree topol-
ogy (Figure 5) with full bisection bandwidth.
Parnass2 will have a peak performance of 51.2
Gflops/s and 32 GByte main memory. The
overall prize of this final installation is $280K,
giving an anticipated prize-performance ratio
of $5.500 per peak Gflops/s and $12K per sus-
tained Gflops/s.

However in the parallel codes presented
here, small communication latencies play a

dominant role, delivered either by shared
memory or by the extreme low latency
Myrinet network. The tree algorithms fur-
thermore require high network bandwidths
in some parts of the execution, which can
be delivered by the full-bisection bandwidth
fat-tree, in contrast to torus topologies used
e.g. in the Cray T3 and Intel Paragon series
(ASCT Red) which are designed for structured
applications such as the Linpack benchmark.
Further details may be found in [24].

Figure 4: Two level fat-tree topology of 96 CPUs (48 nodes).

Figure 5: Three level fat-tree topology of 128 CPUs (64 nodes).

4 Experimental Results

Adaptive Finite Elements and Multi-
level Solver for Linear Elasticity Prob-
lems.
The Lamé equation in the displacement for-
mulation

pli+ A+ pv(vea) = f (1)
with Lamé’s constants A, p > 0, was con-
sidered for our performance test with the
adaptive finite element multilevel solver. A
nested iteration is used for a solution up
to discretization error. With an additive
multilevel-V cycle preconditioned Krylov it-
eration on each grid this means a constant
number of iterations. Together with a geo-
metrically increasing number of grid points
we end up with a total of O(N) operations.
The adaptive grid refinement is controlled
by a residual based error indicator, leading
to a parallel adaptive grid refinement of 1-
irregular grid built of hexahedral elements,
where a finite difference type discretization is
employed. The parallel version of the code
uses a space-filling curve data partition after
each adaptive grid refinement step.

As a test problem, we consider a homo-
geneous cube under internal forces parallel
to one coordinate axis, fixed at three faces.
The remaining edges or faces are free (homo-
geneous Neumann conditions). The solution

develops singularities. Here adaptive refine-
ment is used to resolve the singularities next
to the edges or faces (left, bottom and front),
which separate homogeneous Dirichlet (fixed
faces) and homogeneous Neumann conditions
(free faces), see Figure 1 (left).

Tables 1 and 2 give wall clock times mea-
sured on Parnass2 (400 MHz Pentium) and on
a Cray T3E-1200 (600 MHz Alpha) for com-
parison. In general, the numbers show that
the presented algorithm scales very well. We
obtain a scaling of about a factor 3-5 from
one level to the next finer level, i.e. the times
are proportional to the number of unknowns
for a fixed number of processors. This is due
to the adaptive grid refinement heuristic. For
a fixed number of processors, we observe a
scaling of a factor from one level to the next
finer level which corresponds to increase in
the amount of unknowns on that level. Fur-
thermore, for a fixed level the measured times
scale roughly with 1/P of the number of pro-
cessors. However, the 64 processors and more
perform efficiently only for sufficiently large
problems, i.e. for problems with more than
some ten thousand degrees of freedom. For
larger problems we even obtain some super-
linear speed-ups, probably due to caching ef-
fects. If we fix the amount of work, that is
the number of nodes per processor, we obtain
the scale-up. Comparing a time at one level [
and a number of processors P with the time

time processors

nodes dof 1 2 4 8 16 32 64

125 375 0.10 0.12 0.11 1.50 2.91
450 1350 1.44 0.99 0.80 1.35 0.50 0.39 1.05
1155 3465 | 4.14 2.48 1.71 1.32 1.00 0.70 2.74
4412 13236 19.0 10.3 6.09 5.23 3.07 1.89 1.21
18890 56670 98.6 50.3 28.1 20.6 11.6 6.35 3.70
93021 279063 582 294 157 102 54.8 28.2 15.1
506620 | 1519860 556 306 155 78.1
3178218 | 9534654 494

Table 1: Parallel execution times (in
Parnass2.

seconds) for the solution

of Lamé’s equation in 3D,

time processors
nodes | dof 1 4 16 64 128 256 512 768 1024
35937 107811 162 34.1 9.11 2.23 1.23 0.75 0.55 0.56 0.52
109873 329619 | 435 108 29.6 7.20 3.57 1.87 1.13 091 0.80
410546 | 1231638 114 28.6 14.2 7.02 3.51 2.48 1.94
1857030 | 5571090 133 67.1 33.3 16.5 11.0

Table 2: Parallel execution times (in seconds) for the solution of Lamé’s equation in 3D,

Cray T3E-1200.

of one level finer [+ 1 and roughly 4 - P pro-
cessors, we obtain nearly a perfect scaling of
the method.

The uniform initial coarse grids on Par-
nass2 and on the Cray had to be chosen differ-
ently to allow scaling up to 1024 processors.
Therefore the number of unknowns per level
and the corresponding amount of work for the
multilevel V-cycle are not the same on the
two machines, which results in slightly longer
execution times on Parnass2. In fact, other
experiments show slight performance advan-
tages for Parnass2.

Further experiments reveal that the effort
and computing time spent on load-balancing
is below 1% of the time needed for the so-
lution of the linear equation systems and is
hence negligible. We actually can afford to
perform a load-balancing every time, when
an adaptive grid refinement takes place and
the grid changes. In other words, the com-
putation is load-balanced at every step of the
overall computation.

Tree-Multipole-Method
Range Molecular Dynamics
tions

for Long-

Simula-

In the molecular dynamics approach, atoms
and molecules are considered as classical par-
ticles in a Hamiltonian system, which move
according to Newton’s equations of motion.
Here usually a time discretization scheme

due to Verlet is employed. The interactions of
atoms and molecules are approximated by an-
alytic potential functions. We distinguish be-
tween bonded and non-bonded interactions.
The bonded interactions are local and are
restricted to the near-neighbors of each par-
ticle (atom). The non-bonded interactions
are due to Van-der-Waals and electrostatic
forces. From the numerical point of view the
non-bonded interactions are most interesting.
These can be modeled by the Lennard-Jones
or the Coulomb potential, respectively. Then,
the total potential V satisfies

12 6
<Uij) <Uij)
Tl'j Tl'j
1 qiq
dmeg 145

V(ri) = A4 +

(2)

The Lennard-Jones potential is of short
range type. By applying a cut-off technique,
the complexity of its evaluation can be re-
duced to O(N), where N is the number of
atoms. Here implementations are mainly
based on the linked-list method due to Hock-
ney and Eastwood [16]. The paralleliza-
tion is usually done by a classical domain-
decomposition [4].

The Coulomb potential describes long
range interactions. Therefore, the cut-off
technique can no longer be applied and a com-
plexity of O(N?) for a naive approach would
result. Thus the major difficulty in MD-

Figure 6: Melting process of NaCl crystal. Melting temperature 1800 K

simulation methods is the treatment of the
long range force evaluation in each time step
of the Verlet scheme. To cope with this prob-
lem, various multiscale type methods have
been developed, i.e. tree codes, multipole ap-
proaches or multigrid techniques, which re-
duce the complexity to O(N log N) (tree code
of Barnes-Hut [2]) or even O(N) (fast multi-
pole method of Greengard and Rokhlin [9]).
A further reduction of execution time is pos-
sible by parallelization. Here, however — espe-
cially for the above mentioned adaptive tree-
type methods — the implementation is quite
difficult and cumbersome. To our knowledge,
there exists no effective parallel version of the
Barnes-Hut or multipole method for molecu-
lar dynamics applications yet.

We have implemented a mixture of the
Barnes-Hut and the fast multipole technique
within a tree type algorithm, we call it Tree-
Multipole. We use it for the force evaluation
in each time step. Furthermore we incorpo-
rated features necessary to deal with periodic
boundary conditions and we incorporated
the intra-molecular interactions into the tree-
multipole structure to treat molecules and
polymers as well. Here, we use a hash-
technique to deal with adaptivity. To some
extent, our approach joins the advantages of
both methods. It gives the higher accuracy
of the multipole approach within the sim-
pler framework of the Barnes-Hut tree im-
plementation, but avoids the quite expen-
sive multipole-to-local transformations of the
multipole series expansion and simplifies a
parallel implementation. The complexity of
our algorithm is O(N log N).

The parallelization of the resulting tree
multipole method is achieved by means of
space filling curves as explained in the pre-
vious section 2. Note that for the Barnes-
Hut algorithm for astrophysical applications,

Salmon and Warren followed in [27] a sim-
ilar approach. They employed a Morton
curve which is however inferior to our Hilbert
curve because it shows discontinuities and
bad load-balancing in many cases. They also
were aware of this fact but, at least to our
knowledge, they never implemented this bet-
ter variant. Probably our implementation is
the first effective parallel realization of such
an adaptive hierarchical multipole approach
for molecular dynamics simulations which is
based on the Hilbert curve.

We run our parallel tree multipole algo-
rithm on Parnass2 and also for comparison
reasons on the Cray T3E. As a test case
we consider the melting of sodium-chloride
(NaCl), see Figure 6, where each Na and Cl
ion resembles a particle. Here, we encounter
both, short range potentials and long range
potentials. We use a total potential similar
to (2), where in addition for the short range
part the Lorentz-Berthelot mixing rules are
employed. Note that the long range potential
comes in due to the electrostatic nature of the
molecule.

We conducted experiments with varying
number N of particles and varying number P
of processors. The results on Parnass2 are
given in Table 3.
sured run times for one time step of the Ver-
let scheme with our tree multipole algorithm

Here we give the mea-

used for the force evaluation. The results on
the Cray T3E are given in Tables 4 and 5.
Here, we were able to simulate up to 64 mil-
lion atoms (sic !) in a molecular dynamics
simulation with intra- and intermolecular in-
teraction potentials on a Cray T3E with 512
processors. From these numbers we see the
anticipated logarithmic behavior of the scale-
up on Parnass2 as well as on the Cray. But
again we have a slightly better scaling of the
code on the Cray than we have on our clus-

time processors P
particles N 1 2 4 8 16 24 32 48 64 80 96
2028 | 0.24 0.16 0.12
10164 | 4.00 2.23 1.36 0.74 0.46 0.31 0.26 0.24 0.25
101614 66 33 17.4 8.9 4.9 2.7 2.0 1.7 1.2
1.000.000 180 74 49 32 23 17 145 12
2.000.000 170 105 74 51 35 29
3.000.000 245 168 102 72 54
4.000.000 269 155 106 79
6.000.000 267 187 134
8.000.000 298 213
10.000.000 279

Table 3: Parnass2: Parallel execution times #(N, P) (in seconds) for one time-step of the
simulation of Melting of NaCl using the tree multipole method within the Verlet—scheme.

time processors P
particles N 1 2 4 8 16 32 48 64
2028 | 0.24 0.21 0.17
10164 | 4.00 2.23 1.36 0.74 046 0.31 0.26 0.24
101614 126 58 26 13 6 3.2 2.3 1.8
1000000 320 128 63 36 25

Table 4: Cray T3E-900: Parallel execution times (in seconds) for one time-step of the simu-
lation of Melting of NaCl using the tree multipole method within the Verlet—scheme.

time processors P

particles N 128 256 512
1 mio. 16.12 8.18 5.30

2 mio. 35.40 16.94
4 mio. 86.12 40.95 22.40
8 mio. 207.80 91.56 48.07
16 mio. 511.42 214.04 99.65

32 mio. 1763.53 644.61
64 mio. 746.88

Table 5: Cray T3E-1200: Parallel execution

times (in seconds) for one time-step of the

simulation of Melting of NaCl using the tree multipole method within the Verlet—scheme.

ter. This is due to the superior network band-
width and latency of the Cray.

The single processor numbers indicate
that the Intel Pentium II 400 MHz proces-
sors perform roughly by a factor of two better
than the more floating point oriented Com-
paq Alpha processors at 450 MHz. As in the
multigrid example, also the irregular memory
access patterns run more efficiently on the
Pentium with small cache lines than on the
streams interface of the Cray. Obviously the
multi-million $ propriety network hardware of
the Cray has orders of magnitude faster peak
bandwiths than the Myrinet network of Par-
nass2. However, we roughly obtain a similar
scaling behaviour of the algorithm with an in-
creasing number of processors. This is surely
due to the tree type structure of the algo-
rithm and the fat-tree topology of Parnass2’s

Myrinet.

5 Concluding Remarks

In this paper, we proposed tree type nu-
merical algorithms as computational kernels
of different kinds of simulation codes used
in science and engineering. We considered
two examples, an adaptive parallel multi-
grid method for the solution of partial dif-
ferential equations and a parallel Barnes-
Hut/multipole method for the fast evalua-
tion of forces in a molecular dynamics Ver-
let integrator. In both cases tree algorithms
were succesfully applied to reduce the com-
putational complexity in a substantial way.
However, within the parallelization of these
algorithms we had to cope with the prob-
lem of load-balancing in the presence of adap-

tive grid refinement and particle clustering.
Here, a space-filling curve partitioning heuris-
tic was used, which led to a very efficient par-
allelization of these advanced methods. Fur-
thermore, a cluster of SMP PCs (Parnass2)
connected by a fat-tree Myrinet communica-
tion network was presented, which is used for
these simulations at our department. Nu-
merical experiments and a comparison with
the latest and largest Cray T3E computer
showed the competitiveness of the cluster de-
sign. It turned out that Parnass2 is not only
running at a much better price/performance
ratio, but also the absolute performance fig-
ures are competitive. This is in part due to
irregular memory access patterns and a large
amount of integer operations of the tree al-
gorithms. However, the good parallel scala-
bility also stems from the high performance
and low latency Myrinet network and the full
bisection bandwith topology used in the clus-
ter Parnass2. Assuming a fictive budget of 1
Mio. DM, it would be possible to simulate
128 million particles in molecular dynamics
with long range potentials or more than 30
million degrees of freedom in partial differen-
tial equations, respectively. This fact, along
with the experiences from our experiments let
us predict a bright future for cluster comput-
ing.

6 Acknowledgement

We would like to thank NIC KFA-Jilich and
Cray Research for the computing time on the
Cray T3E-900 and T3E-1200, respectively,
used for comparison with the Parnass2 clus-
ter.

References

[1] R. E. BANK AND T. DUPONT, An op-
timal order process for solving elliptic fi-
nite element equations, Math. Comp., 36

(1981), pp. 35-51.

J. BARNES AND P. HuT, A hierarchical
O(Nlog N) force calculation algorithm,
Nature, 324 (1986), pp. 446-449.

P. BASTIAN, Parallele Adaptive Mehr-
gitterverfahren, Teubner, Stuttgart,
1996.

10

[4] D. M. BEAZLEY AND P. S. LOMDAHL,
Message passing multi-cell molecular-
dynamics on the connection machine
CM-5, Parallel Computing, (1994). The-
oretical Division and Advanced Com-
puting Laboratory, Los Alamos National
Laboratory, Los Alamos, NM 87545.

J. H. BRamMBLE, J. E. PASCIAK, AND

J. Xu, Parallel multilevel precondition-
ers, Math. Comp., 55 (1990), pp. 1-22.

A. CaGLAR AND M. GRIEBEL, Fast
Parallel Algorithms for Molecular Dy-
namics, Journal of Molecular Liquids,
(1999). to appear.

J. DE KEYSER AND D. RooOSE, Parti-
tioning and mapping adaptive multigrid
hierarchies on distributed memory com-
puters, Tech. Rep. TW 166, Univ. Leu-
ven, Dept. Computer Science, 1992.

J. DUBINSKI, A parallel tree code, New
Astronomy, 1 (1996), pp. 133-147.

L. GREENGARD AND V. ROKHLIN, A
fast algorithm for particle simulations,
Journal of Computational Physics, 73
(1987), pp. 325-348.

[10] M. GRIEBEL, Multilevelmethoden als It-
erationsverfahren tiber Erzeugendensys-
temen, Skripten zur Numerik, Teubner,
Stuttgart, 1994.

[11] M. GRIEBEL AND G. ZUMBUSCH, Par-
nass: Porting Gigabit-LAN components
to a workstation cluster, in 1. Workshop
Cluster Computing 1997, TU Chemnitz,
1997.

[12] ——, Hash-storage techniques for adap-
tive multilevel solvers and their do-
main decomposition parallelization, in
Proc. Domain Decomposition Methods
10, J. Mandel, C. Farhat, and X.-C. Cai,
eds., vol. 218 of Contemporary Mathe-
matics, Providence, Rhode Island, 1998,
AMS, pp. 279-286.

[13] ——, Parallel multi-grid in an adap-
tive PDE solver based on hashing, in
ParCo’97, E. D’Hollander, G. R. Jou-
bert, F. J. Peters, and U. Trottenberg,
eds., Elsevier, 1998, pp. 589-599.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Parallel Adaptive Subspace
Correction Schemes with Applications
to Elasticity, Computer Methods in
Applied Mechanics and Engineering
(CMAME), (1999). submitted.

D. HILBERT, Uber die stetige Abbildung
einer Linie auf ein Fldchenstick, Math-
ematische Annalen, 38 (1891), pp. 459-
460.

R. W. HockNEY AND J. W. EAsT-
wooD, Computer Simulation Using Par-
ticles, McGraw-Hill, New York, 1981.

9

P. LEINEN, Fin schneller adaptiver
Léser fur elliptische Randwertprobleme
auf Seriell- und Parallelrechnern, PhD
thesis, Universitat Dortmund, 1990.

M. LEMKE AND D. QUINLAN, Fast
adaptive composite grid methods on dis-
tributed parallel architectures, Comm.
Appl. Num. Methods, 8 (1992), pp. 609-
619.

J. T. OpDEN, A. PATRA, AND Y. FENG,
Domain decomposition for adaptive hp
finite element methods, in Proc. Domain
Decomposition 7, vol. 180 of Contempo-
rary Mathematics, AMS, 1994, pp. 295—
301.

M. PARASHAR AND J. BROWNE, Dis-
tributed dynamic data-structures for par-
allel adaptive mesh-refinement, in Pro-
ceedings of the International Conference
for High Performance Computing, 1995.

A. POTHEN, Graph partitioning algo-
rithms with applications to scientific
computing, in Parallel Numerical Algo-
rithms, D. E. Keyes, A. Sameh, and
V. Venkatakrishnan, eds., Kluwer, 1997,
pp. 323-368.

H. SacaN, Space-Filling
Springer, New York, 1994.

Curves,

11

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. K. SAtMoN, M. S. WARREN, AND
G. S. WINCKELMANS, Fast parallel tree
codes for gravitational and fluid dynam-
ical n-body problems, Int. Journal of
Supercomputer Applications, 8 (1994),
pp. 129-142.

M. A. SCHWEITZER, G. ZUMBUSCH,
AND M. GRIEBEL, Parnass2: A cluster
of dual-processor PCs, in 2. Workshop
Cluster Computing 1999, TU Chemnitz,
1999.

J. K. SINGER, The Parallel Fast Mul-
tipole Method in Molecular Dynamics,
PhD thesis, Dept. of Mathematics, Uni-
versity of Houston, Texas, August 1995.

M. WARREN AND J. SALMON, A
portable parallel particle program, Com-
put. Phys. Comm., 87 (1995), pp. 266—
290.

M. S. WARREN AND J. K. SALMON, A4
parallel hashed oct-tree n-body algorithm,
Tech. Rep. LAUR 93-1224, Los Alamos
National Laboratory, 1993.

G. ZumBUSCH, Adaptive parallele
Multilevel-Methoden zur Lésung ellip-
tischer Randwertprobleme, SFB-Report
342/19/91A, TUM-19127, TU Miinchen,
1991.

Dynamic loadbalancing in
lightweight adaptive parallel multigrid
PDE solver, in Proceedings Parallel Pro-
cessing for Scientific Computing 1999,
STAM, 1999.

a

?

http://wissrech.iam.uni-
bonn.de/research/projects/parnass?.

Advances in relational database technol-
ogy for spatial data management, white
paper, Oracle Corp., 1997.

