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Abstract—We introduce canonical weight normalization for
convolutional neural networks. Inspired by the canonical ten-
sor decomposition, we express the weight tensors in so-called
canonical networks as scaled sums of outer vector products.
In particular, we train network weights in the decomposed
form, where scale weights are optimized separately for each
mode. Additionally, similarly to weight normalization, we in-
clude a global scaling parameter. We study the initialization
of the canonical form by running the power method and by
drawing randomly from Gaussian or uniform distributions. Our
results indicate that we can replace the power method with
cheaper initializations drawn from standard distributions. The
canonical re-parametrization leads to competitive normalization
performance on the MNIST, CIFAR10, and SVHN data sets.
Moreover, the formulation simplifies network compression. Once
training has converged, the canonical form allows convenient
model-compression by truncating the parameter sums.

I. INTRODUCTION

While deep neural networks have increased in size and
complexity, the tensor structure of convolutional kernels and
weight matrices has not changed as rapidly. We believe that
much of the potential that tensor representations, such as
so-called canonical decompositions, can offer remains to be
discovered.

This paper proposes to express, train, normalize, and com-
press network weight tensors in a canonical form as a sum of
weighted normalized outer vector products. Similar to weight
normalization [30], the resulting canonical normalization al-
lows us to learn an overall length weight. In addition to the
overall length, the canonical representation lets the optimizer
scale all individual rank terms in the sum separately, where
all canonical rank vectors are re-normalized after each opti-
mization step. Consequently, the sum’s rank weights remain
meaningful throughout training. Orientation and magnitude are
decoupled. In addition to normalization, we observe that the
canonical representation is helpful for network compression.
Having learned the scales for each rank separately, we can
truncate the sum of outer products according to the weight of
each rank component to allow easy compression.

The methods closest to ours are the low-rank form forms
proposed in [22] and [33]. Like [33], we overcome the
instability problem observed by [22]. Instead of working
with batch-normalization [33], we propose CP-normalization.
We jointly consider convolutional and fully connected layers,
propose a new way to initialize the canonical form, and
explore compression. CP-normalization is a form of weight
normalization [30] for convolutional neural networks.

We implement the proposed methods and all experiments
using Tensorly [15] and Pytorch [28]. Our contributions can
be summarized as follows:

• Canonical convolutional neural networks re-express net-
work weights as sums of outer vector products. The
formulation improves convergence by scaling overall and
per rank lengths separately.

• We compare our formulation to weight normalization [30]
and the low rank form of [33], on the MNIST [23],
CIFAR-10 [17], and SVHN [25] data sets. We find CP-
normalization performs competitively.

• Having optimized weights for every rank summand, we
can sort the summands according to the absolute value of
their weight and truncate them according to importance.
Consequently, the CP-formulation allows straightforward
weight compression by truncation.

• We study the initialization of the canonical form and
replace the standard power method approach with direct
initialization for an AlexNet-like architecture on CIFAR-
10.

For reproducibility and future work, the source code is avail-
able at https://github.com/Fraunhofer-SCAI/canonical-cnn.

II. RELATED WORK

A. Normalization and Regularization

Normalization and regularization methods broadly fall into
three categories. Noise-based methods encourage generaliza-
tion by corrupting network features or input data. The noise
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randomly hides certain features, thereby denying overfitting by
forcing the network to rely on multiple features to evade the
noise. Dropout [32], adaptive dropout [3], stochastic pooling
[39], input noise [5], [10] as well as weight or synaptic noise
[10] fall into this category. Dropout randomly removes neurons
during training, using a fixed removal probability. Adap-
tive dropout optimizes the removal probability per neuron.
Stochastic pooling sub-samples by choosing activations ran-
domly. Input noise randomly corrupts training inputs. Weight
noise is added to the parameters to move the model away
from local minima and reduce the amount to which subsequent
layers can rely on individual features.

Methods in the second group change the cost function to
encourage generalization. Weight decay adds an L2 loss term
to the cost function [5], [9], to prevent excessive parameter
growth. Placing a cost on the L2 parameter norm prevents
weight growth and limits network complexity by pushing
parameters to zero.

Finally, structural methods modify the network structure
to achieve a regularizing effect. Batch normalization [12]
for example, adjusts the mean and variance of intermediate
representations to be approximately standard normal. Weight
normalization [30] resets the length of weight tensors and in-
troduces an additional length parameter per tensor. It measures
tensor length by computing the length of a corresponding flat
vector. The normalized weight vector is divided by the vector
length after every weight update [30].

Weight decay penalizes the L2 term. Normalization does
not. It merely seeks to improve the conditioning of the
underlying optimization problem.

Our approach also falls into this category. Even though the
Euclidean length is a valid tensor norm [14], we argue that
preserving and measuring individual rank length is beneficial
because it shares the normalizing properties of weight normal-
ization while additionally simplifying network compression.

B. Network Compression
Two effective ways to compress artificial neural networks

are quantization [16] and pruning. Quantization techniques
save memory space and computation time by storing the
network tensors at less than floating-point precision. Pruning
removes parameters that contribute little to the overall perfor-
mance. Pruned weights are, for example, removed based on
the individual magnitude of weights [11] or by removing entire
rows based on the row-norm [21] for improved efficiency.

An alternative to pruning is to enforce sparse or structured
matrices a-priori. By shifting and reusing the same row,
implementing circulant matrix structures saves weights [1].
Alternatively, the frequency domain can help us impose sparse
diagonal patterns onto the network weight matrices. The fast-
food approach proposed in [38] works with a Welsh-Hadamard
transform. In addition to the fixed Welsh-Hadamard transform,
adaptive wavelet transforms [36] are known to work.

C. Tensor Decompositions
Tensor decompositions are well-established in science, and

engineering [6], [14]. The machine learning community has

previously studied CANDECOMP/PARAFAC (CP) decom-
positions, see, e.g., [19], [24]. A common approach is to
compress pre-trained convolutional neural networks [2], [13],
[19], [22], [29]. In particular, after converting the converged
weights to the canonical format, [22] uses fine-tuning after
application of the CP-decomposition, with tiny learning rates.
[4] investigated sums of separable functions as a functional
analog to the canonical decomposition for regression and
classification [8]. [29] adjusts the computation of the CP-
decomposition to yield a representation that is stable during
the ensuing fine-tuning.

An alternative to the canonical or parallel factors format is
the tensor train representation [14]. The tensor train format
has been used to train compressed versions of fully connected
layers in CNN [26], [37], RNN [34], and GANs [27].

Training low-rank CNN from scratch was previously ex-
plored in [33]. The proposed approach introduces additional
layers. The extra layers lead to deeper networks, which are
harder to train. Batch normalization is applied to deal with
arising instabilities.

We argue that introducing additional layers is not required.
Our scaled CP-coefficients stabilize training and allow joint
normalization and compression similar to weight normaliza-
tion.

To bolster our argument, we study the link between nor-
malization and compression. We, therefore, apply a canonical
formulation already during training. To stabilize the formu-
lation, we regularly re-normalize our vectors. We explore
initialization by computing the CP-decomposition and random
initializations using various distributions. Additionally, we will
explore truncating the canonical sum for compression after
convergence.

III. METHODS

In this section, we will discuss the mathematical back-
ground and notations. Afterwards, we briefly revisit the
canonical tensor decomposition and introduce our weight re-
parametrization. We adopt the notation from [14], to which we
also refer for a further introduction into tensor decompositions.
Throughout the text, vectors are denoted as boldface lowercase
letters, for example, x,y. Capital letters A,B stand for
matrices. Finally, Euler script X denotes tensors.

A. The Outer Product ◦
In the two dimensional case, the outer product ◦ of two

vectors x ∈ Ri, y ∈ Rj ,

x ◦ y = xyT = A, (1)

results in a matrix A ∈ Ri,j . If we wanted to turn A into
tensor A we could simply add additional vectors to the chain of
outer products. For example, using z ∈ Rk we could produce
x ◦ y ◦ z = A ∈ Ri,j,k. Formally speaking, a n-dimensional
tensor X ∈ Rd1,...,dn of rank one can be rewritten as an outer
product of n vectors [14]

X = x(1) ◦ x(2) ◦ x(3)... ◦ x(n), (2)
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Fig. 1: Visualization of a canonical decomposition of a tensor
in R3. For a third order tensor of size Ri,j,k we expect three
vectors of shape a ∈ Ri,b ∈ Rj , c ∈ Rk in the outer products
of each summand. Vectors are expressed by colored rectangles.
Orthogonally arranged rectangles symbolize outer products.
Assuming unit length vectors, we include λr in each element
of the sum. The summation runs until n or the total CP-tensor
rank is reached.

where X and x(1),x(2),x(3), . . . ,x(n) are tensor and vectors
respectively. The bracket powers denote series elements. The
vectors have the size of the dimension at their position in the
sequence from Eq. (2).

For an individual element in X at position i1, i2, . . . , in in
the tensor this means that [14],

xi1,i2,...,in = x
(1)
i1

x
(2)
i2

x
(3)
i3

. . . x
(n)
in

. (3)

B. CP-Decomposition

The CP-decomposition expresses a tensor X as a sum of
R rank one tensors [14]. A three dimensional tensor requires
three vectors in each rank product. Consequently

X ≈ [A,B,C] =

R∑
r=1

ar ◦ br ◦ cr (4)

approximates the tensor. Adding an additional scaling weight
λ [14] allows normalizing the vectors to have unit length in
the two-norm, we obtain

X ≈ [A,B,C] =

R∑
r=1

λrar ◦ br ◦ cr, (5)

where X is the input tensor and ar,br, cr are the used vectors
representing it, see Figure 1. The matrices A,B,C contain the
vectors ar,br, cr in their columns.

Multiple algorithms exist to obtain the CP-form of a ten-
sor: Alternating Least Squares (ALS) [14], the tensor power
method [35] and Non-linear Least Squares (NLS) [31]. We
compare the ALS and the power method to random ini-
tialization for our networks. The ALS approach iteratively
and alternatingly updates A,B,C, i.e. separately each mode
matrix of the tensor. The power method starts from a random
initialization and relies on repeated multiplications to find the
CP-decomposition. The procedure is similar to the matrix case.
We refer the interested reader to [14]. Once initialized, we
optimize our networks in the CP-form.
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Fig. 2: Visualization of the proposed canonical weight rep-
resentation. The tensor weights are expressed as sums of
scaled outer products, here illustrated as orthogonal stripes. In
addition to the rank scales λ we use a global length weight σ.
After every update step, the weight vectors are re-normalized.
The rank scales λr and the global scale σ allow learning.
After convergence, the rank scales let us assess the relative
importance of each rank. Compressing the network means
discarding the least important terms.

C. Canonical Weight Normalization (CPNorm)

Instead of working with a single flat weight vector and a
global length parameter, we aim to conserve the tensor struc-
ture. Figure 2 illustrates our alternative approach. In the figure,
outer products appear as orthogonally arranged squares. This
paper, therefore, explores a CP-weight formulation. Taking a
cue from weight normalization, we introduce the parameter σ.
For a R3 tensor we choose to represent our weights as

W = σ

(
R∑

r=1

λr
ar

∥ar∥2
◦ br

∥br∥2
◦ cr
∥cr∥2

)
. (6)

The rank scales λr, the parameter vectors ar,br, cr, as well
as the global length σ, are all optimized. In tensor numerics
for the CP-decomposition and related approaches, normalized
vectors often appear in the outer vector product for numerical
stability and convenience [4], [8], [14]. Regular renormaliza-
tion should consequently improve stability. For an R3 tensor,
we divide ar, br, cr by their norm after each weight update.
In other words: All weight vectors are normalized after each
update. Renormalization preserves their unit length.

Enforcing unit weight vectors ensures that the rank weight
λr scales the rank. We can now optimize the global and the
per rank scales separately. Furthermore, by sorting the scales,
we can truncate the sum and preserve the essential terms.

We found our weight formulation to be differentiable in
PyTorch. The upcoming section will verify its stability and
convergence properties empirically.

IV. EXPERIMENTS

This section describes CP-normalization and compression
experiments on LeNet and AlexNet-like architectures. The
implementation relies on Pytorch [28] and TensorLy [15]. We
work with the MNIST [23], CIFAR-10 [17], and SVHN [25]
datasets.

The CIFAR10 dataset consists of 60k images, which we split
into 50k train and 10k test images. Ten different categories
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(a) CIFAR10 (b) SVHN (c) MNIST

Fig. 3: Visualization of the CIFAR-10 [17], SVHN [25] and
MNIST [23] data sets we used to train and evaluate our
networks.

exist within each split. The networks have to identify planes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
Figure 3a shows samples randomly drawn from the training
set.

Cropped Street View House Numbers (SVHN) sample im-
ages appear in Figure 3b. The dataset contains 73K train and
26K test images. Ten digits from 0 to 9 have to be classified
correctly in photos of house numbers obtained from Google
Street View.

Finally, the MNIST dataset has 60k elements. Fifty thousand
are used to train and 10 to test our networks. Similar to SVHN,
handwritten digit numbers have to be classified correctly.
Figure 3c shows sample digits.

We train all our networks multiple times to account for the
effect of local minima in non-convex optimization. In total, all
architectures in this paper are trained eight times. We report
mean values µ and a single standard deviation ±σ every time.

A. Evaluating Canonical Weight Normalization (CPNorm)

1) AlexNet-CIFAR10: This section empirically evaluates
canonical normalization using an AlexNet-inspired network.
Similar to the classic architecture [18] we work with five
convolutional layers (kernel size-3) and three max pool layers
(kernel size-2) followed by three fully connected layers. The
last three fully connected layers act as a classifier for the
network with dropout applied as in [18].

Application of CP-normalization to convolutional or linear
layers requires at least approximate prior knowledge of the
corresponding layer’s rank.

Following [20], we estimate the tensor-rank of a layer
by computing CP-decompositions using the alternating least
squares method with increasing ranks until

1− ||W − W̄||2
||W||2

≈ 1. (7)

W represents the original tensor, and W̄ denotes the recon-
struction from the CP-form. Table I lists the full rank of
every layer in the AlexNet-like architecture along with every
tensor shape. We estimate the ranks of the initialized tensors
before training. Patterns and redundant structures are likely
to appear during training. The resulting tensors will probably
have a lower rank compared to the original tensor. We accept
the larger estimated rank based on the random initialization,
and the limited over-parameterization it causes. We believe

TABLE I: Ranks of every layer in our AlexNet-like archi-
tecture right after initialization. 4D tensors represent convolu-
tional layers. 2D tensors represent linear layers. We iteratively
estimated the ranks using the alternating least squares (ALS)
algorithm.

layer size tensor rank

3x64x3x3 36
64x192x3x3 571
192x384x3x3 1626
384x256x3x3 1948
256x256x3x3 1644
4096x1024 1024
1024x512 512
512x10 10

TABLE II: The test accuracies of an AlexNet inspired network
on CIFAR10. We tabulate mean values and a single standard
deviation. Experiments without normalization, with weight
normalization, and with CP-normalization are compared. For
the SGD experiments, we choose a learning rate of 0.01. The
RMSProp optimizer ran with a learning rate of 0.001. * rep-
resents the early stopping. We find that our CP-normalization
approach performs competitively.

accuracy [%]

method optimizer max µ± σ weights

none SGD 88.01 87.06± 0.36 6.98× 106

weight SGD 88.63 87.38± 0.37 6.98× 106

CP SGD 89.05 88.32± 0.21 9.25× 106

none* RMSProp 83.94 82.51± 1.40 6.98× 106

weight RMSProp 87.98 87.17± 0.35 6.98× 106

CP RMSProp 90.38 88.70± 1.09 9.25× 106

it tends to help with initial convergence [7]. We will revisit
this question in Section IV-C. Knowing the rank, we can now
convert the weight tensors into their canonical form.

Having established the tensor ranks, we evaluate the stability
of the new representation. To this end, we train our AlexNet-
like network on CIFAR 10 for 150 epochs. We repeat identical
experiments with weight normalization [30], CP-normalization
(see section III-C), and without normalization using SGD and
RMSprop optimizers. We also apply both weight and canonical
normalization to all layers. The Stochastic Gradient Descent
(SGD) optimizer ran with a learning rate of 0.01. We compare
the SGD optimization result to multiple runs with an RMSprop
optimizer and a learning rate of 0.001.

We found empirically that the power method provides better
initializations than the alternating least squares approach. In
this and all subsequent experiments, the power method will be
used to initialize the weights.

Results are tabulated in Table II. For both SGD and RM-
SProp, our canonical formulation outperforms weight nor-
malization and the un-normalized network. In the CP-case,
we additionally observe faster convergence. Unfortunately,
driving the initial approximation error of the CP-form close to
zero increases the network size. We will revisit this issue in
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TABLE III: Test accuracies of the AlexNet-like network
performance on the SVHN dataset. Experiments with weight-
normalization, CP-normalization, and without being shown.
We train using SGD with a learning rate of 0.08. For the
RMSProp experiments, we work with a step size of 0.0001.

accuracy [%]

method optimizer max µ± σ weights

none SGD 95.39 94.61± 0.40 6.98× 106

weight SGD 95.43 94.30± 0.70 6.98× 106

CP SGD 95.62 94.82± 0.29 9.25× 106

none RMSProp 94.76 94.00± 0.33 6.98× 106

weight RMSProp 94.98 94.06± 0.32 6.98× 106

CP RMSProp 95.03 94.52± 0.30 9.25× 106

TABLE IV: Ranks of every layer in our LeNet-like archi-
tecture. Convolutional layers have 4D tensors, and 2D tensor
represent linear layers.

Layer size Tensor rank

1x32x3x3 11
32x64x3x3 270
9216x128 128

128x10 10

section IV-C.
2) AlexNet-SVHN: We now repeat similar experiments

on the Street View House Numbers (SVHN) data set. Our
AlexNet-like architecture remains the same. The network is
trained for 80 epochs by SGD with a learning rate of 0.08.
Similarly, with RMSProp, we optimize for 80 epochs with a
relatively small learning rate of 0.0001. Again the ranks from
Table 1 are used to apply CP-normalization.

Table III shows the performance of our AlexNet-like ar-
chitecture on the SVHN dataset. Once more, we compare
weight- and CP-normalization, as well as no normalization.
Once more, CP-normalization improved performance with
both optimizers. Without normalization and higher learning
rates, RMSprop was occasionally unstable. Both normalization
approaches stabilized these runs successfully.

3) LeNet-MNIST: The implemented LeNet-inspired archi-
tecture has two convolutional layers (kernel size-3) followed
by two fully connected layers with dropout. Just like we did for
our previous experiments, we again compare the performance
with SGD, and RMSProp on MNIST. We set the learning rate
to 0.001 and train over 50 epochs for both optimizers. We
repeat the rank estimation procedure as described in Section
IV-A1, Table IV shows the ranks we measured. Table V de-
picts the results of LeNet over different normalization methods
using SGD and RMSprop optimizers. Similar to the AlexNet-
case, LeNet with CP-normalization converges to competitive
mean accuracies. The parameter gain caused by the full rank
CP-form is less pronounced in this case.

We show the evolution of the CP-parameters from Equa-
tion 5 in Figure 4. The σ and λs are all one initially. We
observe that the rate of change for all parameters is initially
very high. Towards the end of the training process, all values

TABLE V: Test accuracies of the LeNet-like architecture
without normalization, with weight normalization, and with
CP-normalization. We compare training with a SGD optimizer
to training with RMSProp with a learning rate of 0.001.

accuracy [%]

method optimizer max µ± σ # weights

none SGD 97.91 97.79± 0.07 1.19× 106

weight SGD 98.00 97.91± 0.07 1.20× 106

CP SGD 98.77 98.66± 0.05 1.22× 106

none RMSProp 99.33 99.10± 0.05 1.19× 106

weight RMSProp 99.40 99.30± 0.04 1.20× 106

CP RMSProp 99.35 99.21± 0.05 1.22× 106
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Fig. 4: Plot of the progression of σ and λ’s during training
for the first convolutional layer in the LeNet-like architecture.
The first layer has a tensor shape of 1x32x3x3 and a rank of
11. Solid lines portray weights with positive growth. We use
dashed lines for λ values with negative growth.

cease to change. We conclude that gradients are applied,
and backpropagation is successful. Figure 4 also displays
significant differences between the various rank weights, a
prerequisite for our truncation approach to be meaningful.

B. Random Initialization of the CP-Form

All networks started in an initialized tensor form thus far.
Running the power method converted the original tensor into
the CP-form. Evaluation of the power method causes addi-
tional overhead. This section will explore alternatives to reduce
the computational cost. Working with the setup described in
Section IV-A1, we now directly populate the CP-form with
random values drawn from standardized distributions.

Table I shows layer sizes of all AlexNet-Layers. Since we
store the individual vectors in matrices, the four-dimensional
convolutional layers will have four matrices A,D,C,D per
layer. For the fully connected layers, we have two matrices A,
and B. Since the rank of each layer determines the shape, we
can construct the CP-shape directly and initialize the matrices
using Kaiming normal or uniform distributions. In a first
series of experiments we set λr = 1 for all ranks r initially.
Table VI compares direct initialization with Kaiming normal
or uniformly distributed values to initialization through the CP-
decomposition via the power method. We find the performance
with stochastic gradient descent competitive.

An additional series of experiments explores normal instead
of constant initialization for the rank-scales λ. Standard SGD
worked better with initialization to ones. The Adam-optimizer,
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TABLE VI: Test accuracies of the AlexNet-like network per-
formance on the CIFAR10 dataset with various initializations.
We train using SGD with a learning rate of 0.01 and initially
λr = 1 for all ranks.

accuracy [%]

factor initialization max µ± σ

CP-decomposition 89.05 88.32± 0.21
Kaiming normal 88.95 87.76± 0.36
Kaiming uniform 88.68 87.63± 0.43

TABLE VII: Test accuracies of the AlexNet-like network per-
formance on the CIFAR10 dataset with various initializations.
We train using ADAM with a learning rate of 0.001. A normal
distribution N (0, 1) initialized the rank-scales λ.

accuracy [%]

factor initialization max µ± σ

CP-decomposition 90.27 89.59± 0.21
Kaiming normal 90.61 89.70± 0.37
Kaiming uniform 90.62 89.74± 0.35

however, works with the standard normal initialization. Results
are shown in Table VII. We observe a slightly improved
performance in comparison to what we saw in Table VI.
Previously initialization by running the power method worked
slightly better. Now the maximum values are higher for the
normally or uniformly initialized CP-forms. Since the standard
deviations indicate that the differences are not significant, we
conclude that running the power method is not required when
using Adam. The progression of λ distributions during training
is shown in Figures 5 and 6. Encouragingly Adam pushes the
scales towards the sides away from zero, as we would expect
in a working system.

C. Network Compression

Re-parameterizing the network in a CP-form, allows easy
compression by truncating the rank sums. We compress our
networks by removing the smallest rank scale lambdas and
their corresponding vectors from the decomposition. The
following experiments were conducted on the AlexNet and
LeNet-like architectures (as discussed in the previous section)
with various compression rates.

1) AlexNet-CIFAR10: Before compression, the full-rank
networks are trained and stored. We measure compression with
respect to the best fit CP-normalized network. 0% means that
we are working with every outer product. We compress our
networks by sorting the CP-summands for each rank according
to their λr weights. After sorting, we discard, for example, the
25% least important CP-summands. All summands have the
same amount of parameters. Therefore, in this case, 75% of
parameters are retained.

The compressed networks are fine-tuned for 20 epochs with
SGD to compensate for the truncation. We use SGD for all
fine-tuning as RMSprop was unstable in some cases. During
tuning, we observed over-fitting problems depending on the
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Fig. 5: Histograms depicting initial the initially normal
N (0, 1) distribution of rank-scales (λ). The histogram shows
the fourth layer of our AlexNet-architecture, before a gradient
update has been applied.
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Fig. 6: Histograms showing the final distribution of the λs
from Plot 5. As the optimization process converges, we
observe significant movement away from the center towards
the sides.

TABLE VIII: Sum truncation for all layers of the AlexNet-like
architecture on CIFAR-10. Various compression rates and the
resulting accuracies are tabulated. The compressed networks
have been fine-tuned using SGD with variety of different
learning rates, which are specified in brackets.

accuracy [%]

compression learning rate max µ± σ # weights

0% 0.001 89.05 88.32± 0.21 9.25× 106

25% 0.0001 89.12 89.10± 0.02 6.93× 106

50% 0.001 87.93 87.79± 0.05 4.62× 106

75% 0.01 81.61 81.25± 0.28 2.31× 106

learning rates. In response, we chose the learning rates based
on the validation accuracy after 20 epochs. For twenty-five
percent compression, we work with a learning rate of 0.0001,
which is much smaller than the optimization step size of the
initial training. In the 50% compression case, a learning rate of
0.001 is used. For 75% compression, we chose an even higher
learning rate of 0.01 for faster convergence. As the distance to
the original network weights increases, learning rates become
useful. We find this relationship intuitive since the distance
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TABLE IX: Compression performance comparison between
Tai compression and CP-compression. Here, we only consider
compression of the convolutional layers and give the number
of weights for these. All the convolutional layers in AlexNet
except the first one are compressed. Compression is performed
by fine tuning over 20 epochs. This is an important difference
to the experiments run for table VIII.

method compression accuracy [%] # weights

low-rank [33] 0% 85.11 2.25× 106

canonical (ours) 0% 85.96 3.21× 106

low-rank [33] 89.78% 83.06± 1.02 0.23× 106

canonical (ours) 90.91% 81.82± 0.52 0.20× 106

we must travel in weight space to compensate for the missing
parameters increases.

Table VIII contains the compression results for our AlexNet-
like structure. The number of parameters at 25% compression
and the corresponding accuracy is particularly significant.
Here, the number of parameters approximately equals those
of the weight-normalized network. The performance improves
in comparison to the full rank or perfect fit parametrization,
Table II. We conclude that a near-perfect fit is not required in
this case.

With half of the parameters, we observe a ≈ 1% accuracy
drop compared to the full rank CP-normalized network. Fi-
nally, we cut the CP-sum short after the first quarter, effectively
removing 75% of all parameters. At the same time, this drastic
parameter cut results in only a ≈ 7% accuracy drop.

Note, the 25% and 50% compressed networks outperform
the weight normalized and un-normalized networks shown in
Table II in terms of mean accuracy, the version with only
50% of the CP-summands does so with significantly fewer
parameters.

2) Comparison to Tai et al. [33]: Table IX compares the
compression performance of the CP-form and the low rank-
formulation proposed in [33]. We work with the AlexNet-
like network from section IV-C1 on CIFAR10. To challenge
both methods, we aim for compression rates of approximately
90%. During the fine-tuning [33] employs batch normalization,
while our CP-form does not. We observe competitive perfor-
mance for our approach, with slightly fewer parameters than
our re-implementation of [33]. The method proposed in this
paper allows compression of convolutional and fully connected
layers. Since [33] do not consider dense layers, we limit
ourselves to convolutional layers here for a fair comparison.
As [33] chose to work with Lua, we re-implemented their
approach in PyTorch. Our source code is made available.

3) Compression Performance on SVHN: We now move to
the compression of the network resulting from our SVHN ex-
periments. Accuracies, compression-rates as well as parameter
counts appear in Table X. We use the same compression rates
as in the case of CIFAR10 and again fine-tune for 20 epochs.
Once more, we find increasing learning rates more helpful
when networks are compressed more aggressively.

On SVHN, we find that removing the last quarter and

TABLE X: Compression results on AlexNet like architecture
on SVHN with various compression rates using a SGD opti-
mizer with variety of learning rates specified in brackets.

accuracy [%]

compression learning rate max µ± σ # weights

0% 0.0001 95.62 94.82± 0.30 9.25× 106

25% 0.0001 95.30 95.27± 0.01 6.93× 106

50% 0.001 95.42 95.36± 0.03 4.62× 106

75% 0.01 94.19 93.75± 0.14 2.31× 106

TABLE XI: Compression results on LeNet like architecture
with various compression rates using a RMSprop optimizer
with a learning rate of 0.001.

accuracy [%]

compression max µ± σ # weights

0% 99.35 99.21± 0.05 1.22× 106

10% 99.23 99.18± 0.01 1.10× 106

25% 98.83 98.80± 0.02 0.91× 106

50% 97.56 97.55± 0.02 0.61× 106

half of the CP-sum improves our mean results. Going further
and removing three-quarters of the network parameters has a
detrimental effect on the network accuracy. We deduce that
the network initially had more parameters than required. We
can classify the SVHN-digits with fewer weights. In this case,
we settle with the upper half of the original summands.

The best performing 50% CP-normalized network improves
upon the weight normalized and not normalized networks
we saw in Table III in terms of both mean accuracy and
parameters.

4) LeNet-MNIST: Finally, we compress the LeNet-like ar-
chitecture we trained on MNIST with RMSprop and a learning
rate of 0.001.

We remove the lower 10%, 25%, and 50% of the summands
in the CP-form and collect the resulting classification accura-
cies in Table XI. At a 10% compression rate, the resulting
mean accuracy drop we observe is fairly small 0.01% . At
25% compression, a comparatively small drop of ≈ 0.5%. In
this case, we can not afford to discard half of the parameters
since we find the performance loss significant.

V. CONCLUSION

In this paper, we proposed to express network weights as a
weighted sum of normalized outer vector products. Computing
a canonical/parallel factor decomposition allows a direct net-
work initialization using well-known, established approaches.
We evaluated the newly formulated method experimentally and
found it to rival weight normalization in terms of network
convergence and stability. In contrast to weight normalization,
the canonical approach simplifies network compression after
training. We tested initializing the CP-form directly. Our
evidence suggests that standard initialization techniques can
replace the power method for network initialization.
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A. Future Work
In hindsight, we would have additionally included lower

ranks during our initial training. Given the encouraging com-
pression results, this is certainly an idea we recommend for
future work. An adaptive compression based on the size of the
rank weights λr should also be investigated.
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