
Adaptive Sparse Grids for
Solving Continuous Time
Heterogeneous Agent

Models

Steffen Ruttscheidt
Born 6th May 1994 in Bonn, Germany

12th March 2018

Master’s Thesis Mathematics

Advisor: Prof. Dr. Jochen Garcke

Second Advisor: Prof. Dr. Michael Griebel

Institute for Numerical Simulation

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Acknowledgements

I would like to thank Prof. Dr. Garcke for offering this master’s thesis under
his supervision. The long discussions and advices were extremely helpful. Fur-
thermore, I thank Prof. Moll for proposing several interesting model problems
and for his great suggestions for improving this work. Additionally, I am highly
thankful for the funding of the Department of Economics of Princeton Univer-
sity. Another important factor for the success of this thesis was SeHyoun Ahn
from Princeton University (currently working at Norges Bank) who shared his
wide knowledge of using sparse grid techniques on economic models. I would
also like to thank Prof. Dr. Griebel for being the second assessor. Last but not
least, I thank my family and my friends for their personal support.

i

Abstract

We present a finite difference method working on sparse grids to solve higher
dimensional heterogeneous agent models. If one wants to solve the arising
Hamilton-Jacobi-Bellman equation on a standard full grid, one faces the prob-
lem that the number of grid points grows exponentially with the number of
dimensions. Discretizations on sparse grids only involve O(N(logN)d−1) de-
grees of freedom in comparison to the O(Nd) degrees of freedom of conventional
methods, where N denotes the number of grid points in one coordinate direction
and d is the dimension of the problem. Whereas one can show convergence for
the used finite difference method on full grids by using the theory introduced
by Barles and Souganidis [BS90], we explain why one cannot simply use their
results for sparse grids. Our numerical studies show that our method converges
to the full grid solution for a two-dimensional model. Further, we analyze the
convergence behavior for higher dimensional models, experiment with different
sparse grid adaptivity types, and propose ILUC preconditioned BiCGSTAB for
solving the arising linear system, reducing the required computation time by a
large amount.

ii

Contents
1 Introduction 1

1.1 Setting and solution method used in this work 1
1.1.1 Setting and main idea . 1
1.1.2 Basis of our approach . 1
1.1.3 Our work and main contributions 2

1.2 Context of this work: related problem settings and solution meth-
ods . 2
1.2.1 Other approaches to solve high dimensional continuous

time model problems . 3
1.2.2 Approaches used in economics to handle high dimensional

discrete time model problems 3
1.3 Structure of this work . 4

2 Setup and Basics 5
2.1 General optimal control problems 6

2.1.1 Deterministic models . 6
2.1.2 Stochastic models . 7

2.2 Optimal control problems in economics 8
2.2.1 Simple economic model 8
2.2.2 Extension: borrowing constraint 9
2.2.3 Extension: heterogeneity - stochastic settings 9
2.2.4 Extension: illiquid assets 11
2.2.5 Further extensions and other models 11

2.3 Motivation to solve higher dimensional models 11

3 Sparse Grids 12
3.1 Construction and extensions of sparse grids 13

3.1.1 One-dimensional basis functions 13
3.1.2 Multi-dimensional basis functions 15
3.1.3 Regular sparse grids . 16
3.1.4 Non-zero boundaries . 17
3.1.5 Adaptive sparse grids . 18

3.2 Finite difference schemes on sparse grids 19
3.2.1 Finite difference schemes on sparse grids based on dimen-

sional splitting . 19
3.2.2 Finite difference schemes on sparse grids based on inter-

polation . 22
3.2.3 Example of finite difference operator construction 24

4 Viscosity Solutions and General Convergence Theory 27
4.1 Viscosity solutions . 27

4.1.1 Important definitions and the notion of viscosity solutions 27
4.1.2 Uniqueness, existence and regularity of viscosity solutions 28

4.2 Convergence of general numerical approximation schemes for fully
non-linear second order PDEs . 30

iii

4.3 Finite difference approach on full grids for a simple model 32
4.3.1 Model . 32
4.3.2 Discretization . 32
4.3.3 Numerical approach for handling the borrowing constraint 34
4.3.4 Numerical approach for overcoming the non-linearity . . . 34
4.3.5 Numerical approach for stochastic settings 36
4.3.6 Matrix notation . 37

5 (Non-)Convergence of Sparse Grid Finite Difference Schemes
for solving the HJB equation 39
5.1 (Non-)monotonicity of interpolation on sparse grids 39

5.1.1 Strictly concave monotonically increasing functions with
positive coefficients . 40

5.1.2 Concave monotonically increasing functions with negative
coefficients . 41

5.1.3 Non-monotone sparse grid interpolation for concave mono-
tonically increasing functions 42

5.1.4 Overcoming the non-monotonicity of sparse grid interpol-
ation . 44

5.2 Comments on convergence in our setting 48
5.2.1 Overcoming non-monotonicity in our setting 49
5.2.2 Issues arising in our setting without grid correction 49

6 Model Examples 51
6.1 A model with two state variables – a two-asset model 51

6.1.1 Model formulation . 51
6.1.2 HJB equation and first order conditions 52
6.1.3 Numerical approach using an upwind scheme 52

6.2 Higher dimensional models . 54

7 Algorithm and Implementation 55
7.1 Algorithm for regular sparse grids 55
7.2 Adaptive refinement on sparse grids for the HJB equation 57

7.2.1 Adaptive refinement on sparse grids 57
7.2.2 Adaptive refinement on sparse grids for the HJB equation 59
7.2.3 Different types of adaptivity criteria 61

7.3 Solving the linear system . 62
7.3.1 Our approach for solving the linear system 62
7.3.2 Multilevel and other approaches used in related works . . 64

8 Numerical Results 66
8.1 Two-dimensional model: plots and accuracy analysis 66

8.1.1 Accuracy for regular sparse grids 67
8.1.2 Plots for regular sparse grids 69
8.1.3 Plots for adaptive sparse grids 74
8.1.4 Accuracy for adaptive sparse grids 76

8.2 Four-dimensional model: accuracy analysis and speed comparisons 79

iv

8.2.1 Accuracy . 79
8.2.2 Runtime . 84

8.3 Six-dimensional model: accuracy analysis and speed comparisons 89
8.3.1 Accuracy . 89
8.3.2 Runtime . 94

8.4 Remarks on our numerical results 97

9 Conclusion and Outlook 99

References 101

A Appendix 107
A.1 A model with four state variables – a three-asset model with

productivity modeled by a continuous stochastic process 107
A.1.1 Model formulation . 107

A.2 A model with six state variables – a two-asset model with four
skill types modeled by continuous stochastic processes 108
A.2.1 Model formulation . 108

A.3 Parameters . 109
A.3.1 Parameters for the two-dimensional model 109
A.3.2 Parameters for the four-dimensional model 110
A.3.3 Parameters for the six-dimensional model 111
A.3.4 Parameters for solving the linear system 112

v

1 Introduction
A lot of advances in economic research in recent years are due to the formulation
of models that do not admit closed form solutions. One is particularly interested
in models of higher dimensionality, such as heterogeneous agent models which
may have a large amount of agents that differ in some dimensions. These
heterogeneities, such as productivity, can be modeled by stochastic processes.
Further, there are models with a large number of state variables (e.g. New
Keynesian models), asset pricing models may feature many different assets and
multi-country models may have a large number of countries.

Thus, it is important to develop efficient numerical methods to approximate
and compute the solution of higher dimensional problems.

1.1 Setting and solution method used in this work

1.1.1 Setting and main idea

In this work we will show how to solve continuous time heterogeneous agent
models with multiple assets in higher dimensions. Mathematically, this comes
down to solving stochastic optimal control problems by approximating the solu-
tion of the Hamilton-Jacobi-Bellman (HJB) equation. Notice that the approach
is not limited to asset problems but can be used for continuous time heterogen-
eous agent models in general.

With standard discretizations, one faces the problem that one cannot intro-
duce arbitrarily many variables due to the curse of dimensionality, a termin-
ology coined by Bellman in [Bel61] that describes the exponential dependence
of the overall computational effort on the number of dimensions. That is why
there are several approaches to circumvent or to at least reduce this bottleneck.
We propose to use sparse grids which are built on a tensor product basis, see
[BG04] for an overview article. In particular, we use a finite difference method
on sparse grids to solve the HJB equation arising from continuous time hetero-
geneous agent models. This approach is motivated by the following work.

1.1.2 Basis of our approach

In [Can99] a finite difference method is used to solve the HJB equation in the
economic context. This approach was improved in [AHL+17] to first handle bor-
rowing constraints (explained in Section 2) by mathematically recasting them
as state constraints. Second, they couple the HJB equation with the Fok-
ker Planck (FP) equation (also known as Kolmogorov Forward (KF) equation)
which allows not only to investigate the optimal individual decisions but also
the aggregate evolution of the distribution of state variables. Problems with
these coupled systems are called mean field games. Third, they underlie their
finite difference scheme by using the notion of viscosity solutions and prove
converge due to [BS90]. This computational method was adopted in [KMV16]
to handle non-convexities and multiple assets.

1

In [Sch98] finite differences on sparse grids were introduced and several
theoretical results regarding consistency, stability and convergence are proved.
Further studies have been made in [Gri98], [GS99] and [Zum00]. Nevertheless,
the theory remains limited mostly due to the difficult handling of specific basis
transformations used in the sparse grid finite difference operators. Furthermore,
the implementation is non-trivial and most sparse grid libraries do not feature
these operators. Therefore, we introduce a finite difference method based on an
idea by [Ahn18] which is based on interpolation and can be implemented more
easily. Notice that interpolation based ideas are already presented in [Kos].

1.1.3 Our work and main contributions

By simply combining the ideas presented above as proposed in upcoming work
[Ahn18], we are able to solve continuous time heterogeneous agent models in
higher dimensions. We use exactly the same finite difference approach like the
one proposed in [AHL+17] but instead of implementing it on full grids we do it
on sparse grids.

We generalize several notations for the presentation of the algorithmic ap-
proach in the sparse grid setting and explain the sparse grid finite difference
operator construction proposed for [Ahn18]. Further, we show that we do not
get convergence of the scheme by simply using the results of [BS90] as in the
full grid case. This comes down to the non-monotonicity of sparse grid inter-
polation. However, we present some ideas how to get monotone interpolation.
Even though we do not have a theoretical convergence result, we give numerical
results that show that our sparse grid solution converges to the full grid solution
for a two-dimensional model. We further implement higher dimensional models
for our numerical experiments in which we analyze the convergence behavior
for regular sparse grids and for adaptive sparse grids with different adaptivity
approaches. Additionally, we do runtime comparisons for different sparse grid
levels including different approaches for solving the arising linear system.

1.2 Context of this work: related problem settings and solution
methods

One can distinguish economic models by several aspects.
First, models can be set either in discrete time or in continuous time as

we do. Notice that discrete time models are already used extensively, whereas
continuous time models just recently got more attention. One of the reasons
is that discrete time models require less mathematical knowledge, e.g. due to
the lack of partial differential equations (PDEs) and notions of weak solutions.
However, here are several computational advantages of continuous time models
over discrete time ones as explained in [AHL+17]. First, the borrowing con-
straint only shows up as boundary condition and thus the first order condition
(explained in Section 2) holds everywhere in the interior with equality. Con-
trarily, in the discrete case the first order condition is an inequality due to the
possibility of binding at the prior period. Second, by using the first order con-
ditions one can, given the derivatives of the value function, explicitly compute

2

the control variables by hand. Optimal choices in the discrete case though, are
only defined implicitly and thus often costly root-finding methods have to be
used. Other explained advantages like the sparsity structure of the discretiz-
ation matrix and the link to the KF equation unfortunately do not remain in
the sparse grid case as explained in Section 4.3.6.

Second, there are finite time and infinite time models. In economics, infinite
time models are often just used to simplify theoretical aspects. Due to discount
factors or similar model parameters the results often do not differ much. For
example, there are also stopping time problems that give an extra utility at a
specific stopping time. We point out that, even though we just solve infinite
time models in this work, the numerical approach can be used for other model
types in the same fashion.

Third, not only the model types differ but also the solution types. Namely,
there are closed loop and open loop solutions. Whereas the former is a function
of the states that is often called feedback control or policy function, the latter is
a function of time which is a trajectory through the state space. Economists are
mostly interested in closed loop solutions and this is also the type of solution
we are aiming for.

Last but not least, note that we do not solve coupled systems with the KF as
it is done in [AHL+17]. The reason for that is that sparse grids do not preserve
mass and the function value range. However, in work in progress [PF18], it is
shown how to preserve the function value range. Similar approaches could be
used for solving mean field games.

1.2.1 Other approaches to solve high dimensional continuous time
model problems

Instead of finite differences one can solve the HJB equation with several other
approaches. The most popular one is the Semi-Lagrangian method which is
based on characteristics. We refer to [FF13] for an introduction. It was com-
bined with sparse grids by [BGGK13] and further experimentally studied in
[GK17]. Some numerical bounds on the approximation error under specific as-
sumptions can be found in [War14], and [KW15] and a related open source
library was implemented for [GLW16].

An efficient Semi-Lagrangian approach to solve the HJB equation in higher
dimensions can be found in [CFF04]. In [CF15] a Semi-Lagrangian method
is combined with a dynamic domain decomposition, and in [KK17] a pseudo-
spectral collocation approximation of the PDE dynamics is used. For a general
overview of stochastic optimal control in continuous time and other numerical
methods, see [KD13].

1.2.2 Approaches used in economics to handle high dimensional dis-
crete time model problems

We refer to [SJ13] for a broad overview of computational methods for solving
high dimensional discrete time economic models. Let us briefly summarize the
most important approaches and additionally reference some more recent works.

3

Conventional numerical methods to solve dynamic economic models do not
allow feasible or accurate computations in higher dimensions. Stochastic sim-
ulation algorithms build on Monte Carlo integration and least square learning.
Whereas the former does not achieve a high accuracy, the latter may become
unstable. Further, projection methods build on tensor product constructions
and are thus not feasible in high dimensions. Last but not least, perturbation
methods that solve for a steady state by using Taylor expansions have uncertain
accuracy.

To overcome the above described issues, the approaches were adapted to
handle high dimensional problems. In [JMM09] a generalized stochastic simu-
lation approach is proposed that replaces the Monte Carlo integration with a
deterministic one, and the least squares learning with numerically stable regres-
sion methods. In [KK04] sparse grids are used to replace the expensive tensor
product grids. For perturbation methods that are feasible in higher dimensions,
see [JJ02] and [MMV13].

Sparse grids in combination with a fixed point iteration on the Euler equa-
tion are proposed in [JMMV14] to solve a multi-country model featuring up to
twenty state variables. Combining it with a simulation to determine the high
probability area and then using a principal components transformation allows
it to focus the computation on the relevant domain. Parallel adaptive sparse
grids were recently used in [BS17] to solve high dimensional stochastic dynamic
models where functions are interpolated on a sparse grid either within time or
value iterations. Further, in work in progress, [Sch18], dynamic portfolio choice
models are solved with adaptive sparse grids.

For a general overview of stochastic optimal control in the discrete time
case, we refer to [BS04] and the references therein.

1.3 Structure of this work

This work is structured as follows. The setup and motivation is given in Sec-
tion 2. In Section 3 we explain sparse grids and two different versions of finite
differences on sparse grids. In Section 4 we present the convergence theory
developed by [BS90], recall the basics about viscosity solutions and explain the
numerical approach for a simple one-dimensional model. An investigation of
sparse grid interpolation is done in Section 5 to explain why we do not simply
get convergence by means of Barles and Souganidis. We further present some
approaches to overcome some of the arising issues regarding non-convergence.
After that, in Section 6 we present a two-dimensional model and the resulting
discretization. It is followed by a detailed presentation of the algorithm and
its implementation in Section 7. The numerical results are given in Section 8.
We conclude this work with an outlook in Section 9. References can be found
in the following bibliography. The Appendix A contains information about the
implemented higher dimensional models and the choice of parameters for the
numerical experiments.

We aim to describe everything in a way that is useful and understandable
for both mathematicians and economists.

4

2 Setup and Basics
In this work we aim to solve heterogeneous agent models. Even though tra-
ditionally heterogeneous agent models have mostly been set in discrete time,
recently there is a lot of progress using continuous time formulations. E.g. sev-
eral well known heterogeneous agent models (Bewley [Bew86], Huggett [Hug93]
and Aiyagari [Aiy94] models) were recasted in continuous time by [AHL+17]
for detailed studies.

Note that agents in heterogeneous agent models are the same ex ante but
face different idiosyncratic shocks and are thus different ex post. Contrarily, in
representative agent models agents do not face these shocks and thus stay the
same. Note that this is in stark contrast to the real world where one can observe
a high degree of inequality in the population and thus a lot of heterogeneity.
Therefore, the use of heterogeneous agent models is an important step to better
match real world data. Further, note that the amount and quality of micro data
has been constantly improving in the last years. Macro economists now can for
example verify model solutions more easily and better adjust models by using
this data. In [AHL+17] it is further pointed out that one often wants to analyze
welfare implications of particular policies or shocks.

In this work we restrict ourselves to models that feature uninsurable income
shocks and multiple assets of different liquidity types with different returns.
Note that agents can self-insure the arising income risk by savings in the differ-
ent assets. Low-dimensional models of this type have been analyzed in detail in
[KMV16]. These models allow insights regarding household consumption and
saving behavior.
Even though we restrict ourselves to these type of models, we point out that
the presented frameworks are basically applicable to any heterogeneous agent
model.

As already mentioned in Section 1, in [AHL+17] a coupled system of HJB
equation and KF equation is solved. Whereas the HJB equation gives op-
timal choices of a single individual who takes prices as given, the KF equation
characterizes the evolution of the distribution given the optimal choices of the
individuals. Due to the mentioned difficulties of approximating distributions
on sparse grids we focus on solving for the optimal individual choices in this
work.

We begin this section by giving a general framework for optimal control
problems, first for deterministic and then for stochastic settings. It is followed
by a setup of a simple economic model with explanations of the model com-
ponents. We explain how to extend this simple model to feature borrowing
constraints, heterogeneity or multiple assets, also giving some explanations in
the economic context. Finally, we give a short motivation for our numerical
approach. Notice that we are mainly following [Mol16a] and [Mol16b]. For
more mathematical descriptions and proofs, see [KD13].

5

2.1 General optimal control problems

2.1.1 Deterministic models

Most deterministic infinite time optimal control problems in continuous time
can be written as

max
{α(t)}t≥0

∫ ∞
0

e−ρth(x(t), α(t))dt

such that the law of motion for state

ẋ(t) = f(x(t), α(t)) and α(t) ∈ A

holds for t ≥ 0 and x(0) = x0 given using the notation ẋ(t) = d
dtx(t).

Here x ∈ X ⊂ Rm denotes the state vector, α ∈ A ⊂ Rn the control vector
and h : X × A→ R the instantaneous return function. Further, ρ ≥ 0 denotes
the discount rate which discounts future returns. Note that the state changes
depending on the current state and action (control), following f : X×A→ Rm.

We can now introduce some important notions.

Definition 2.1.1. We define the objective function by

J(x, α) =
∫ ∞

0
e−ρth(x(t), α(t))dt.

The associated value function can then be written as

v(x) = max
{α(t)}t≥0

J(x, α).

We define the optimal control as the α̂ ∈ A such that

v(x) = J(x, α̂).

Note that we aim to find the optimal controls for our model problems by
solving for the value function which is the solution of the HJB equation to which
we turn now.

HJB equation To solve optimal control problems, we use the dynamic pro-
gramming principle (DPP) introduced by Bellman in the 1950s, see [Bel57]. It
is based on the recursive structure of the problem and by using this principle
one can show that the value function satisfies the HJB equation

ρv(x) = max
α∈A

h(x, α) +Dxv(x) · f(x, α), ∀x ∈ X.

To compute the optimal controls, one uses the first order conditions (FOCs) on
the HJB equation, i.e. computing the derivatives with respect to the different
controls and setting them to zero.

6

2.1.2 Stochastic models

The theory explained above for deterministic problems can be easily extended
to stochastic settings which is covered by several textbooks such as [Sto08].
Thus, in this section we focus our presentation on different types of stochastic
processes that are well suited to model economic models and just present the
respective arising HJB equations.

Stochastic processes We consider two types of stochastic processes, namely
jump type processes and diffusion processes, i.e. continuous-time Markov pro-
cesses with almost surely continuous sample paths.

Let us begin with the latter and give the arising stochastic differential equa-
tion for a diffusion process,

ẋ(t) = µ(x)dt+ σ(x)dW (t) (1)

with W (t) ∼ N (0, t) normally distributed, where µ(·) is called drift and σ(·) is
called diffusion.
By choosing µ(x) = θ(x̄− x) with parameter θ where x̄ denotes the mean of x
and σ(x) = σ, we get a stationary process which is called Ornstein-Uhlenstein
process.

Note that numerous other processes can be used, e.g. geometric Brownian
motions or Feller square root processes. The simplest way of modeling uncer-
tainty in continuous time is the use of a two state Poisson process, i.e.

x(t) ∈ {xP1 , xP2 } Poisson with intensities λ1, λ2 (2)

with xP2 > xP1 , i.e. the process jumps from state 1 to state 2 with intensity λ1
and vice versa with intensity λ2.

Stochastic models Consider the following general optimal control problem,

max
{α(t)}t≥0

E0

∫ ∞
0

e−ρth(x(t), α(t))dt (3)

such that the law of motion for state

ẋ(t) = f(x(t), α(t)) + σ(x(t))dW (t) (4)

holds for α(t) ∈ A, t ≥ 0 and x(0) = x0 given.

Note that one should distinguish between endogenous and exogenous state
variables. Consider x = (x1, x2) such that

ẋ1 = f̃(x1, x2, α)
ẋ2 = µ̃(x2)dt+ σ̃(x2)dW

(5)

7

where the endegenous state variable x1 depends on the control and the other
state, whereas exegenous state variable x2 does not. For the above framework
(3) - (4), we get

f(x, α) =
[
f̃(x1, x2, α)
µ̃(x2)

]
, σ(x) =

[
0

σ̃(x2)

]
. (6)

Note that we can similarly set up models with Poisson type processes.

HJB in stochastic settings Using Itô’s lemma, see e.g. [Pro05], one can
show that the model (3) - (6) leads to the HJB equation

ρv(x1, x2) = max
α∈A

h(x1, x2, α) + vx1(x1, x2)f̃(x1, x2, α)

+ vx2(x1, x2)µ̃(x2) + 1
2vx2x2(x1, x2)σ̃2(x2).

(7)

If we take the Poisson process given by (2) for x2 instead of the process defined
in (5), we get the HJB equation

ρv(x1, x
P
i) = max

α∈A
h(x1, x

P
i , α) + vx1(x1, x

P
i)f(x1, x

P
i , α)

+ λi(v(x1, x
P
j)− v(x1, x

P
i))

(8)

with Poisson states i, j = 1, 2, j 6= i. Note that this can easily be extended to
more than two Poisson states.

2.2 Optimal control problems in economics

The above framework can be used to model economic settings. We present a
simple economic model and explain several possible extensions in the economic
context. The arising HJB equations are stated at the end of the respective
paragraphs. Note that we omit the initial state in the following and denote the
time dependence of the states by a subscript t.

2.2.1 Simple economic model

Consider the following simple one-dimensional deterministic model. We want
to maximize

max
{ct}t≥0

∫ ∞
0

e−ρtu(ct)dt (9)

subject to

ḃt = w + rbbt − ct. (10)

Here ct is consumption and bt are liquid assets at time t respectively. Further,
rb denotes returns on b and w is wage.

Whereas wage and consumption are self-explanatory, we aim to explain the
other components of the model. One can label an asset as liquid or illiquid

8

depending on the extend to which transaction costs are involved for buying or
selling them. As it is done in [KMV16], we define liquid assets as deposits in
financial institutions saving, checking, call and money market accounts, gov-
ernment bonds and corporate bonds net of revolving consumer credit. The rate
of returns indicates at which rate the assets generate earnings. Note that for
negative b this is a borrowing rate.

Notice that for the framework given in Section 2.1 we have the state x(t) = bt
and the control α(t) = ct at time t. Moreover, the state changes at time t are
modeled by f(x(t), α(t)) = f(bt, ct) = w + rbbt − ct. Thus, at time t, for the
liquid asset state bt, we want to choose an optimal control ct, i.e. how much we
consume, to maximize (9). Note again that this choice directly reflects in the
change of the state. A standard choice for the return function h is the CRRA
utility function given by

u(c) = c1−γ

1− γ
parameter γ > 0. Note that u is strictly convex and strictly monotone increas-
ing in c.

For the model (9) - (10), we get the HJB equation

ρv(b) = max
c
u(c) + v′(b)(w + rbb− c).

Using the first order conditions explained in Section 2.1, one gets

c = (u′)−1(v′(b))

and given the derivative (or later its approximation) one can simply compute
the optimal control.

2.2.2 Extension: borrowing constraint

One can additionally introduce a borrowing constraint which is the maximum
amount of money an agent can borrow (e.g. from banks, firms or governments).
It can be modeled by

bt ≥ ¯
b,

i.e. the value of liquid assets b cannot go below
¯
b. Notice that

¯
b = 0 means

that the agent is not allowed to borrow but just to save. For an explanation
of specific types of borrowing constraints like the natural borrowing limit, we
refer to [AHL+17]. For an explanation how the borrowing constraint shows up
in the HJB equation, see Section 4.3.

2.2.3 Extension: heterogeneity - stochastic settings

It is easily possible to extend the deterministic setting described above to a
stochastic one, i.e. adding heterogeneity to the model. We explain it for a
two-state Poisson process and general diffusion type stochastic processes.

9

Let us begin with the modified model for the latter. We want to solve

max
{ct}t≥0

E0

∫ ∞
0

e−ρtu(ct)dt (11)

subject to

ḃt = wzt + rbbt − ct
żt = µ(zt)dt+ σ(zt)dWt

bt ≥ ¯
b.

(12)

We assume that the exogenous productivity state z evolves stochastically over
time on a bounded interval [

¯
z, z̄] with

¯
z ≥ 0 such that the diffusion is reflected

on the boundaries in dimension z, i.e.

∂zv(b,
¯
z) = 0 and ∂zv(b, z̄) = 0, for b ∈ (

¯
b,∞).

Instead of simply getting wage w, one now gets uninsured income wzt. Notice
further that we now have to take the expected value in (11) since the model is
no longer deterministic. Thus, productivity, which is a measure for the output
per unit of input, is modeled such that it influences the households income. For
the same model setup one could also interpret z as specific skill that influences
the income. Note that all agents face different productivity shocks and thus
this is an example of an economic model featuring heterogeneity.

As explained for (7), using Itô’s formula we get the HJB equation

ρv(b, z) = max
c
u(c) + ∂bv(b, z)(wz + rbb− c)

+ ∂zv(b, z)µ(z) + 1
2∂zzv(b, z)σ2(z)

(13)

for the modified model.

If we replace żt = µ(zt)dt+ σ(zt)dWt in (12) by

zt ∈ {z1, z2} Poisson with intensities λ1, λ2, (14)

we have a two-state Poisson type process instead of continuous stationary dif-
fusion process for productivity z.

As stated for the general model by (8), the HJB equation for model (11)-(12)
modified by (14) is

ρv(b, z) = max
c
u(c) + ∂bv(b, z)(wz + rbb− c) + λi(v(b, zj)− v(b1, zi)) (15)

with Poisson states i, j = 1, 2, j 6= i.

10

2.2.4 Extension: illiquid assets

Instead of just having liquid assets, we can extend the model to also feature
illiquid assets. One can model this by asset holdings of a household evolving
according to

ḃt = wztr
b(bt)bt − dt − χ(dt, at)− ct

ȧt = raat + dt

bt ≥ b, at ≥ 0
(16)

where at denotes illiquid assets, dt is the deposit rate and χ(dt, at) the transac-
tion cost function for time t respectively. The other variables remain the same
as above. We point out that the modified model features both an additional
control, i.e. d, and an additional state, i.e. a.

Contrary to liquid assets bt, illiquid assets at cannot be sold that easily
without loosing value since (higher) transaction costs for selling and buying are
involved. We follow [KMV16] by defining illiquid assets as real estate wealth
net of mortgage debt, consumer durables net of non-revolving consumer credit,
plus equity in the corporate and non-corporate business sectors. The deposit
rate is the amount one transfers into the other account. If dt > 0, one de-
posits into the illiquid account and if dt < 0, one withdraws from the illiquid
account. Households have to pay a transaction cost χ(dt, at) for depositing or
withdrawing from their illiquid account. In [KMV16] it is pointed out that in
the equilibrium illiquid assets pay a higher return than liquid assets due to the
transaction costs, i.e. ra > rb. Furthermore, note that short positions are not
allowed.

2.2.5 Further extensions and other models

Obviously, there are a lot of other models that feature completely different
components but the ones we described. However, there are also several variables
that could be introduced to the above setting, e.g. a housing asset that pays a
utility return instead of monetary return. Check model (51)-(52) in Appendix
A which features such an asset and which we implemented for our studies.
Moreover, one can introduce variables like age to the model, e.g. combined
with a death rate. Note that one also may want to introduce different types of
skill modeled by stochastic processes that evolve differently over time, see e.g.
model (53)-(54) in Appendix A.

2.3 Motivation to solve higher dimensional models

Using standard approaches, one is only able to solve low-dimensional models
with at most three state variables. Therefore, one has to either choose very
simple settings or one has to make a lot of assumptions (e.g. about specific
variables not being important). These are hard restrictions to formulate models
which allow for interesting implications. That is why we present an approach
to handle higher dimensional economic models. We propose to use sparse grids
to which we turn now.

11

3 Sparse Grids
Sparse grids were introduced by the russian mathematician Smolyak [Smo63]
and were further studied in [Zen91]. A detailed overview of sparse grids can be
found in [BG04]. We mainly follow the presentations of [GG10] and [Pfl10].

Sparse grids are known under several different names like hyperbolic cross
points, Smolyak method or boolean interpolation. They are based on a higher-
dimensional multiscale basis which can be derived from a one-dimensional multi-
scale basis by using a tensor product construction.

Let N denote the number of grid points in one coordinate direction and let
d be the dimensionality of the problem. Discretizations on sparse grids only
involve O(N(logN)d−1) degrees of freedom in comparison to the O(Nd) degrees
of freedom of conventional methods. Thus, they do not underly the curse of di-
mensionality, i.e. the exponential dependence on dimension d, anymore and are
thus well-suited for high-dimensional problems. Notice that there still is an ex-
ponential dependence on the logarithmic term and thus it is not possible to use
them in arbitrarily high dimensions. To approximate solutions with bounded
mixed derivatives, one achieves an accuracy of O(N−2(logN)d−1) with respect
to the L2 and L∞-norm, if piecewise linear basis functions are used. Hence,
they are applicable to higher dimensional settings without losing too much ac-
curacy.

If one knows that the solution depends more heavily on some variables,
one can use anisotropic sparse grids which have more grid points in individual
dimensions. To approximate non-smooth solutions, there are sparse grid ap-
proaches with a posteriori adaptive refinement which are based on error indic-
ators in the sparse grid points. Further, one can use higher-order polynomials,
prewavlets, interpolets, wavelets and other basis functions instead of piecewise
linear basis functions which lead to better accuracy in some settings.

There exist sparse grid methods for solving partial differential equations,
numerical quadrature, data mining and several other numerical fields. That is
why they are used in areas such as physics, machine learning or economics.

In the first part of this section, we describe the construction of sparse grids
and recall some theoretical results. Then we extend the theory to non-zero
boundaries and adaptive sparse grids. We conclude this section with a presenta-
tion of two approaches for the construction of finite difference operators working
on sparse grids.

12

3.1 Construction and extensions of sparse grids

3.1.1 One-dimensional basis functions

The so-called hierarchical basis functions can be used as a one-dimensional
multilevel basis. They are based on the well known hat functions

Φ(x) :=
{

1− |x| if x ∈ [−1, 1],
0 otherwise.

Let us define the set Ωl of level l ∈ N as the set of equidistant grids on the unit
interval [0, 1] with mesh width 2−l. This allows us to describe the grid points
by

xl,i := i · hl, 0 ≤ i ≤ 2l,
with index i ∈ N. By translation and dilation, we obtain a family of basis
functions Φl,i(x) with support in [xl,i − hl, xl,i + hl],

Φl,i(x) := Φ

(
x− i · hl

hl

)
,

called nodal basis. Notice that the location of the basis functions and grid points
is indicated by the index i. We define the space of piecewise linear nodal basis
functions

Vl := span{Φl,i : 1 ≤ i ≤ 2l − 1}
and the space of hierarchical increment basis functions

Wl := span{Φl,i : 1 ≤ i ≤ 2l − 1, i odd}.

Notice that we have the following relationship between the two spaces. First,
it holds

Vl =
⊕
k≤l

Wk

which is visualized in Figure 1, and second, any function u ∈ Vl can be uniquely
represented as

u(x) =
l∑

k=1

∑
i∈Ik

ak,iΦk,i(x) (17)

x1,1

V1

x2,1 x2,2 x2,3

V2

l = 1

x1,1

W1

x2,1 x2,2 x2,3

l = 2
W2

V2

Figure 1: Visualization of the subspace splitting in one dimension for level l = 2:
the nodal basis functions on the left and the hierarchical basis functions on the
right, both for levels l = 1 and l = 2

13

where ak,i ∈ R are hierarchical coefficient values, Φk,i are mutually disjoint
hierarchical basis functions spanning Wk, and Ik is defined as

Ik = {i ∈ N : 1 ≤ i ≤ 2l − 1, i odd}.

x

f(x)

f(x)

u(x)

x

f(x)

u(x)

Figure 2: Interpolation using nodal basis functions: approximation u(x) (red)
of the function f(x) (blue) by using nodal basis functions in the left plot, the
used nodal basis functions (black) in the right plot where one can see that the
coefficient values at the grid points simply are the respective function values

x

f(x)

f(x)

u(x)

a1,1

a2,1

a2,1

x

f(x)

u(x)

a1,1

a2,1

a2,1

Figure 3: Interpolation using hierarchical basis functions: approximation u(x)
to f(x) using hierarchical basis functions with coefficient values al,i (dashed
lines) in the left plot where one starts with the purple basis function for level
l = 1 (purple) and adds the basis function for level l = 2 (orange, teal) on top
of that to improve the approximation, in the right plot the used basis functions
themselves are visualized, i.e. not as additions on the basis functions of the
lower levels

14

See Figures 2 and 3 for a visualization of interpolation with nodal and hierarch-
ical basis functions respectively.

3.1.2 Multi-dimensional basis functions

By a tensor product construction, we can obtain a multi-dimensional basis on
the d-dimensional unit cube Ω̄ := [0, 1]d from the one-dimensional hierarchical
basis. To indicate the level in a multivariate sense, let us introduce the multi-
index l = (l1, . . . , ld) ∈ Nd. Note that we are indicating the multi-index property
by a bold formatting. We then consider the set of d-dimensional rectangular
grids Ωl with mesh size

hl := (hl1 , . . . , hld) := 2−l.

Thus, we obtain a grid with equidistant points with respect to the individual
coordinate directions where the mesh size can vary for the different dimensions.
Hence, for Ωl, we have the grid points

xl,i := (xl1,i1 , . . . , xld,id), 1 ≤ i ≤ 2l − 1.

With each individual grid point xl,i, we associate a piecewise d-linear nodal
basis function

Φl,i :=
d∏
j=1

Φlj ,ij (xj),

which is the product of the one-dimensional basis functions and has support
of size 2hl. Using these basis functions, we can define the d-dimensional nodal
function spaces

Vl := span{Φl,i : 1 ≤ i ≤ 2l − 1}

which are zero on the boundary ∂Ω and consist of piecewise d-linear functions,
and the d-dimensional hierarchical increment spaces

Wl := span{Φl,i : i ∈ Nd : 1 ≤ i ≤ 2l − 1, ij odd ∀ 1 ≤ j ≤ d }.

Like in the one-dimensional setting, we have the following relationship between
the two spaces. First, it holds

Vl =
⊕
k≤l

Wk

and second, any function u ∈ Vl can be uniquely represented as

ul(x) :=
l∑

k=1

∑
i∈Ik

ak,iΦk,i(x) (18)

where ak,i are hierarchical coefficient values, Φk,i are mutually disjoint hierarch-
ical multi-dimensional basis functions spanning Wk, and Ik is defined as

Ik := {i ∈ Nd : 1 ≤ i ≤ 2k − 1, ij odd ∀ 1 ≤ j ≤ d}.

15

l2 = 1

l2 = 2

l2 = 3

l1 = 1 l1 = 2 l1 = 3

Figure 4: Basis functions Φl,i of the hierarchical subspaces Wl of the space
V3 = V3,3 with their respective disjoint supports

3.1.3 Regular sparse grids

To understand the theory for sparse grids and especially the convergence results,
we should recall the Sobolev space with bounded mixed derivatives

Hmix
2 (Ω̄) := {u : Ω̄→ R : Dαu ∈ L2(Ω), |α|∞ ≤ 2, u|∂Ω = 0}

with Dαu := ∂|α|1u
∂x
α1
1 ...∂x

αd
d

.
Considering functions u ∈ Hmix

2 (Ω̄), the hierarchical coefficients al,i decay
as

|al,i| = O(2−2|l|1)

and the number of degrees of freedom of the subspaces Wl is given by

|Wl| = O(2|l|1).

Instead of the full grid spaces

Vn := V(n,...,n) =
⊕
|l|∞≤n

Wl

the idea is now to use sparse grid spaces V̂n of level n defined by

V̂n :=
⊕

|l|1≤n+d−1
Wl,

16

Figure 5: The triangular scheme instead of the rectangular one yields the sparse
grid on the right instead of a full grid that would be the set of all points on the
left (for the same level)

see Figure 5 for a visualization. This allows us to reduce the number of degrees
of freedom. In particular, for sparse grids we have

|V̂n| =
n−1∑
i=0

2i ·
(
d− 1 + i

d− 1

)
= O(h−1

n · | log2 hn|d−1)

degrees of freedom and thus it is of order O(2nnd−1), whereas in the full grid
case it is of order O(2nd). Despite the big difference in the number of used
grid points it is possible to achieve a good accuracy by using sparse grids. For
functions in Hmix

2 (Ω̄), the approximation error on sparse grids measured in the
Lp-norms is given by

||u− ûn||p = O(h2
n · nd−1),

whereas for full grids it is

||u− ûn||p = O(h2
n).

We can thus overcome the curse of dimensionality to some extent.

3.1.4 Non-zero boundaries

In the previous subsection we have just considered functions that are zero on
the domain’s boundary ∂Ω. If we want to allow non-zero boundary values, the
usual approach is to introduce additional nodes on the boundary. This can be
done by adding an extra level l = 0 in the construction of sparse grids. On this
level we use two overlapping one-dimensional basis functions Φ0,0 and Φ0,1 with
indices i = 0 and i = 1. Doing this we can obtain a modified set of subspaces

17

W̃l by the same tensor product construction explained before. Notice that we
then have the associated modified non-zero boundary sparse grid space defined
by

V 0B(1)
n :=

⊕
|l|1≤n+d−1

W̃l,

where level 0 boundary functions are included. With this approach, for the
same value of n, we obtain the same interior nodes as before. Note further that
in two dimensions there are already twice as many grid points on the boundary
as there are on the main axis. Hence, especially in higher dimensions, almost
all grid points lie on the boundary. An approach to mitigate this effect is to
collate the basis functions of level 0 and level 1. This leads to the same number
of grid points on the main axis as on the boundary. Thus, by not spending
another level just for the boundary points one can reduce the portion of points
that lie on the boundary. One still has to deal with many more grid points than
in the case without boundary points. Therefore, the importance of accuracy on
and near the boundary should be analyzed since one can for example also use
extrapolation towards the boundary instead of introducing new points.

Notice that we use boundary points in our implementation since we imple-
ment boundary constraints. Further, these often lead to high gradients close to
the boundary.

3.1.5 Adaptive sparse grids

There are cases in which we want to use an adaptive sparse grid. For example,
this is the case if the function does not fulfill the required smoothness conditions
or the function is flat in most parts of the domain but has some steep regions in
other parts. The idea is to add new points to the sparse grid if it is likely that
they increase the obtained accuracy enough. This is called adaptive refinement.
We need a criterion which tells us where to add new points. Most often one uses
a local error estimation based on the hierarchical surplus (coefficient). If one
finds such a point, one can add its child nodes (in the hierarchical structure).
Notice further that one should ensure that all missing parent nodes of the added
nodes are in the grid to be consistent with the hierarchical structure.

Note that one has to take care of the possibility that the adaption focuses
on just one feature and ends up there with a high level without a good approx-
imation in other locations. However, for high dimensional adaption we cannot
just add a lot of children and thus one has to make sure the adaption is well
thought out.

In case that additional knowledge about the problem is available, a criterion
suited to the problem can be used. Often dimension adaptivity, which leads
to anisotropic sparse grids, can be suitable. Here the idea is to have a higher
sparse grid level in some dimensions than in others. This makes sense if these
dimensions have more influence on the solution or if the function is less smooth
in these dimensions than in the others.

We explain the algorithmic details and our refinement strategies in Section
7.2.

18

3.2 Finite difference schemes on sparse grids

We present two different approaches to implement finite differences on sparse
grids. The first one, which was introduced in [Sch98], is based on dimensional
splitting and just uses the sparse grid points. The second one, proposed in
upcoming work [Ahn18], introduces new points and interpolates on these points.
Note that we use the latter approach for our implementation and just present
the former to give the reader an insight into the original approach and existing
theoretical results for finite difference operators on sparse grids.

3.2.1 Finite difference schemes on sparse grids based on dimensional
splitting

In this subsection we explain finite differences on sparse grids which were first
introduced in [Sch98]. Notice that this reference contains consistency proofs
and presents convergence results for low levels by investigating matrix proper-
ties and using specific computations in Matlab. For explanations in English,
see [Gri98] and [GS99] and [Zum00]. Note that we follow [Sch98] and [Gri98]
for our presentation but do not use this approach in our implementation.

To explain the construction of finite difference operators that are based on
dimensional splitting combined with a nodal to hierarchical basis transformation
and its respective back-transform, we now present some necessary notions.

Prerequisites Let us first look into some properties of the introduced hier-
archical subspaces Wl.

The computation of the hierarchical coefficients al,i introduced in Section
3.1.2, is done via

al,i =
(d∏
j=1

Hxlj ,ij ,hj

)
u(x) =: Hxl,i,hu(x) (19)

with

Hxl,i,h : Vl →
l⊕

k=1
Wk.

The operators Hxlj ,ij ,hj
: Vlj →

⊕lj
kj=1Wkj in (19) in one dimension are com-

puted via the stencil

Hxlj ,ij ,hj
=
[
− 1

2 1 1
2

]
xlj ,ij ,hj

,

i.e.
Hxlj ,ij ,hj

◦ u(xlj ,ij) = u(xlj ,ij)−
u(xlj ,ij − hj) + u(xlj ,ij + hj)

2

19

with 1 ≤ ij ≤ 2lj − 1 in both notations. For d dimensions, this is defined by

Hxlj ,ij ,hj
◦ u(xl,i) =u(xl1,i1 , . . . , xlj ,ij , . . . , xld,id)

−
u(xl1,i1 , . . . , xlj ,ij − hj , . . . , xld,id)

2

−
u(xl1,i1 , . . . , xlj ,ij + hj , . . . , xld,id)

2 .

Note that this operator yields the identity for boundary points.
We point out that Hxl,i,h is a transformation from piecewise d-linear nodal

basis to piecewise d-linear hierarchical basis. Let us turn to the definition of
these operators.
Definition 3.2.1 (Hierarchization and Dehierarchization). Let us introduce the
operator Hj for 1 ≤ j ≤ d that denotes the application of a one-dimensional
hierarchization with respect to dimension j on all grid points. Note that this
operator is defined in d dimensions. Formally, it is denoted by

(Hj ◦ u)(xl,i) = Hxlj ,ij ,hj
◦ u(xl,i)

with Hxlj ,ij ,hj
being the vector with hierarchical coefficients in dimension j and

nodal coefficients in all other dimensions, i.e.

Hj :
(j−1⊗
s=1

Xls

)⊗(
Vlj

)⊗(d⊗
s=j+1

Xls

)
→

(j−1⊗
s=1

Xls

)⊗(lj⊕
tj=1

Wtj

)⊗(d⊗
s=j+1

Xls

)

with Xls ∈ {Vls ,
⊕ls
ts=1Wts}.

The d-dimensional hierarchization operator H that performs the basis trans-
formation in all coordinate directions is defined as

H =
d∏
j=1

Hj :
d⊗
s=1

Vls →
d⊗
s=1

(ls⊕
ts=1

Wts

)
.

We additionally introduce the operator

Hk =
d∏

j=1, j 6=k
Hj

subject to

Hk :
(k−1⊗
s=1

Vls

)⊗(lk⊕
sk=1

Xsk

)⊗(d⊗
s=k+1

Vls

)
→

(k−1⊗
s=1

(ls⊕
ts=1

Wts

))⊗(lk⊕
sk=1

Xsk

)⊗(d⊗
s=k+1

(ls⊕
ts=1

Wts

))
which performs the hierarchization in all directions but dimension k.

We further introduce the respective inverse operators E = H−1, Ej =
(Hj)−1 and Ek = (Hk)−1 and call them dehierarchization operators.

20

Finite differences based on dimensional splitting We introduce finite
difference operators which use the neighbor grid points of the respective grid
points in the respective dimensions, i.e. the closest grid points in the respective
dimensions. For the approximation of the first derivative on regular sparse
grids, we use the backward difference stencil and the forward difference stencil
given by

1
2−lmaxj

[−1 1 0]xlj ,ij ,lmaxj and 1
2−lmaxj

[0 − 1 1]xlj ,ij ,lmaxj (20)

respectively and for the approximation of the second derivative, we use the
stencil given by

1
2−2·lmaxj

[1 − 2 1]xlj ,ij ,lmaxj (21)

where lmaxj = n+d−1−∑d
j̃=1,j̃ 6=j lj̃ . For each interior grid point, these stencils

belong to an equidistant grid in the j-th coordinate direction with local mesh
size 2−lmaxj . If adaptive refinement is used, the grid points in the different
dimensions are no longer equidistant, i.e. the distance is no longer defined by
lmaxj but the stencil is still chosen such that the closest neighbors in the re-
spective dimensions are used. Then the entries are the coefficients known from
non-uniform grids.

Finite difference operators on sparse grids are always constructed with the
same scheme regardless of the approximated derivative. Additionally, every op-
erator can be denoted with both a nodal and a hierarchical basis representation.
Due to the similarity we just state it for the nodal notation and refer to [Sch98]
for the hierarchical one.

The sparse grid finite difference operators are a composition of three partial
operators,

• Hj , the basis transformation from nodal to hierarchical basis in all di-
mensions but dimension j in which we aim to use the finite difference
stencil,

• application of a finite difference stencil in dimension j with mesh size
given as the local step size to next neighbor grid point in dimension j,
e.g. (20) or (21) for a regular sparse grid,

• Ej , the basis transformation from hierarchical to nodal basis in all dimen-
sions but dimension j.

This procedure is visualized in Figure 6. Formally, we can denote the sparse
grid forward difference operator DS,F

j by

DS,F
j := Ej ◦DF

j ◦Hj ,

the sparse grid backward difference operator DS,B
j by

DS,B
j := Ej ◦DB

j ◦Hj

21

Ex Dx Hx

Figure 6: Sparse grid operator for the forward difference in x-dimension as a
composition of three partial operators

and the sparse grid second derivative operator DS
jj by

DS
jj := Ej ◦Djj ◦Hj

where DF
j , DB

j and Djj are defined by (20) and (21).

We refer to [Sch98] for an explanation of dimensional splitting for the ap-
proximation of d-dimensional operators such as the Laplacian and for the above
noted theory regarding consistency for specific types of PDEs.

3.2.2 Finite difference schemes on sparse grids based on interpola-
tion

We now present an approach proposed in a forthcoming paper [Ahn18]. It
comes with an easy intuitive implementation. We work closely together with
Ahn by testing the current implementation of these sparse grid finite difference
operators.

The proposed sparse grid finite difference operators are based on interpol-
ation. Instead of just using the function values on the sparse grid points, one
interpolates on nodes that we will refer to as ghost nodes. This way we do not
have to use specific basis transformations and one can simply take any sparse
grid library, such as SG++ [Pfl10], to implement this approach.

To describe the approach, we first define the above noted ghost points. Then
we present interpolation operators working on these points. Finally, we intro-
duce the finite difference operators by using these interpolation operators. Note
that we explain the handling of finite differences on the boundary at the end of
this subsection.

To define ghost nodes, we start by defining the ghost node step size.

Definition 3.2.2 (Ghost node step size). We define the ghost node step size
hgj in dimension j, 1 ≤ j ≤ n, for a grid point xl,i by hgj := 2−kj where kj
denotes the maximal level used in dimension j.

Note that this is half of the size of the smallest support of the basis functions
in this dimension. This makes sense since for this step size the local behavior

22

of the approximation is still captured. For adaptive sparse grids, one could
also take a bigger distance in some grid points but due to the linearity of the
approximation in this part this does not change the result.

Note that for the different sparse grid operators, we need to interpolate
on different points, i.e. for the forward difference we have to add the ghost
node step size in the respective dimension and for the backward difference we
have to subtract it in the respective dimension. We refer to them as forward
difference ghost nodes and backward difference ghost nodes. Notice that for
the second derivative finite difference, we can use the first derivative operators.
Further, other difference operators are possible but we restrict ourselves to
these operators for a simplified presentation. We explain how to use these
finite difference operators on boundary points later.

Definition 3.2.3 (Ghost node). For a grid point xl,i in which we aim to com-
pute the finite differences in dimension j, 1 ≤ j ≤ d, we define the corresponding
forward difference ghost node by

gF,jl,i := (xl1,i1 , . . . , xlj ,ij + hgj , . . . , xld,id)

and similarly for the backward difference we define the corresponding backward
difference ghost node by

gB,jl,i := (xl1,i1 , . . . , xlj ,ij − hgj , . . . , xld,id).

We can now define the finite difference operators on sparse grids that are
based on interpolation.

Definition 3.2.4 (Interpolation based sparse grid finite difference operator).
Let us denote the interpolation operator on the sparse grid by Is : ⊕l

k=1Wk →
Vl. We define the interpolation operator for the by hgj shifted sparse grid, i.e.
the ghost node grid, for the forward difference in dimension j, 1 ≤ j ≤ d by
IFhgj : ⊕l

k=1Wk → Vl and for the backward difference in dimension j, 1 ≤ j ≤ d
by IBhgj : ⊕l

k=1Wk → Vl. For a given grid and the desired difference operator,
we can simply compute all respective ghost nodes and interpolate on these. We
define the sparse grid forward difference operator D̃S,F

j by

D̃S,F
j := IFhgj − Is :

l⊕
k=1

Wk → Vl

and the sparse grid backward difference operator D̃S,B
j by

D̃S,B
j := Is − IBhgj :

l⊕
k=1

Wk → Vl.

We point out that one does not have to use interpolation for the bound-
ary points in the respective dimension (see the right picture in Figure 7 with
red points on top of sparse grid points) since the function values for these grid

23

Figure 7: Visualization of the ghost points for the forward difference in x-
dimension: ghost node (red) that is used for the sparse grid forward finite
differences in x-dimension in the green grid point in the left graphic, and on
the right all forward difference ghost nodes that are used for the sparse grid are
drawn in red

points are already known. For higher levels though, these points only make a
small portion of the overall needed ghost points and thus one does not gain a
lot by excluding these points from the interpolation operation.

Notice that the interpolation operators work on hierarchical values. Note
further that we can similarly define other finite difference operators by interpol-
ating on the required points. Let us turn to the boundary handling. Since the
forward difference is not defined on the upper boundary, we use the backward
difference and thus also the backward difference ghost nodes here. Similarly, we
use the forward difference on the lower boundary since the backward difference
is not defined here.

For the second derivative difference operator, we can also use the above
approach by interpolating to the respective points. If we need both the first and
the second derivative, there are two approaches to avoid recomputations. First,
one can use the interpolated values that one used for the first derivative finite
differences also for the second derivative finite differences. Second, one can use
the computed first derivative operators to compute the second derivative one
by using the following relationship between the first and the second derivative
operators on sparse grids given by

D̃S
jj = D̃S,B

j ◦ D̃S,F
j = D̃S,F

j ◦ D̃S,B
j

which is a well known identity for the full grid operators is also pointed out in
[Sch98]. Notice that it is extremely inefficient to do the interpolation for both
the first and the second derivative operator respectively and one thus should
avoid to compute both on their own.

3.2.3 Example of finite difference operator construction

Note that the operators are linear and can thus be represented by matrices.
We show the construction for the forward difference in y direction in a two-
dimensional sparse grid with sparse grid level l = 1. Notice that the ver-
sion presented in Section 3.2.1 is working on nodal basis functions, whereas we
presented the interpolation based version in Section 3.2.2 as operators work-
ing on hierarchical basis coefficients. We thus apply the nodal to hierarchical

24

basis transformation H as first operation in the interpolation based version to
compare the arising discretization matrices of both sparse grid finite difference
approaches.

Consider sparse grid points G and basis transformation H given by

G =



0 0
1 0

0.50 0
0 1
1 1

0.50 1
0 0.50
1 0.50


, H =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−0.5 −0.5 1 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −0.5 −0.5 1 0 0
−0.5 0 0 −0.5 0 0 1 0

0 −0.5 0 0 −0.5 0 0 1


,

where the first column of G shows the x-coordinates and the second column
the y-coordinates of the points.

Example of finite difference operators based on basis tranformations
We need the basis transformation in all dimensions but the one in which we
apply the difference operator, i.e. in all dimensions but dimension y. We further
need the finite difference operator Dy which works on the sparse grid points.
These are given by

Ey =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0.5 0.5 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0.5 0.5 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, Dy =



−2 0 0 0 0 0 2 0
0 −2 0 0 0 0 0 2
0 0 −1 0 0 1 0 0
0 0 0 2 0 0 −2 0
0 0 0 0 2 0 0 −2
0 0 −1 0 0 1 0 0
0 0 0 2 0 0 −2 0
0 0 0 0 2 0 0 −2


and

Hy =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−0.5 −0.5 1 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −0.5 −0.5 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Notice first that Ey = H−1
y . For Dy, you can see that for example for the first

row we take the grid points at index 1 and 7. This is the case since for the
forward difference we take the point itself, i.e. (0, 0), and the next grid point in
y-dimension, i.e. (0, 0.5). The matrix entries themselves arise from the distance
of the used points.

25

Example of finite difference operators based on basis tranformations
For the version based on interpolation, we get

D̃S,F
y =



−1 0 0 1 0 0 2 0
0 −1 0 0 1 0 0 2
−0.5 −0.5 −1 0.5 0.5 1 1 1
−1 0 0 1 0 0 −2 0
0 −1 0 0 1 0 0 −2
−0.5 −0.5 −1 0.5 0.5 1 −1 −1
−1 0 0 1 0 0 −2 0
0 −1 0 0 1 0 0 −2


which can be computed by subtracting the interpolation operator for the sparse
grid and from the interpolation operator for the ghost node grid.

Comparison of the two approaches for an example We can now easily
compare the arising operators by a simple computation. Note that for both
approaches this yields the same finite difference operator, i.e.

DS,F
y := Ey·Dy·Hy = D̃S,F

y ·H =



−2 0 0 0 0 0 2 0
0 −2 0 0 0 0 0 2
−0.5 −0.5 −2 −0.5 −0.5 2 2 2

0 0 0 2 0 0 −2 0
0 0 0 0 2 0 0 −2

0.5 0.5 −2 0.5 0.5 2 −2 −2
0 0 0 2 0 0 −2 0
0 0 0 0 2 0 0 −2


.

We point out that the only two rows in which more than two entries are non-zero
are the ones for the grid points with x = 0.5. The forward difference opera-
tion in y-dimension in all other grid points only requires actual grid points. To
compute the finite differences in the points with x = 0.5 with the interpolation
based version, one interpolates on (0.5, 0.5). Note that all basis functions are
used to interpolate on this point.

We further checked that for levels l = 2, 3 both approaches yield the same
matrix. The theoretical relationship between the two approaches will be ex-
plained in upcoming work [Ahn18].

26

4 Viscosity Solutions and General Convergence
Theory

In the beginning of section, we briefly recall the basics of viscosity solutions and
the convergence theory developed by [BS90]. We then present the numerical
scheme used by [AHL+17] for a simple model on full grids.

4.1 Viscosity solutions

It is known that for PDEs the existence of solutions is not trivial. Note that
the weak formulation known from linear PDEs cannot be used for nonlinear
PDEs like the HJB equation. Thus, one defines a new type of weak solutions,
called viscosity solutions, that is testing the solution in a specific way. In the
past 30 years there has been a lot of research regarding these solutions and
thus there exist several results regarding existence, uniqueness and regularity
of solutions. Crandall and Lions introduced the notion of viscosity solutions for
first order equations in [CL83]. They generalized the theory to second order
PDEs in [LS88]. Also see [CILS92] and [Cra97] which are some of the classical
papers. A more recent introduction can be found in [Bar13] or [CP14] and for
a simple nontechnical introduction with economic context, see [Mol16c]. In this
subsection we mainly follow [Pha09] and [Yu08] which are themselves heavily
based on [CILS92].

4.1.1 Important definitions and the notion of viscosity solutions

There are a lot of different types of fully nonlinear PDEs, e.g. Hamilton-Jacobi
equations like the eikonal equation, Hamilton-Jacobi-Bellman equations or the
Monge-Ampère equation.

Let us present the theory required to understand the kind of solution we
have for the above mentioned PDEs. We begin by defining several function
properties.

Definition 4.1.1. Consider a function F : Ω × R × Rn × Sn → R, where Sn
denotes the space of symmetric n × n matrices, with arguments x, r, p,X, i.e.
F (x, r, p,X). We call F degenerate elliptic if it is non-increasing in its matrix
argument, i.e. for all x ∈ Ω, r ∈ R, p ∈ Rn,M, M̂ ∈ Sn it holds

M ≤ M̂ =⇒ F (x, r, p, M̂) ≤ F (x, r, p,M),

which means that M̂ −M is positive semi-definite. If it is additionally non-
decreasing in r, i.e. for all x ∈ Ω, s, r ∈ R, p ∈ Rn,M, M̂ ∈ Sn it holds

s ≤ r,M ≤ M̂ =⇒ F (x, s, p, M̂) ≤ F (x, r, p,M),

we call F proper.

We should also recall the following important definitions.

27

Definition 4.1.2. For a locally bounded function v : Ω → R, we define the
upper-semicontinuous envelope v∗ and the lower-semicontinuous envelope w∗
on Ω̄ by

v∗(x) := lim sup
x̃→x

v(x),

v∗(x) := lim inf
x̃→x

v(x).

Recall that w is called upper-semicontinuous (usc) if

v = v∗

and similarly, w is called lower-semicontinuous (lsc) if

v = v∗.

We call v continuous if it is both lower-semicontinuous and upper-semicontinuous,
i.e.

v = v∗ = v∗

Using the above definitions, we can introduce the notion of viscosity solu-
tions. We denote the space of twice continuously differentiable functions by
C2.

Definition 4.1.3. Let Ω be an open domain and let w : Ω → R be locally
bounded. Further, let F be a proper fully nonlinear equation with

F (x, v(x), Dv(x), D2v(x)) = 0. (22)

Then v is a viscosity subsolution of (22) on Ω if it is upper-semicontinuous and
for every ϕ ∈ C2(Ω) and x̂ ∈ Ω which is a local maximum of v − ϕ, it holds

F (x̂, v(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ 0,

and it is a viscosity supersolution of (22) on Ω if it is lower-semicontinuous for
every ϕ ∈ C2(Ω) and x̂ ∈ Ω which is a local minimum of v − ϕ, it holds

F (x̂, v(x̂), Dϕ(x̂), D2ϕ(x̂)) ≥ 0.

We call it a viscosity solution on Ω if it is both a viscosity subsolution and a
viscosity supersolution of (22).

Notice that there also exists a notion of discontinuous viscosity solutions
using the envelopes.

Since only the derivatives Dϕ and D2ϕ and not the function ϕ itself is
involved in the definition, adding constants to ϕ does not change these proper-
ties. Therefore, the notion of the local maximum of v−ϕ can be interpreted as
the graph of ϕ touching v from above and similarly for the notion of the local
minimum, see Figure 8.

For examples which show the utility of this notion, see [Yu08] or some of
the references given in the beginning of this subsection.

28

x

ϕ1(x)

v1(x)

x

ϕ2(x)

v2(x)

Figure 8: Subsolution ϕ1 for a function v1 on the left and supersolution ϕ2 for
a function v2 on right

4.1.2 Uniqueness, existence and regularity of viscosity solutions

The theory for uniqueness, existence and stability is non-trivial, especially if
we have boundary inequalities in the viscosity sense. Due to space constraints
we do not cover these topics in detail. Instead, we just state some important
results, present some ideas and reference the respective literature.

Uniqueness – comparison principles To get a uniqueness result for vis-
cosity solutions, a comparison principle which is also called maximum principle
can be used.

Definition 4.1.4 (Property: Strong comparison principle). If v1 ∈ B(Ω̄) is an
upper semicontinuous solution of (22) and v2 ∈ B(Ω̄) is a lower semicontinuous
solution of (22), then v1 ≤ v2 on Ω.

The strong comparison principle allows us to compare a subsolution and a
supersolution on the entire domain by just comparing it on the boundary of the
domain. This directly implies the uniqueness of the viscosity solution of (22)
by a condition on the boundary given by v∗1 = v1∗ = g on ∂Ω. The reason for
this is that by the strong comparison principle we have v∗1 ≤ v2∗ and v∗2 ≤ v1∗
and by definition we also have v1∗ ≤ v∗1 and v2∗ ≤ v∗2. Thus, it holds

v1∗ = v∗1 = v2∗ = v∗2

and we obtain the uniqueness of a viscosity solution v1 = v2 on Ω.

The comparison principle can be easily proved by contradiction using first
and second order conditions if v1 and v2 are smooth. If they are non-smooth
though, this is not possible anymore. A key trick, called doubling the variables,
can be used to still prove the result in this case. For a complete proof in the
state constrained case, we refer to Theorem 2.2 of [Son86].

29

Existence Like in the linear PDE case one is additionally interested in the
existence of the solution in the defined weak sense. There is a method called
Perron’s method that allows us to prove existence using the comparison prin-
ciple. In the Dirichlet setting the proof idea is to show that if a subsolution w
is not a solution, then one can modify it to obtain another subsolution w̃ such
that w̃ > w in a small neighborhood. For details see Section 9 of [Cra97] or see
[CILS92] for the similar statements and the respective proofs.

Regularity For regularity results, we refer to [CC].

4.2 Convergence of general numerical approximation schemes
for fully non-linear second order PDEs

In this section we discuss the convergence of numerical approximation schemes
to the (unique) viscosity solution of fully non-linear second order PDEs and
thus also for the HJB equation. Barles and Souganidis proved that schemes
that are monotone, consistent and stable are convergent. Hence, the idea is to
construct numerical schemes that fulfill these conditions. Note that we closely
follow the classical paper [BS90] for the following presentation of the theory.

Let us first give the framework. We want to approximate (22) with a nu-
merical scheme denoted by S, i.e.

S(ρ, x, vρ(x), vρ) = 0, (23)

where S : R+ × Ω × R × B(Ω̄) → R is locally bounded and B(Ω̄) is the space
of bounded functions defined on Ω̄. Further, ρ denotes the discretization para-
meter, e.g. the mesh size in full grid finite difference schemes. For every ρ > 0,
we denote the solution of the approximation scheme (23) by vρ.

Let us now prove that schemes that are monotone, stable and consistent
converge to (22) as long as (22) admits a comparison principle. To do this, we
first give the required definitions.

Definition 4.2.1. We call S monotone if for ρ ∈ R+, x ∈ Ω̄, r ∈ R and
v1, v2 ∈ B(Ω̄) with v1 ≥ v2, we have

S(ρ, x, r, v1) ≤ S(ρ, x, r, v2).

Definition 4.2.2. We call S stable if for all ρ > 0, there exists a solution
vρ ∈ B(Ω̄) of (23) such that

sup
ρ>0
||vρ||∞ ≤ C

where C is a constant independent of ρ.

Definition 4.2.3. We call S consistent if for all x0 ∈ B(Ω̄) and ϕ ∈ C2
b (Ω̄) it

holds

lim sup
ρ→0,x→0,h→0

S(ρ, x, ϕ(x) + h, ϕ+ h)
ρ

≤ F ∗(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)),

30

and

lim sup
ρ→0,x→0,h→0

S(ρ, x, ϕ(x) + h, ϕ+ h)
ρ

≥ F∗(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)),

We now turn to the main result proven by Barles and Souganidis.
Theorem 4.2.4. Suppose that the above defined strong comparison principle
holds for (22). If S is a monotone, stable and consistent scheme, then the
solution of vρ of (23) converges locally uniformly to the unique viscosity solution
v of (22) for ρ→ 0.
Proof. Let us define v̄,

¯
v ∈ B(Ω̄) by

v̄(x0) = lim sup
x→x0,ρ→0

vρ(x) and
¯
v(x0) = lim inf

x→x0,ρ→0
vρ(x).

We claim that v̄ and
¯
v are respectively subsolutions and supersolutions of (22).

Then, according to strong comparison principle, it holds v̄ ≤
¯
v on Ω̄. By the

definitions of v̄ and
¯
v, we have v̄ ≤

¯
v and thus the equality v = v̄ =

¯
v. By the

strong comparison principle, we get that v is the unique continuous solution of
(22). This gives us the locally uniform convergence of vρ to v.

We still need to prove our claim, i.e. that v̄ and
¯
v are respectively subso-

lutions and supersolutions of (22). Let us just show the proof for v̄ since it is
analogous for the other case. Hence, let x0 be a local maximum of v̄ − ϕ on Ω̄
for some ϕ ∈ C2(Ω̄). Without loss of generality, we assume that ϕ is bounded,
x0 is a strict local maximum, v̄(x0) = ϕ(x0) and additionally ϕ ≥ 2 supρ ||vρ||∞
outside the ball Br(x0), where r > 0 is such that

v̄(x)− ϕ(x) ≤ 0 = ū(x0)− ϕ(x0) in B(x0, r).
Then there exist sequences (ρn)n ⊂ R+ and (xn)n ⊂ Ω̄ such that

xn is a global maximum point of vρn(·)− ϕ(·) (24)
and

ρn → 0, xn → x0, v
ρn(xn)→ v̄(x0)

for n→∞. Define a new sequence hn := vρn(xn)− ϕ(xn). Notice that we get
hn → 0 and vρn(xn) ≤ ϕ(xn) + hn.

Due to (24), the definition of vρn and the monotonicity property of S we get
S(ρn, xn, ϕ(xn) + hn, ϕ+ hn) ≤ 0. (25)

By passing to the limit in (25) and using the consistency property of S, we
obtain

0 ≥ lim inf
n

S(ρ, xn, ϕ(xn) + hn, ϕ+ hn)
ρn

≥ lim inf
x→x0,ρ→0,h→0

S(ρ, x, ϕ(x) + h, ϕ+ h)
ρ

≥ F∗(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0))).
This gives us the desired result since v̄(x0) = ϕ(x0).

Notice that the monotonicity assumption plays the role of the ellipticity
property in guaranteeing a comparison principle type property for the scheme.

31

4.3 Finite difference approach on full grids for a simple model

Let us follow the very recent work of [AHL+17] and give a simple example model
to explain how to construct a consistent, stable and monotone finite difference
scheme on full grids for solving the HJB equation arising from economic models.
You can find a more mathematical description of finite difference schemes for
solving the HJB equation that is not targeted to economic models in [ABIL13].

Notice that in our approach we follow exactly the same scheme but instead
of using a full grid with standard finite differences we use a sparse grid with
the sparse grid finite difference operators introduced in Section 3.2.2. At the
end of this subsection, we generalize the matrix notation so that it can easily
be extended to the sparse grid setting.

4.3.1 Model

Let us consider the easy one-dimensional deterministic model already presented
and explained in Section 2.2. We want to solve

max
{ct}t≥0

∫ ∞
0

e−ρtu(ct)dt (26)

subject to

ḃt = w + rbbt − ct (27)
bt ≥ ¯

b (28)

where ct and bt denote the consumption and the liquid asset at time t respect-
ively and rb denotes the returns on b. We additionally have wage w and face
a borrowing constraint bt ≥ ¯

b. Notice that ct is our control and bt reflects the
state at time t. Thus, given the state, we want to choose an optimal control
and this choice directly reflects in the change of the state.

We get the HJB equation

ρv(b) = max
c
u(c) + v′(b)(w + rbb− c).

4.3.2 Discretization

The finite difference approximation, using J discrete points, is

ρv(bj) = u(cj) + v′(bj)(w + rbbj − cj), cj = (u′)−1(v′(bj)), j = 1, . . . , J

where v(bj)′ = v′j is either the forward or the backward difference approxima-
tion. Note that the computation for c arises from the first order condition with
respect to c.

In the following, whenever we state an equation for j, this holds true for
j = 1, . . . , J . This is also the case for other states added later on.

32

In the formulation of Barles-Souganidis we get

0 = F (b, v(b), v′(b), v′′(b)) (29)

with F (b, v(b), v′(b), v′′(b)) = ρv(b)−maxc u(c)− v′(b)(w+ rbb− c)). A corres-
ponding finite difference scheme is of the form

0 = S(∆b, b, vj , (vj−1, vj+1)) (30)

with S(∆b, b, vj , (vj−1, vj+1)) = ρvj − u(cj)− v′(bj)(w + rbbj − cj)).
Recall that we have a convergent scheme if we fulfill the three conditions

monotonicity, consistency and stability. Notice that for finite difference schemes
on full grids there is an equivalent local formulation that is just based on the
respective neighbors of the points. Hence, for our example model, we want our
finite difference scheme to be

• monotone, i.e. non-increasing in both vj−1 and vj+1,

• consistent, i.e. for every smooth function v with bounded derivatives, it
holds

S(∆b, bj , vj , (vj−1, vj+1))→ F (v(b), v′(b), v′′(b))

for ∆b→ 0, bj → b and

• stable, i.e. for all ∆b > 0, it has a solution vj , j = 1, . . . , J which is
uniformly bounded independently of ∆b.

The main issue of constructing such a scheme is the monotonicity condition.
We use an upwind scheme that gives us a rule for the choice of the finite
difference: we use the forward difference when the drift of the state variable
(here: savings sj = w+ rbbj − cj) is positive and the backward difference if it is
negative. To formalize this let us, for a function v, denote the forward difference
by vF and the backward difference by vB. For the drift the superscripts indicate
which finite difference operation is used on the value function. Let us define

sFj = w + rbbj − cFj and sBj = w + rbbj − cBj

with cFj = (u′)−1(vFj) and cBj = (u′)−1(vBj).
Notice that since v is concave, it holds vFj ≤ vBj and thus directly sFj ≤ sBj .
If sFj ≤ 0 ≤ sBj , we set sj = 0 which leads to v′(bj) = u′(w + rbbj) by simple
algebra, i.e. we are in the steady state. Note that we can thus approximate the
derivative v′j by

v′j = vFj 1{sFj >0} + vBj 1{sBj <0} + v̄j1{sFj ≤0≤sBj }

with v̄j = u′(w + rbbj). This construction obviously yields monotonicity but
there is also an intuition for this: if the continuation value at vj−1 or vj+1 is
higher we are at least as well off.

33

Denoting max{x, 0} as x+ and min{x, 0} as x− for any x ∈ R we end up
with

ρvj = u(cj) + vj+1 − vj
∆b (sFj)+ + vj − vj−1

∆b (sBj)−.

We should mention that there is a circular element to the above equation in
the sense that v′j is also used to compute cj . Due to the well known envelope
condition this does not change the monotonicity, see [AHL+17]. Furthermore,
it is possible to construct other monotone schemes but this one is perfectly
suited to implement borrowing constraints which we turn to now.

4.3.3 Numerical approach for handling the borrowing constraint

At the lower end of the state space, i.e. at b1, we aim to impose the borrowing
constraint bt ≥ ¯

b. We have two main ingredients:

• the first order condition still holds at the boundary: u′(c(
¯
b)) = v′(

¯
b)

• to respect the constraint we need: s(
¯
b) = w + rb

¯
b− c(

¯
b) ≥ 0.

Since u is strictly monotonically increasing and concave we get

v′(
¯
b) ≥ u′(w + r

¯
b)

by a simple combination of the above points. We can ensure that the borrowing
constraint is never violated by setting

vB1 ≡
v1 − v0

∆b = u′(w + rb1).

Hence, the boundary condition is only imposed if s1 < 0 and thus only for the
backward difference.
Let us turn to the upper end of the state space, i.e. bJ . One should make sure
that the backward difference is used at the upper bound. If bJ is large enough,
savings are always negative and thus s+

J = 0. Therefore, the forward difference
is never used at the upper bound so that no boundary condition has to be
imposed. In practice, it can be appropriate to use an artificial state constraint
a ≤ amax and treat it like the borrowing constraint, just for the upper bound.
We further use the concept of soft borrowing constraints in order to avoid spikes
that are counter-factual to empirical observations. We refer to [AHL+17] for a
description.

4.3.4 Numerical approach for overcoming the non-linearity

The HJB equation is highly nonlinear due to the maximum operator. This is
why we use an iterative scheme to solve this equation, see e.g. policy iteration
explained in [FF13]. Its general idea is to linearize the HJB equation by omit-
ting the maximum operator and using an iteration instead of searching for the
maximum.

34

In our setting, we end up with the following explicit method for the discret-
ized HJB equation

vn+1
j − vnj

∆ + ρvnj = u(cnj) +
vnj+1 − vnj

∆b (sF,nj)+ +
vnj − vnj−1

∆b (sB,nj)− (31)

where n denotes the iteration step.

Let us describe the algorithmic approach by presenting Algorithm 1. Notice
that all computations are done for all grid points even though we omit this in
the presentation. We have a grid on which we compute the policy functions for
every grid point in every iteration. We start with an initial guess for the policy
functions by simply setting these to zero. For this initial guess, we can directly
compute a value function approximation, see row 2. In row 5, we can use the
value function approximation at every point to compute the respective optimal
control. With the new optimal control, we can then compute an improved
approximation to the value function in row 6. Doing this, we stop when the
value function approximation of consecutive iterations does not differ much, see
row 7.

Algorithm 1 Iteration to solve the HJB equation
Data: convergence parameter ε
Result: solution vj of HJB equation

1: Initialization:
2: Set initial guess for value function v0

j . staying "put": by
setting policy functions equal to zero one gets an initial guess that is easily
computed and behaves well

3: Iterative part:
4: for n = 0, 1, . . . do
5: Compute optimal policy cnj . use finite differences of vnj
6: Solve (31) for vn+1

j . linearized HJB equation

7: if maxj |vnj − v
n+1
j | < ε then . stop if iterates are close

8: vj ← vn+1
j

9: STOP
10: end if
11: end for

Note that we have fixed grid points and always optimize the controls on
these points. This is in contrast to value iteration where one iterates on the
value function and determines the optimal state.

There are two main interpretations for (31). The first one is the use of
the Newton method for solving the system of non-linear equations (30). The

35

other one is that the iterative scheme is equivalent to solving the HJB equation
backward in time. Hence, (31) basically sets v(b, T) as initial guess and solves

ρv(b, t) = max
c
u(c) + ∂kv(b, t)(w + rbb− c) + ∂tv(b, t)

backward in time, i.e. v(b) = limt→−∞ v(b, t).

Note that (31) denotes an explicit scheme, i.e. it is possible to compute vn+1

given vn by a simple computation. Contrarily, the implicit version is given by

vn+1
j − vnj

∆ + ρvnj = u(cnj) +
vn+1
j+1 − v

n+1
j

∆b (sF,nj)+ +
vn+1
j − vn+1

j−1
∆b (sB,nj)− (32)

where the value functions on the right hand side are of step n + 1. Thus, one
has to solve a linear system to solve (32) for every grid point. We note that
this system is not fully implicit since the consumption c of step n is used in the
computation (also for the drifts sF,nj and sB,nj). Using a Newton method, one
could also solve the fully implicit method.

Explicit schemes are easier to understand but they are only stable if they
satisfy the so-called CFL condition which gives an upper bound on the step size.
Contrarily, implicit schemes are unconditionally stable. We restrict ourselves
to implicit schemes, such as (32), in our implementations and the following
presentation since for explicit schemes one has to use an extremely small time
step size and thus a lot of iterations are required. For more details regarding
implicit and explicit approaches, see for example [PR55].

4.3.5 Numerical approach for stochastic settings

For the heterogeneous agent model (11) - (12) featuring a diffusion process, we
add another grid dimension for the productivity state z using k = 1, . . . ,K.
Note that this leads to a full grid of J × K points. We discretize the HJB
equation (13) which arises for this model by

vn+1
j,k − vnj,k

∆ + ρvnj,k =u(cnj,k) +
vn+1
j+1,k − v

n+1
j,k

∆b (sF,nj,k)+ +
vn+1
j,k − v

n+1
j−1,k

∆b (sB,nj,k)−

+
vn+1
j,k+1 − v

n+1
j,k

∆z (µk)+ +
vn+1
j,k − v

n+1
j,k−1

∆z (µk)−

+ σ2
k

2
vn+1
j,k+1 − 2vn+1

j,k + vn+1
j,k−1

(∆z)2 .

(33)

Note that we can easily implement reflecting boundary conditions by using

∂zvj,1 = vj,1 − vj,0
∆z = 0 and ∂zvj,1 = vj,K − vj,K+1

∆z = 0

which implies vj,0 = vj,1 and vj,K+1 = vj,K respectively.
For the heterogeneous agent model (11) - (12) featuring a Poisson process

instead of a diffusion one, we add another grid dimension using k = 1, . . . ,K

36

where k refers to the respective Poisson state and K is the total number of
Poisson states. We discretize the HJB equation (15) which arises for this model
with a two-state Poisson process by

vn+1
j,k − vnj,k

∆ + ρvnj,k =u(cnj,k) +
vn+1
j+1,k − v

n+1
j,k

∆b (sF,nj,k)+ +
vn+1
j,k − v

n+1
j−1,k

∆b (sB,nj,k)−

+ λk(vn+1
j,−k − v

n+1
j,k)

(34)

where −k denotes the other Poisson state respectively. Note that Poisson states
cannot be discretized by sparse grids since they are already discrete.

4.3.6 Matrix notation

After linearizing and discretizing the HJB equation, we can easily formulate
the resulting equations as a linear system. For the discretizations described
in (34) and (33), this can be done by stacking the value function values into
a vector v of length m = J · K. Note that we use the same ordering for all
other functions that depend on the grid points. Further, note that we indicate
vectors, i.e. one-dimensional arrays by bold formatting and lower-case letters,
whereas we indicate matrices by bold formatting and upper-case letters. By
reordering the discretized HJB equation by its subscripts, we can then easily
setup the respective matrices to formulate the discretized HJB equation by

1
∆(vn+1 − vn) + ρvn+1 = un + (An + Λ)vn+1 (35)

where A ∈ Rm×m is the non-stochastic drift matrix and Λ ∈ Rm×m is the
intensity matrix which models the stochastic process for productivity z. By
simple algebra, we get

((1
∆ + ρ)I−An −Λ)︸ ︷︷ ︸

B

vn+1 = un + 1
∆vn︸ ︷︷ ︸

bn=b(vn)

(36)

with identity matrix I ∈ Rm×m, i.e. we want to solve the linear system given
by

Bvn+1 = bn (37)

with B ∈ Rm×m and bn ∈ Rm. Note that Λ does not depend on n and thus
can be precomputed.

To define An and Λ more formally, one can denote the construction via
finite difference operators and specific scalar matrix-row multiplications. Let
us show this for equation (33). We denote the row-wise vector matrix scalar
multiplication, i.e. scalar multiplication of vector entry i, 1 ≤ i ≤ m with
matrix row i by ?. To denote (33) using matrix notation (35), we have

An = (sF,n)+ ?DF
b + (sB,n)− ?DB

b (38)

37

and
Λn = (µ)+ ?DF

z + (µ)− ?DB
z + 1

2σ2 ?Dzz (39)

where the standard operations should be understood entry-wise. Note that
e.g. ((sF,n)+ ? DF

b)vn is nothing else but (DF
b vn)?̃((sF,n)+) where ?̃ denotes

the entry-wise vector multiplication. The difference matrices D with sub- and
superscripts indicating the taken derivative, are build using the standard full
grid finite difference stencils, see any standard textbook such as [Lan13] for a
description. For the sparse grid setting on the other hand, we use the respective
derivative operators defined in Section 3.2.2.

38

5 (Non-)Convergence of Sparse Grid Finite Differ-
ence Schemes for solving the HJB equation

As we have explained in the last section, there are clear requirements that we
need to fulfill to obtain a convergent approximation scheme by means of Barles
and Souganidis [BS90], i.e. we want a stable, consistent and monotone scheme.

Thus, for our sparse grid finite differences there are be several steps involved
to prove convergence. First, one aims for a local monotonicity property similar
to the full grid setting. Then, second, it comes down to the monotonicity of the
sparse grid interpolation, in particular at the points used for the sparse grid
finite differences. Additionally, one needs to prove stability and consistency for
the numerical scheme.

Whereas it is trivial to show that we need monotone interpolation, we face
the problem that one cannot prove that interpolation on sparse grids is mono-
tone in general, as it is pointed out in [Hem00].

Obviously, in just one dimension it is monotone since it is just a spe-
cific type of linear interpolation. This does not help when it comes to solv-
ing higher dimensional problems and we thus need monotone interpolation in
multi-dimensional settings. Notice though that for our approach we only use
one-dimensional monotonicity and we thus just need monotonicity with respect
to the different dimensions, in particular with respect to the used ghost points.

We could easily construct examples that yield non-monotone interpolation,
e.g. in two dimensions by considering functions that have steep gradients with
respect to both dimensions. However, our hope was that we can achieve mono-
tonicity if we restrict ourselves to concave monotonically increasing functions
like the value functions arising from our models.

In accordance with the above motivation we aim to investigate monotonicity
of sparse grid interpolation in the following, in particular with a restriction to
concave increasing functions and the used ghost nodes. At the end of this sec-
tion, we present some approaches to overcome the described non-monotonicities.

5.1 (Non-)monotonicity of interpolation on sparse grids

Let us begin by giving our definition of monotone interpolation.

Definition 5.1.1 (Monotone interpolation in one dimension). Let x1, . . . , xn
be data points with x1 < . . . < xn. For a monotone function f , it holds that
f(x1) ≤ . . . ≤ f(xn) with strict inequalities if it is strictly monotone. The
interpolation fI is monotone, if for every two points x̃1 < x̃2, x̃1, x̃2 ∈ [x1, xn]
it holds

fI(x̃1) ≤ fI(x̃2)
with strict inequality for strictly monotone interpolation.

Note that we are interested in higher dimensions and aim for one-dimensional
monotone interpolation for the restriction to the different dimensions respect-
ively (and in particular with respect to the ghost points).

39

x

fI1(x)

x1 x2 x3
x

x

x

x
x1 x2 x3

fI1(x)

x

x

x

Figure 9: Monotone interpolation on the left and non-monotone interpolation
on the right

In the following examples we add a high constant in the function examples
to not exclude boundary points when we say "all" hierarchical coefficients. This
is not necessary and we could also restrict ourselves to the inner points. Fur-
ther, whenever we say "coefficients", we mean the hierarchical coefficients in
the sparse grid function representation introduced in (18). Let us begin our
investigation by motivating the restriction to concave monotonically increasing
functions.

5.1.1 Strictly concave monotonically increasing functions with pos-
itive coefficients

Notice that for the strictly concave monotonically increasing function

f1(x, y) = −1000(1− x)2 − 1000(1− y)2 + 10000,

we end up with just positive coefficients and we also get a monotone interpol-
ation.

A more interesting case arises for the function

f2(x, y) = −(1− x)30 − (1− y)30 + 50,

which has extremely steep gradients close to (0, 0) and is flat in the other
parts of the domain. This function is also strictly concave and monotonically
increasing. Notice further that all hierarchical coefficients are positive. In
Figure 10 one can see that the interpolation looks monotone. Explicitly checking
the monotonicity shows that the approximation is monotone up to machine
accuracy and thus the above example shows the motivation for the restriction
to concave monotonically increasing functions to have monotone interpolation.

40

(a) Function plot of f2 (b) Interpolation plot of f2

Figure 10: Plots of the original function f2 on the left and its sparse grid
interpolation of level l = 7 on the right

5.1.2 Concave monotonically increasing functions with negative
coefficients

One important thing you can notice in the above examples is that we only
have positive hierarchical coefficients. It is possible though to find concave
monotonically increasing functions for which negative coefficients arise. Let us
give an example with a low sparse grid level: we show the interpolation behavior
for the function

f3(x, y) = −1
1 + 2x+ 3y + 50.

To show that the function is really concave, we compute the Hessian

x-coordinate of point y-coordinate of point hierarchical coefficient
0 0 49.0000
1 0 49.7500
0 1 49.6667
1 0.5 49.8333
0 0.5 0.1667
1 0.25 0.0083
0 0.25 0.0833
1 0.75 0.0028
0 0.75 0.0167
1 0 0.0015

0.5 0 0.2250
0.5 1 0.0278
0.5 0.5 −0.0621

0.25 0 0.1286
0.75 0 0.0173
0.25 1 0.0111
0.75 1 0.0040

Table 1: Interpolation of f3 on a sparse grid of level l = 2 — hierarchical
coefficients at the respective grid points

41

Figure 11: Plot of the sparse grid interpolation of f3 for level l = 7

(
−8/(2x+ 3y + 1)3 −12/(2x+ 3y + 1)3

−12/(2x+ 3y + 1)3 −18/(2x+ 3y + 1)3

)
.

It has the eigenvalues

λ1 = −26
(2x+ 3y + 1)3 and λ2 = 0.

Since we are in [0, 1]2, the Hessian is negative semidefinite and thus the function
is concave.

In Table 1, a computation of the hierarchical coefficient for two-dimensional
sparse grid is shown. We point out that the hierarchical coefficient at (0.5/0.5) is
negative. Notice that the interpolation which is given in Figure 11 is monotone.
This can change for different function parameters, as we show in the following
subsection.

5.1.3 Non-monotone sparse grid interpolation for concave monoton-
ically increasing functions

We now come to the main result of this subsection, which is the fact that in-
terpolation for concave monotonically increasing functions is not monotone in
general. Let us give a counter example. Notice that we use sparse grid level
l = 3 in the following but similar counter examples can be used for other levels.

Let us analyze the interpolation for the above function but with other para-
meters, i.e.

f4(x, y) = −1
1 + 10x+ 10y + 50.

This function is obviously also concave but let us look at the plots of f4 and
its sparse grid interpolation. Unfortunately, we see in Figure 12 and Figure 13

42

(a) Function plot of f4 (b) Interpolation plot of f4

Figure 12: Plots of the original function f4 on the left and its sparse grid
interpolation of level l = 3 on the right

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Contour plot of function f4

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contour plot of the interpolation of f4

Figure 13: Contour plots of the function f4 on the left and its sparse grid
interpolation of level l = 3 on the right

that the interpolation is not monotone. Increasing the factors in front of x and
y also increases this effect. Note that the function is not strictly concave. You
can also see this by looking at the contour plot of the function, whereas you see
the non-monotonicity of the interpolation in the interpolation contour plot.

Note further that the above interpolation is in particular not monotone with
respect to the points used for our sparse grid finite differences. In Figure 14 one
can see that the value shown in red is higher than the one in green. Thus, even
if we restrict ourselves to the ghost points, we do not have the monotonicity we
hoped for.

The reason that we chose the above function is that it is similar to functions
that arise as value function for some models. You may come to the conclusion
that we just have monotone interpolation for strictly concave functions. There
are several examples for strictly concave functions though which also yield non-
monotone sparse grid interpolation, e.g. f5(x, y) = −1

1+(x+0.01)0.2+(y+0.01)0.2 + 50.
The interested reader can check the concavity by using the leading principal
minors criteria. Further, we point out that one cannot simply set the negative

43

49

1

49.2

49.4

1

49.6

0.8

49.8

0.5
0.6

50

0.4

0.2

0 0

Figure 14: For the backward difference at (0.5/0.25), one uses the values drawn
as the green and the red point

coefficients to zero to get a monotone approximation. Additionally, notice that
the finite difference version presented in Section 3.2.1, which is based on hier-
archical to nodal basis transformations also does not lead to monotonicity in
general. Recall that we checked that both finite difference operator construc-
tions lead to the same finite difference operator matrix for levels l = 1, 2, 3. We
can use the same counter examples and it is therefore also not possible to get a
general result respective monotonicity for this version. Thus, we propose other
approaches to get monotone interpolation, to which we turn now.

5.1.4 Overcoming the non-monotonicity of sparse grid interpolation

In the following paragraphs we discuss some approaches to get monotone inter-
polation on sparse grids.

If one wants to prove convergence for the case of monotone interpolation
and one uses a upwind scheme like the one explained in Section 4.3, one also has
to ensure that the interpolation is concave on top of being monotone. Recall
that one there uses that the forward difference is smaller than the backward
difference for the value function since it is concave and monotonically increasing.
This is given for full grids, but on sparse grids there can be points in which this
is not the case even if the interpolation is monotone. Thus, one should either
use an upwind scheme that does not rely on concavity or one should ensure
that the used interpolations are concave in the above explained sense.

Note that one can easily check if the computed finite differences of the value
function yield the theoretically required properties by checking if the finite dif-

44

ferences are non-negative for the required monotonicity and by checking if the
forward difference is smaller than the backward difference for the required con-
cavity.

Let us present our ideas to overcome the non-monotonicity.

The most trivial way is to go to a higher sparse grid level which is visu-
alized in Figure 15 where the interpolation of f4 is presented for sparse grid

Interpolation plot of f4 for level l = 5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Contour plot for the interpol-
ation of f4 for level l = 5

Interpolation plot of f4 for level l = 7

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Contour plot for the interpol-
ation of f4 for level l = 7

Interpolation plot of f4 for level l = 9

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Contour plot for the interpol-
ation of f4 for level l = 9

Figure 15: Plots of the sparse grid interpolation of f4 for different levels on the
left and the respective contour plots on the right

45

levels l = 5, 7, 9 instead of l = 3. The approach is simple but we cannot go to
arbitrarily high levels in higher dimensions. Thus, we present some approaches
that are based on identifying the areas where non-monotonicities arise and in-
sert points only in this area.

We present two approaches to introduce new points to the sparse grid to
achieve monotone sparse grid interpolation. The first one is to simply refine the
grid like in the standard adaptive sparse grids approach yielding some higher
level basis functions in these areas. Alternatively, one could go to a "full" grid
in the critical area, we call this partial full grid. By that we mean that after
setting up the sparse grid, one determines the maximal one-dimensional level
used in this area and then simply uses the full grid level rule instead of the
triangular sparse grid one there. The advantage of the second approach is that
no interpolation is required on the partial full grid points and thus no non-
monotonicity can arise there. Let us investigate the two ideas in more detail.

Adaptive sparse grids to get monotone interpolation We can adapt
the sparse grid, using the hierarchical coefficients as error indicator, as it is
done in standard adaptivity approaches. A better criterion to overcome non-
monotonicity is to use the computed derivatives in the points, i.e. one can
use the computed derivative approximations and check if they are non-negative
since this indicates that the interpolation is not monotone. By marking such
points for adaption, one can iterate until all derivative approximations are non-
negative or below a certain error threshold. The plots in Figure 16 show the
improved interpolation for such an adapted sparse grid. Note that the contour
plot already indicates that the interpolation is monotone, but to show that it
really is monotone, see Figure 17. Here we can see that the computed sparse
grid forward differences in the x-dimension are clearly positive and thus the
interpolation is monotone in required sense. Additionally, we point out that
the backward difference is also positive. Note that due to symmetry we do not
additionally show this for the y direction. Even though the approximated deriv-
ative is clearly positive and thus the function approximation itself is monotone,

(a) Interpolation plot of f4 for adapted sparse grid

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contour plot of f4 for ad-
apted sparse grid

Figure 16: Plot of interpolation of f4 for an adapted sparse grid on the left and
its contour plot on the right

46

(a) Forward difference plot of f4 for adapted sparse
grid

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contour plot of the for-
ward difference of f4 for adap-
ted sparse grid

Figure 17: Plot of the sparse grid forward difference in x-dimension of f4 for
an adapted sparse grid on the left and its contour plot on the right

(a) Interpolation plot of f7 for adapted sparse grid

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contour plot for the sparse
grid interpolation of f7 for ad-
apted sparse grid

Figure 18: Plot of the sparse grid interpolation of f4 for an adapted sparse grid
on the left and its contour plot on the right

we point out that the derivative approximation itself is not monotone.

Moreover, notice that the above approach is a "two-way street". By that
we mean that, even if one adapts the sparse grid such that there are no non-
monotonicities, one can find a function for which the sparse grid interpolation
is not monotone anymore. For example, in our case by simply increasing the
factors in front of x and y in the function f4, e.g.

f7(x, y) = −1
1 + 50x+ 50y + 50,

the interpolation after adaption is again non-monotone, see Figure 18. Thus,
one may have to readapt the sparse grid if the approximated function or the
approximation changes as it is the case for iterates in an iterative algorithm.

Partial full grid to get monotone interpolation Now let us discuss the
second idea — the partial full grid. The idea is to simply use the full grid

47

(a) Interpolation plot of f4 for partial full grid

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contour plot for interpol-
ation of f4 for partial full grid

Figure 19: Plot of the sparse grid interpolation of f4 for partial full grid on the
left and its contour plot on the right

rule instead of the sparse grid rule in the critical area, see subsection 3.1 for
a description of the rules. We give a visualized example in Figure 19. No-
tice that the contour plot shows that the interpolation is not concave in the
multi-dimensional sense even when we use a partial full grid. In our applica-
tion however, we are particularly interested in the properties reflected in the
points used for the (one-dimensional) finite differences. Obviously, this ap-
proach is monotone with respect to the inner full grid points. Additionally, for
the restriction to one dimension, we have a concave interpolation and thus the
backward difference difference is bigger than or equal to the forward difference
in every point and thus it is also possible to use an upwind scheme based using
the concavity property. The only issue is choosing the area for the partial full
grid so that at its boundaries we also have the desired properties. Further,
notice that we often do not need a partial full grid with respect to every dimen-
sion but only in the dimensions where the interpolation approach would fail
otherwise. Notice though that for the newly introduced points one has to have
the same properties again, and to be consistent one has to insert the ancestors
of the respective points. Thus, such an adaption is iterative.
The obvious drawback of using a partial full grid is that one reintroduces the
curse of dimensionality to some extend. Thus, this approach is only useful if
the size of the full grid within the sparse grid is of limited size.

5.2 Comments on convergence in our setting

Note that we just showed that we cannot use the results of Barles and Sougan-
idis. It may still be possible to prove convergence without using this theory.
Furthermore, it would be useful to show that in the case that Algorithm 2
presented in Section 7 converges, it converges to the correct solution.

Under very strict assumptions which yield monotone sparse grid interpol-
ation, it could be possible to prove convergence using Barles and Souganidis.
However, this is not possible for our models with specific parameters.

48

As we explain in Section 7, the sparse grid approach that we use is based
on the ideas presented in Section 4.3 for the simple model example. Thus, we
can already discuss the issues which can arise in our setting. For a detailed
explanation of our algorithmic approach in the sparse grid setting, see Section
7.

5.2.1 Overcoming non-monotonicity in our setting

The drawback of the approaches presented in the last subsection is that in our
solution method we do not have a function evaluation (apart from the initial
guess) but just iterates that are given by hierachical or nodal coefficients. Thus,
to get function values at the grid points after adaption, we interpolate to newly
inserted points. Since the basis functions are linear, the hierarchical values
at the new points are zero directly after refinement and thus this does not
instantly lead to an improved approximation but just allows for better ones in
the following iterations with the refined grid.

Thus, to use the above approaches to get monotone interpolation, one nor-
mally cannot just continue after adaption with the current approximation on
the refined grid since it is already non-monotone. One could either store the
results of the prior iteration and recompute everything on the refined grid, or
one could restart the whole algorithm on the refined grid. Notice though that
with both approaches the approximation in the different iterations still changes
and thus new non-monotonicities could arise and one would need to readapt
the sparse grid. We point out that this could yield a lot of restarts and for the
partial full grid approach one could end up with a real full grid in the worst
case.

If one knows a priori in which areas non-monotonicities arise, one can over-
come these issues, e.g. by just starting with a partial full grid in this area.

5.2.2 Issues arising in our setting without grid correction

Notice that for our models it depends on the model parameters if the arising
interpolations are monotone (and concave). In our numerical results presented
in Section 8 we do not use parameters that yield the extreme cases shown above.
Thus, we can compute the solution of the HJB equation without using one of
the presented grid correction approaches but simply following the algorithm
presented in section 7.

We now want to explain what happens for our solution approach when non-
monotonicities arise and what one can do to overcome the arising issues without
using one of the grid correction approaches presented in 5.1.4 to get monotone
interpolation.

Algorithm behavior for non-monotone interpolation In case of strong
non-monotonicities the algorithm may not converge. Notice though that it
never converges to a wrong solution (in our numerical studies).

49

Sometimes slight non-monotonicities show up in the first HJB iterations
but the algorithm "regulates itself" in the sense that in later iterations no non-
monotonicities arise anymore. The same holds true for non-concavities.

Handling arising issues in practice In case that the algorithm does not
converge due to non-monotonicities in the first iteration(s) this may be be-
cause of the initial guess of the value function for starting the algorithm. The
problem here is that when the initial guess is chosen such that strong non-
monotonicities arise, even though the solution of the HJB equation can be
approximated without non-monotonicities, the algorithm can fail. To overcome
this issue, one should adapt the initial guess in such a way that this does not
happen (e.g. by adding a constant in the denominator of the standard initial
guess of staying put).

To handle the above noted problems with using a scheme that relies on
concavity, we simply set the used finite difference to either the forward or the
backward difference in the critical points. This works well in practice but that
a scheme that does not rely on concavity would be a better approach for sparse
grids.

50

6 Model Examples
In this section we explain the economic models that we implemented for our
numerical experiments. We closely follow the presentation of a supplement to
[KMV16] for the two asset model. The other models are natural extensions of
this two-dimensional model to higher dimensions and can be found in Appendix
A. For explanations of the model in the economic context, see Section 2.2, and
for some further numerical explanations, see Section 4.3.

6.1 A model with two state variables – a two-asset model

In this subsection we describe a two-dimensional problem, give the arising first
order conditions and present the numerical scheme.

6.1.1 Model formulation

We want to solve the following maximization problem

max
{ct,dt}t≥0

E0

∫ ∞
0

e−ρtu(ct)dt (40)

subject to

ḃt = wztr
b(bt)bt − dt − χ(dt, at)− ct

ȧt = raat + dt

zt = Poisson with intensities λ(z, z′)
bt ≥ b, at ≥ 0.

(41)

Here bt denotes liquid assets and at illiquid assets. The respective returns on
these assets are rb and ra. Further, we have consumption ct, deposits dt, the
transaction cost function χ and wage w. The idiosyncratic productivity zt
follows a Poisson process with intensities λ(z, z′). The setting can easily be
extended to diffusion type stochastic processes. We use the standard CRRA-
utility function already stated in Section 2.2 given by

u(c) = c1−γ

1− γ

and the transaction cost function χ given by

χ(d, a) = χ0|d|+
χ1
2

(
d

a

)2
a+ χ21{d6=0}

with derivative w.r.t. d given by

χd(d, a) = χ01{d>0} − χ01{d<0} + χ1
d

a
.

51

6.1.2 HJB equation and first order conditions

By the standard steps, we get the HJB equation

ρv(b, a, z) = max
c,d

u(c)

+ vb(b, a, z)(wz + rb(b)b− d− χ(d, a)− c)
+ va(b, a, z)(ra + d)
+
∑
z′

λ(z, z′)(v(b, a, z′)− v(b, a, z)).

The first order conditions w.r.t. c and d yield

uc(c) = vb(b, a, z),
va(b, a, z) = vb(b, a, z)(1 + χd(d, a))

and thus we can simply compute the optimal consumption and optimal deposits
given the value function derivatives. The optimal consumption is then given by

c = (vb(b, a, z))−
1
γ .

Using our cost function, we get the optimal deposits for illiquid assets

d = d+︸︷︷︸
case d>0

+ d−︸︷︷︸
case d<0

=
((va
vb
− 1− χ0

) a
χ1

)+
+
((va
vb
− 1 + χ0

) a
χ1

)−
.

(42)

6.1.3 Numerical approach using an upwind scheme

We are using an upwind scheme to solve the HJB equation numerically on
sparse grids. The idea is to use an approach with proven convergence on full
grids and show the approximation quality for the sparse grid finite difference
method following the same upwind scheme.

As an initial guess for the value function, we use

v0 =

(
wz+rb(b)b+raa

1−γ

)1−γ

ρ
, (43)

where we follow the standard approach to start by staying "put", i.e. with con-
trols equal to zero.

Notice that the optimal deposits d are computed with both the derivative
with respect to b and with respect to a. Thus, to get a monotone scheme for this
model, we use the trick to upwind such that there are no terms with different
controls together and the respective forward and backward differences are used
correctly. We split the drift of b,

sb = wz + rb(b)b− d− χ(d, a)− c,

52

into different parts that do not have this type of interaction. We use the split

sb = sc + sd

with

sc = wz + rb(b)b− c,
sd = −d− χ(d, a).

We denote the optimal consumption that is computed with vBb by cB and the
optimal consumption that is computed with vFb by cF . Then we denote the
respective drifts by

sc,B = wz + rb(b)b− cB,

sc,F = wz + rb(b)b− cF .

Using this notation, we approximate

vbs
c ≈ vBb (sc,B)− + vFb (sc,F)+.

For the optimal deposits, we follow the same scheme. Hence, we define

dm1m2 with m1,m2 ∈ {B,F}

where m1 denotes the used difference approximation with respect to b, and m2
denotes the used difference approximation with respect to a. Note that the
optimal deposits are computed via (42). For example, for dBF we end up with

dBF =
((

vFa
vBb
− 1− χ0

)+
+
(
vFa
vBb
− 1 + χ0

)−) a

χ1
.

Notice that we have to check if the marginal value of depositing or withdrawing
is non-negative since otherwise d = 0 is the superior control. Therefore, we set
dBF to zero if

(vFa dBF − vFb (dBF + χ(d, a)) < 0.

and refer to this as inaction region. Note further that the convex part of the
cost function assures finite deposit rates. We can now define

dB = (dBF)+ + (dBB)−,
sd,B = −dB − χ(dB, a),

where vBb is used and

dF = (dFF)+ + (dFB)−,
sd,F = −dF − χ(dF , a),

where vFb is used. Using this notation, we approximate

vbs
d ≈ vBb (sd,B)− + vFb (sd,F)+.

53

Let us turn to our upwind approach for the a-dimension and its drift
sa = ra + d.

For the drift of a, we compute the deposits differently and define
d̃B = dBB1{sd,B<0} + dFB1{sd,F>0},

d̃F = dBF1{sd,B<0} + dFF1{sd,F>0},

where we use the backward finite difference with respect to a, vBa , for d̃B and
the forward finite difference with respect to a, vFa , for d̃F .

Then we upwind the drift of a by
vasa ≈ vBa (d̃B)− + vFa ((d̃F)+ + ra).

All together we end up with the following finite difference upwind approx-
imation for the HJB equation

vn+1 − vn

∆ + ρvn+1 =u(cn)

+ vB,n+1
b (sc,B,n)− + vF,n+1

b (sc,F,n)+

+ vB,n+1
b (sd,B,n)− + vF,n+1

b (sd,F,n)+

+ vB,n+1
a (d̃B,n)− + vF,n+1

a ((d̃F,n)+ + ra)

+
K∑
k′ 6=k

λk,k′(vk
′,n+1 − vn+1),

where K denotes the number of Poisson states. Notice that we have omitted
the grid point indices. Further, we point out that all value functions but the
ones of state k′, vk′,n+1, are value functions of state k. One can easily check
that the above construction satisfies the monotonicity property given by Barles
and Souganidis [BS90] (for full grids). Note that there are other numerical
schemes which also work well. We further point out that this system is implicit
in b, a and z. It is also possible to formulate a semi-implicit equation that is
explicit in the productivity state z but still implicit in b and a, which allows
to split the problem in K subproblems that one can solve simultaneously using
parallelization.

Last but not least, we point out that our implementation is done for a
two-state Poisson process, i.e. for K = 2.

6.2 Higher dimensional models

We refer to Appendix A for the implemented higher dimensional models in
which we either add assets like housing ones or multiple diffusion type stochastic
processes for different types of productivity. Notice that it comes down to a
similar numerical scheme as the one presented in the last subsection and the
same top level algorithm presented in the following section.

54

7 Algorithm and Implementation
In this section we present a sparse grid finite difference upwind algorithm to
solve the HJB equation arising from models such as the ones presented in Sec-
tion 6.1 and Appendix A. We start by explaining the approach for regular
sparse grids, then we extend it to adaptive sparse grids. Finally, we explain our
approach for solving the arising linear systems.

7.1 Algorithm for regular sparse grids

To state the algorithm for solving the HJB equation arising from our models
on sparse grids, let us use the matrix notation introduced in Section 4.3.6. We
recall (35),

((1
∆ + ρ)−Λ−An)vn+1 = un + 1

∆vn,

i.e. the linear system that we aim to solve on full grids.

The approach is very similar for the sparse grid setting. The non-stochastic
drift matrix A can be build using the sparse grid finite difference operators
introduced in Section 3.2.2. We further use these operators for the intensity
matrix Λ in case of diffusion processes. Note that no derivative approximations
are required for Poisson type processes.

As explained in Section 3.2.2, we use sparse grid finite difference operators
operating on hierarchical coefficients. Since we require derivative approxima-
tions of the value function, we now denote v as the vector storing hierarchical
coefficients of the value function approximation. For the utility function ap-
proximation, we already have nodal values and thus u now describes the vector
containing nodal coefficients of the utility function approximation. To solve the
linear system with consistent basis representations, we use the hierarchical to
nodal basis transformations E and get

((1
∆ + ρ)E−Λ−An)vn+1 = un + 1

∆Evn (44)

for diffusion processes where Λ is built with difference operators and thus works
on hierarchical coefficients, whereas for Poisson processes we get

((1
∆ + ρ)E−EΛ−An)vn+1 = un + 1

∆Evn (45)

where Λ models the Poisson process. Notice that the resulting vectors on both
sides of the equation are given in nodal values and the solution vn+1 is given
in hierarchical values again such that we can simply use it in the next iteration
for the computation of its derivatives.

We point out that the above formulation is general and can thus also be
used for the models presented in Section 6.1 and Appendix A.

Notice that sparse grids have less structure than full grids and thus, by
stacking the values of the respective grid points into a vector, we get a linear
system which has no easily described sparsity structure. For a visualization of

55

0 1 2 3 4 5 6 7

nz = 4086219 10
5

0

1

2

3

4

5

6

7

10
5

Sparsity pattern of the matrix in the full
grid approach arising for the 2d model
with 600× 600 full grid

0 50 100 150 200 250 300 350

nz = 12420

0

50

100

150

200

250

300

350

Sparsity pattern of the matrix in the
sparse grid approach arising for the 2d
model for level l = 5

Figure 20: Sparsity patterns of the matrices arising for the 2d model (40) - (41)
for the full grid on the left and for the sparse grid on the right

the sparsity pattern for both the full grid and the sparse grid case arising for
the model presented in Section 6.1, see Figure 20.

Moreover, note that it would also be possible to use a nodal representation
for the value function if we change the difference operators as operators working
on nodal coefficients.

Let us explain our approach on solving the HJB equation on sparse grids by
presenting Algorithm 2 in which we give references to the respective subsections
for explanations. Comparing Algorithm 1 and 2, you can see that the algorithm
for sparse grid case is very similar to the full grid one. It comes down to the
same computations just on the sparse grid using sparse grid finite difference
operators instead of the standard full grid approach.

In the initialization part of the algorithm we construct the sparse grid,
compute the required nodal to hierarchical basis transformation matrix and
construct the finite difference operators, see rows 2-4. Further, in row 5, we
precompute the matrix that models the stochastic process since it models exo-
genous states that do not change depending on the other states and controls.
Last but not least, in row 6, the initial guess is computed in hierarchical rep-
resentation so that the finite difference operators can simply be applied to it.

The iterative part is very similar to full grid case with the slight difference
that the finite difference operators are not set up explicitly for the standard full
approach used by [AHL+17]. Note that this is more of an implementation detail
than an algorithmic issue. Let us briefly summarize the iteration. In row 9, one
computes the forward and back differences of the value function for all required
dimensions. Using the resulting value function derivative approximations, we

56

Algorithm 2 Solving the HJB equation on sparse grids
Data: model parameters, sparse grid parameters
Result: solution v of HJB equation

1: Initialization:
2: Generate sparse grid . see 3.1
3: Compute hierarchical to nodal basis transformation matrix E . see 3.2.1
4: Generate finite difference operators . see 3.2.2
5: Set up matrix Λ that models stochastic process . see 4.3.6
6: Compute initial guess in hierarchical representation v0 . see e.g. (43) for

model (40) - (41)

7: Iterative part:
8: for n = 0, 1, . . . do
9: Compute forward and backward differences of vn

10: . use finite difference operators
11: Compute optimal controls
12: . e.g. consumption, deposits for model (40) - (41)), use forward and

backward differences of vn

13: Build drift matrix An

14: . see 4.3.6, follow upwind scheme and use finite difference operators
15: Solve (45) respectively (44) for vn+1 . see 4.3.4, linearized HJB

equation
16: if vn+1 is close to vn then
17: v← vn+1

18: STOP
19: end if
20: end for

can compute the optimal controls in row 11. Then, in row 13, we build the
drift matrix by following the respective upwind scheme. In row 15, by using
the drift and the intensity matrix, we can set up the linear system which yields
the value function for the next iteration. We stop the algorithm if the value
function only differs slightly between consecutive iterations, see row 16.

7.2 Adaptive refinement on sparse grids for the HJB equation

7.2.1 Adaptive refinement on sparse grids

As explained in Section 3.1.5, it is possible to further reduce the required
amount of points with the main idea being to start with a low level and only
add points in locations where the approximation quality should be improved.

57

We use different types of adaptivity criteria that are based on the hierarchical
surpluses as an error indicator. For a description of similar algorithms for re-
finement and coarsening, see [GK17], and a general good description can be
found in [Pfl10].

Let us denote the grid points by their corresponding indices (l, i). Collecting
them in an index set I allows us to define the corresponding sparse grid by QI .
We start with a regular sparse grid with I = {(l, i)|Φl,i ∈ V s

n } where n is small.
Then we refine the grid by marking all points (l, i) which fulfill the refinement
criterion

|al,i|||Φl,i|| > ε (46)

where al,i is the hierarchical coefficient introduced in Section 3.1.2 and the
refinement threshold ε > 0 is given. For our numerical studies, we use the
maximum norm in the above inequality which reduces it to |al,i| > ε. For each
marked grid point, there exist two child nodes per dimension, i.e. an interior
node has 2d children. We add all children of marked points that are not in the
current grid. To get consistency, one has to check if all parents of newly added
points are in the grid to maintain the hierarchical structure. Notice that we
omit this part in Algorithm 3 but check for it later in Algorithm 5.

To reduce the amount of points further, we use a coarsening approach. The
idea is to remove points that are not very helpful for a good approximation since
they increase the computational costs unnecessarily. Thus, given a coarsening
parameter ν > 0 we remove an index (l, i) from the grid if

|al,i|||Φl,i|| ≤ ν (47)

and no children of (l, i) are in I. This is done for all grid points until no more
grid points get removed. An equivalent formulation is to keep an index (l, i) in
I if

|al,i|||Φl,i|| > ν (48)

Algorithm 3 Adaptive refinement
Data: initial index set I, refinement threshold ε, hierarchical coefficients
al,i of the function used for adaptive refinement
Result: refined index set Ir

1: J ← ∅ . set of marked indices: add children of these
2: for all indices (l, i) ⊂ I do . for all grid points
3: if |al,i|||Φl,i|| > ε then . see (46)
4: J ← J ∪ (l, i) . add index to set if criterion fulfilled
5: end if
6: end for
7: Ir ← J ∪ children of J

58

Algorithm 4 Adaptive coarsening
Data: initial index set I, coarsening threshold ν, hierarchical coefficients
al,i of the function used for adaptive coarsening
Result: coarsened index set Ic

1: Ic ← ∅ . set of marked indices: keep these indices
2: for all indices (l, i) ⊂ I do . for all grid points
3: if |al,i|||Φl,i|| > ν then . see (48)
4: Ic ← Ic ∪ (l, i) . add index to set if criterion fulfilled
5: end if
6: end for

and additionally all of its ancestors to be consistent. Our approach is to identify
all points that we aim to keep, and then to keep them together with all their
ancestors. For our experiments, we use the coarsening parameter ν = ε/10
which is a typical choice. We omit the consistency part in Algorithm 4 since
we state it in Algorithm 5.

Let us put the adaptive refinement and the adaptive coarsening together in
algorithm 5. Given an index set I, a refinement parameter ε, a coarsening para-
meter ν and the approximated function v on QI we can refine and coarsen the
grid and approximate the function on the new grid. Notice that it is not only
possible to use different norms in (46) and (47) respectively (48) but also com-
pletely different criteria, e.g. percentage based ones or the ones we describe in
the next subsection. Further, notice that we add parents of newly added points
that are not in the grid already in order to be consistent with the hierarchical
structure.

7.2.2 Adaptive refinement on sparse grids for the HJB equation

Now we have all ingredients to set up an algorithm that solves the HJB equation
adaptively on sparse grids. We implement a self-adaptive version that lowers
the refinement threshold and coarsening parameter automatically when no new

Algorithm 5 Adaptive steps combined
Data: data of Algorithm 3 and Algorithm 4
Result: consistent refined and coarsened index set Ĩ, v interpolated to QĨ

1: Call Algorithm 3 . get refined index set Ir
2: Call Algorithm 4 . get coarsened index set Ic
3: Ĩ ← Ir ∪ Ic . new index set of newly added and kept points
4: Ĩ ← Ĩ ∪ ancestors of Ĩ . add parents not in the set yet for consistency
5: Interpolate v ∈ VI to QĨ

59

points are added by adapting with the current parameters. This allows to use
the algorithm with less knowledge about appropriate adaptivity parameters,
and more importantly it focuses on the more important points in early itera-
tion so that we do not add too many points in the first adaptive steps. Note
that self-adaptivity is also used in [Sch98].

Let us briefly summarize Algorithm 6 which solves the HJB equation with
adaptive sparse grids. We start with the same initialization as for the non-
adaptive Algorithm 2, see row 2. Then we solve for the solution of the HJB
equation on the given grid using 2 in row 5. If no stopping criterion is fulfilled,
we refine the sparse grid with Algorithm 5 and call the initialization part of
Algorithm 2 to compute all required operators and values for the refined grid,
see rows 9 and 16 respectively. We point out that in case that no points are
added in the refinement we lower the refinement threshold and adapt the sparse
grid again in row 11. Note that there are several possibilities for stopping
criteria in row 6 such as maximum number of points, maximum sparse grid

Algorithm 6 Solving the HJB equation with self-adaptive refinement on sparse
grids

Data: model parameters, sparse grid parameters, self-adaptivity factor
η ≤ 1
Result: solution v of HJB equation

1: Initialization:
2: Call Initialization of Algorithm 2

3: Iterative part:
4: while True do
5: Call Iterative part of Algorithm 2 . get solution v of HJB equation
6: if stopping criterion fulfilled then
7: STOP
8: end if
9: Call Algorithm 5

10: . refine/coarsen sparse grid and interpolate v to the new sparse grid
11: if no new points are added and η 6= 1 then
12: ε← ε · η, ν ← ν · η . Decrease refinement threshold and coarsening

parameter by multiplying with the self-adaptivity factor
13: Call Algorithm 5
14: . refine/coarsen sparse grid and interpolate v to the new sparse grid
15: end if
16: Call Initialization of Algorithm 2 for adapted sparse grid
17: end while

60

level, maximum number of adaptivity iterations or a maximum number of self-
adaptivity applications.

7.2.3 Different types of adaptivity criteria

We experiment with several types of adaptivity criteria since there is no the-
oretical rule determining which criterion is optimal. The solution of the HJB
equation — the value function — often does not give a lot of useful insight.
Thus, we are more interested in a good approximation of the policy functions.
These are computed by the approximated derivatives of the value function.
Hence, it is not directly clear where the grid should be refined. That is the
reason we study value function adaptivity and policy functions adaptivity. Ad-
ditionally, we experiment with combinations of both.

We aim to investigate if it is better to refine the grid in areas where the
policy functions are steep or in areas in which the value function is steep.

Adaptivity with a single criterion Note that we can represent the value
function and the policy function on sparse grids by (18). Thus, for the value
function adaptivity we use the hierarchical coefficients of the sparse grid value
function approximation. Similarly, we use the hierarchical coefficients of the
policy function approximation for the policy function adaptivity. Hence, for the
two dimensional model (40)-(41) described in Section 6.1, we can use a value
function adaptivity, a consumption function adaptivity or a deposit function
adaptivity.

Moreover, we analyze the combination of the above described adaptivity
types to which we turn now.

Combination of different adaptivity criteria One possibility is a logical
combination. By that we mean the use of a logical operator like OR or AND to
combine adaptivity with respect to different functions, i.e. (46) is checked for
all different functions and then has to be fulfilled by one of them, i.e. OR, or
all of them, i.e. AND, to mark a point for adaptivity.
Moreover, one can implement a weighted combination by computing a weighted
sum of the hierarchical coefficients of different functions on the same points.
This way we combine value function and policy function adaptivity by just
comparing the result of the weighted sum with the refinement threshold.

Alternative adaptivity types It is also possible to use percentage based
adaptivity criteria. Above we just described an approach where we simply
choose all points for refinement where the respective hierarchical coefficients
are above a certain threshold. Contrarily, percentage based approaches use a
fixed portion of the points for refinement that are the most likely to improve
the accuracy, e.g. the points with the highest 50 percent of the hierarchical
coefficients.

Furthermore, note that different norms in the adaptivity criterion are pos-
sible. Dimension adaptivity can be suitable in situations where certain variables

61

are more important for an accurate solution than other ones. In our models
e.g. one could put less points in the dimensions of the stochastic processes. Of
course this strongly depends on the model and its parameters.

7.3 Solving the linear system

To solve the linear system (37) which yields the updated value function, there
are different approaches. The standard Matlab approach is to use the "back-
slash" operator which automatically chooses an appropriate direct solver by in-
vestigating several matrix properties like sparsity, symmetry and definiteness.
As already explained in Section 4.3.6, the arising matrix in the sparse grid set-
ting has no easily described structure which is in contrast to the full grid setting.

To solve the arising linear systems of our models, the Matlab backslash op-
erator uses the SuitSparse Umfpack solver, see [Dav04] and [Dav07]. It is writ-
ten in ANSI/ISO C and relies on Level-3-Basic Linear Algebra Subprograms.
Umfpack uses the unsymmetric MultiFrontal method for solving unsymmetric
sparse linear systems. For a survey of direct solvers and useful techniques to
build those efficiently, see [DRSL16].

Even though this choice is efficient for moderately large matrices, direct
solvers are no longer applicable if the linear system becomes very large. This
is the case when we go to high dimensions.

Thus, we propose to use an iterative solver for high dimensional models.
The matrix which arises from HJB equation discretizations is badly conditioned
using a sparse grid discretization. Note further that it is also pointed out in
[Sch98] that the condition number of the discretization matrix grows with h−2

with h being the grid point distance on the boundary. As a side note, we
mention that experiments also show that HJB discretizations lead to badly
conditioned systems for the full grid setting. For iterative solvers, we thus have
to use an appropriate preconditioner to solve the system efficiently. A great
source for iterative solvers and preconditioning is [Saa03]. Useful survey articles
for preconditioning are [Ben02] for ILU factorizations and sparse approximate
inverses, and the more recent [Wat15] for references. At the end of this section,
we reference several approaches like multilevel ones which could lead to even
better results. We now turn to our approach on solving the linear system.

7.3.1 Our approach for solving the linear system

Let us present our approach for solving the linear system, which is based on
using a standard iterative solver in combination with a standard preconditioning
approach.

Iterative solvers By looking into the Algorithm 2 to approximate the solu-
tion of the HJB equation, you can see two advantages of using iterative solvers
in our setting. First, the matrix we get in the different iterations only changes
slightly, which allows to compute a preconditioner and to use it multiple times

62

(in the following iterations). Obviously, the preconditiong gets worse and one
should compute a new preconditioner if the iterative solvers do not converge
(fast enough) anymore. Second, iterative solvers start with an initial guess
vinit. By simply setting the approximated solution of the last iteration as the
starting point, we have a great initial guess, especially in the last iterations.

Several iterative solvers can be suitable and it depends on the chosen pre-
conditioner and the model which one works best. Since the arising matrix has
no easily described structure, we use iterative solvers which can handle non-
sysmmetric matrices. We experiment with several Krylov subspace methods,
namely GMRES, GMRES with restart and BiCGSTAB. BiCGSTAB yields the
best, i.e. faster and more stable, results for most models and preconditioners
and that is why we restrict the following presentation to BiCGSTAB.

Preconditioning For our models, BiCGSTAB without preconditioning does
not converge due to quantities that get too small in the computation procedure.
Thus, we have to use a preconditioner. We mainly experiment with standard
preconditioning approaches that are already implemented in Matlab.

Jacobi preconditioning, SPAI sparse approximate inverses and normal equa-
tions to use symmetric approaches do not work (well) since either the computa-
tion time is really high or the iterative solver does not converge at all. Another
standard preconditioning approach is the use of ILU factorizations. One gets
an ILU factorization by dropping different entries in the factors in the LU fac-
torization process. These dropping strategies can either be position or value
based. We refer to [Saa03] and [Ben02] for detailed explanations. The Crout
ILU (ILUC) version which is proposed in [LSC03] is based on using different
loop orderings for the lower and the upper factors which allows for specific
dropping rules.

Several ILU approaches could not be used due to some quantities that was
to small in the iterations of preconditioned Krylov subspace methods. The by
far most reliable approach in our experiments was ILUC, even though there may
still be situations where ILUC preconditioning does not work or one would need
to at least adjust the drop tolerance due to the above noted problem of quant-
ities which get to small. Note that in some cases ILU with dropping threshold
and pivoting (ILUTP) works well. We restrict the following presentation to
ILUC due to the above noted insights.

Our approach: ILUC as preconditioner for BiCGSTAB Due to the
above explanations we propose to use ILUC together with BiCGSTAB. Notice
that even though in our tests we always achieved fast convergence by using
an appropriate drop tolerance, there may be discretization matrices from other
models where this is not possible.

Denote the drop tolerance by τ and the convergence flag by FLAG which
is 0 if the iterative solver converged.

63

Algorithm 7 Solving the linear system with ILUC preconditiong
Data: matrix B and right hand side b, maxit1, maxit2, tol1, tol2, initial
guess / solution of last HJB iteration vinit, after first HJB iteration: L and
U from last iteration
Result: solution v of Bv = b

1: if n = 0 then
2: L, U ← ILUC(B,b, τ)
3: end if
4: v, FLAG ← precBiCGSTAB(B,b,maxit1, tol1, L, U, vinit)
5: if FLAG 6= 0 then . If precBiCGSTAB did not converge
6: L, U ← ILUC(B,b, τ)
7: v, FLAG ← precBiCGSTAB(B,b,maxit2, tol2, L, U, vinit)
8: if FLAG 6= 0 then . If precBiCGSTAB did not converge
9: v = B\b . Use direct solver

10: end if
11: end if

Algorithm 7 shows an approach to compute the preconditioner less often.
The idea is to only recompute the ILUC factorization if the iterative solver
did not converge in less than maxit1 iterations. Notice that instead of using
a direct solver in line 9 one can also change the drop tolerance in the ILUC
computation or use another preconditioning approach.

7.3.2 Multilevel and other approaches used in related works

Instead of using standard algebraic (black-box) preconditioning methods like
the ones presented above, one can use problem specific preconditioning. Note
that multigrid solvers are optimal in many settings, see e.g. [BM+00], [TOS00]
and [Hac13]. We did not implement the following approaches but reference them
for follow-up work since similar approaches could be superior to our ILUC fac-
torization preconditioning, especially with regard to parallelization.

Problem specific diagonal scaling is proposed in [Sch98] by using the fact
that the basis transformations do not change the diagonal entries of the sparse
grid finite difference operators. They report good results for specific elliptic
and parabolic PDEs. Moreover, it is pointed out that the eigenvalue range only
grows with rate O(h−1) after preconditioning. These diagonal preconditioners
are easily implemented, fast constructed and applied, and can be coupled with
other preconditioners.

Another approach is the use of multilevel methods like proposed in [Spr01].
In [HS99] it is shown how the arising discrete equations can efficiently be solved
in an iterative process. Further, in [HS] it is reported that BiCGStab shows
fast convergence if it is applied to the hierarchical representation and combined

64

with nested iteration in a cascadic algorithm, although the convergence rate is
not truly independent of the mesh size.

A combination of lifting-wavelet transformations and diagonal scaling is
used in [Kos] for elliptic PDEs. Furthermore, in [GH14] a multilevel approach
for the discretized Laplacian is presented and for sparse grid discretizations of
elliptic PDEs optimal scaling parameters with a specific subspace solver are
proposed in [GHO15].

Moreover, even though mostly more related to standard finite elements,
there is a lot of research in the area of algebraic multigrid methods (AMG)
which extract information just from the system matrix and mimic geometric
multigrid methods. See e.g. [RS87] and [Stü01] for an introduction, [Y+02]
for a well known AMG software and [XZ17] for a recent overview article. Due
to the high irregularity and the fact that AMG methods are mainly limited to
symmetric positive definite matrices unlike the arising matrix in our setting,
it is likely that most AMG methods do not converge. Note though that, even
when they are non-convergent, they can often be used as an efficient precondi-
tioner.

Further investigations are needed if similar approaches can be used effect-
ively for our setting.

65

8 Numerical Results
Before we present the numerical results, let us define our error metrics denoting
the reference solution by fref and the sparse grid solution by fSG. We use three
different discrete vector norms, i.e. we compute the absolute error in M points
x1, . . . , xM by

ef1,a(x1, . . . , xM) = 1
M

M∑
m=1
|fref(xm)− fSG(xm)|

ef2,a(x1, . . . , xM) =
(1
M

M∑
m=1
|fref(xm)− fSG(xm)|2

) 1
2
,

ef∞,a(x1, . . . , xM) = max
m
|fref(xm)− fSG(xm)|.

(49)

Using a normalization with respect to the respective reference solutions allows
us to better compare the arising errors of different functions. Thus, we compute
relative errors by

ef1,r(x1, . . . , xM) = 1
M

M∑
m=1

∣∣∣∣ fref(xm)− fSG(xm)
maxm fref(xm)−minm fref(xm)

∣∣∣∣
ef2,r(x1, . . . , xM) =

(1
M

M∑
m=1

∣∣∣∣ fref(xm)− fSG(xm)
maxm fref(xm)−minm fref(xm)

∣∣∣∣2)
1
2
,

ef∞,r(x1, . . . , xM) = max
m

∣∣∣∣ fref(xm)− fSG(xm)
maxm fref(xm)−minm fref(xm)

∣∣∣∣.
(50)

We additionally compute convergence rates for level l by

ρe(l) = log2

(
el−1
el

)
,

where el denotes the error for level l and e is one of the errors defined above.

We point out that for all adaptivity criteria we use a normalization of the
hierarchical coefficients with respect to the range in nodal values. Further, we
always coarsen the grid with respect to value function since this yields better
results in our experiments.

8.1 Two-dimensional model: plots and accuracy analysis

Let us begin with the 2d model (40) - (41) presented in Section 6.1 to give some
intuition and to show that our sparse grid algorithm converges to the solution
of the full grid method.

We begin our accuracy analysis by presenting relative errors for the value
function and all policy functions for regular sparse grids of different levels. We
denote the degrees of freedom (number of grid points) by DOF. The reference
solution is computed on a 600 × 600 full grid and we interpolate the sparse
grid solution to this grid for the error computations. We denote the respective
Poisson states by subscripts (1 and 2) for the respective functions.

66

8.1.1 Accuracy for regular sparse grids

We start by giving the respective er-errors and convergence rates for the value
function v.

Level l Dof ev1
1,r ρev1

1,r
ev1

2,r ρev1
2,r

ev1
∞,r ρev1

∞,r

2 17 1.16·10−1 – 1.22·10−1 – 2.14·10−1 –
3 37 6.81·10−2 0.76 7.26·10−2 0.75 1.44·10−1 0.57
4 81 3.62·10−2 0.91 3.89·10−2 0.9 8.81·10−2 0.71
5 177 1.96·10−2 0.88 2.12·10−2 0.88 2.92·10−2 1.59
6 385 9.70·10−3 1.01 1.06·10−2 1 2.92·10−2 0
7 833 4.60·10−3 1.08 5.00·10−3 1.08 1.49·10−2 0.97
8 1 793 1.70·10−3 1.44 1.90·10−3 1.4 6.00·10−3 1.31

Table 2: Accuracy of different sparse grid levels: er-errors for the value function
for state 1

Level l Dof ev2
1,r ρev2

1,r
ev2

2,r ρev2
2,r

ev2
∞,r ρev2

∞,r

2 17 1.11·10−1 – 1.17·10−1 – 2.04·10−1 –
3 37 6.58·10−2 0.75 6.98·10−2 0.74 1.37·10−1 0.57
4 81 3.54·10−2 0.89 3.77·10−2 0.89 8.18·10−2 0.74
5 177 1.93·10−2 0.87 2.06·10−2 0.87 4.76·10−2 0.78
6 385 9.60·10−3 1.01 1.03·10−2 1 2.49·10−2 0.93
7 833 4.50·10−3 1.09 4.90·10−3 1.07 1.20·10−2 1.05
8 1 793 1.70·10−3 1.4 1.80·10−3 1.44 4.50·10−3 1.41

Table 3: Accuracy of different sparse grid levels: er-errors for the value function
for state 2

The following are the respective er-errors and convergence rates for the
deposit function d.

Level l Dof ed1
1,r ρ

e
d1
1,r

ed1
2,r ρ

e
d1
2,r

ed1
∞,r ρ

e
d1
∞,r

2 17 1.03·10−1 – 1.19·10−1 – 2.46·10−1 –
3 37 6.70·10−2 0.61 7.86·10−2 0.6 1.51·10−1 0.71
4 81 4.40·10−2 0.61 5.29·10−2 0.57 1.10·10−1 0.46
5 177 2.76·10−2 0.67 3.35·10−2 0.66 7.46·10−2 0.55
6 385 1.56·10−2 0.82 1.92·10−2 0.8 5.30·10−2 0.49
7 833 8.00·10−3 0.96 9.90·10−3 0.96 3.15·10−2 0.75
8 1 793 3.30·10−3 1.28 4.20·10−3 1.24 1.84·10−2 0.78

Table 4: Accuracy of different sparse grid levels: er-errors for the deposit policy
function for state 1

67

Level l Dof ed2
1,r ρ

e
d2
1,r

ed2
2,r ρ

e
d2
2,r

ed2
∞,r ρ

e
d2
∞,r

2 17 1.04·10−1 – 1.21·10−1 – 2.48·10−1 –
3 37 6.93·10−2 0.58 8.06·10−2 0.59 1.55·10−1 0.68
4 81 4.65·10−2 0.58 5.49·10−2 0.55 1.07·10−1 0.54
5 177 2.97·10−2 0.65 3.56·10−2 0.62 8.82·10−2 0.28
6 385 1.71·10−2 0.8 2.06·10−2 0.79 6.30·10−2 0.49
7 833 8.80·10−3 0.96 1.08·10−2 0.93 3.79·10−2 0.73
8 1 793 3.60·10−3 1.29 4.50·10−3 1.26 1.70·10−2 1.16

Table 5: Accuracy of different sparse grid levels: er-errors for the deposit policy
function for state 2

The following are the respective er-errors and convergence rates for the
consumption function c.

Level l Dof ec1
1,r ρec1

1,r
ec1

2,r ρec1
2,r

ec1
∞,r ρec1

∞,r

2 17 2.27·10−1 – 2.32·10−1 – 3.62·10−1 –
3 37 1.23·10−1 0.88 1.28·10−1 0.86 2.46·10−1 0.56
4 81 6.22·10−2 0.98 6.64·10−2 0.95 1.55·10−1 0.66
5 177 3.26·10−2 0.93 3.56·10−2 0.9 1.28·10−1 0.27
6 385 1.59·10−2 1.04 1.80·10−2 0.98 1.03·10−1 0.32
7 833 7.50·10−3 1.08 8.90·10−3 1.02 7.71·10−2 0.42
8 1 793 2.80·10−3 1.42 3.60·10−3 1.31 5.21·10−2 0.57

Table 6: Accuracy of different sparse grid levels: er-errors for the consumption
policy function for state 1

Level l Dof ec2
1,r ρec2

1,r
ec2

2,r ρec2
2,r

ec2
∞,r ρec2

∞,r

2 17 1.94·10−1 – 2.17·10−1 – 3.66·10−1 –
3 37 9.32·10−2 1.06 1.03·10−1 1.08 1.75·10−1 1.06
4 81 4.70·10−2 0.99 5.20·10−2 0.98 1.06·10−1 0.73
5 177 2.37·10−2 0.99 2.60·10−2 1 5.96·10−2 0.83
6 385 1.21·10−2 0.97 1.33·10−2 0.97 3.33·10−2 0.84
7 833 5.60·10−3 1.11 6.20·10−3 1.1 1.70·10−2 0.97
8 1 793 2.00·10−3 1.49 2.20·10−3 1.49 6.70·10−3 1.34

Table 7: Accuracy of different sparse grid levels: er-errors for the consumption
policy function for state 2

From the Tables 2 - 7 we get several insights. First of all we see that our
sparse grid algorithm converges to the full grid solution for all sparse grid levels.
We additionally note that the accuracy for both Poisson states is quite similar.
Note that this may change if the resulting functions more different though.

68

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e1-error: Value function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Value function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e -error: Value function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e1-error: Deposit function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Deposit function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -2

10 -1

10 0
e -error: Deposit function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e1-error: Consumption function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Consumption function

State 1

State 2

0 500 1000 1500 2000

Number of grid points

10 -3

10 -2

10 -1

10 0
e -error: Consumption function

State 1

State 2

Figure 21: Accuracy of different sparse grid levels: er-errors for the value,
deposit and consumption function for states 1 and 2 with stars indicating the
levels l = 1, . . . , 8

Furthermore, by going to higher sparse grid levels, we improve the accuracy.
Notice that the convergence rate for all levels and error types is quite high and
thus going to higher sparse grid levels pays off since convergence (in the sense
of going to higher sparse grid levels) does not stagnate yet.

We additionally visualize the errors for the respective levels for the value,
deposit and consumption functions in Figure 21. Note that we denote the
respective er-errors on the y-axis and the number of grid points on the x-axis.
You can see that the e∞-error for the consumption function is quite high. This
is due to that fact that the consumption function of state 1 is very steep close
to the boundary and whence cannot be captured well by sparse grids. You can
also see this in the following subsection in which we plot the solutions.

8.1.2 Plots for regular sparse grids

To get some insight into how the approximations and the arising errors look
visually, let us present some plots of the respective approximations. We present
the results for sparse grid level l = 7 and we again interpolate the sparse grid
solution to the full grid to compare the respective solutions.

69

Figure 22: Value function for state 1: sparse grid approximation, full grid
reference solution and the sparse grid approximation subtracted from the full
grid solution

Figure 23: Value function for state 2: sparse grid approximation, full grid
reference solution and the sparse grid approximation subtracted from the full
grid solution

70

Figure 24: Utility function for state 1: sparse grid approximation, full grid
reference solution and the sparse grid approximation subtracted from the full
grid solution

Figure 25: Utility function for state 2: sparse grid approximation, full grid
reference solution and the sparse grid approximation subtracted from the full
grid solution

71

Figure 26: Consumption policy function for state 1: sparse grid approximation,
full grid reference solution and the sparse grid approximation subtracted from
the full grid solution

Figure 27: Consumption policy function for state 2: sparse grid approximation,
full grid reference solution and the sparse grid approximation subtracted from
the full grid solution

72

Figure 28: Deposit policy function for state 1: sparse grid approximation, full
grid reference solution and the sparse grid approximation subtracted from the
full grid solution

Figure 29: Deposit policy function for state 2: sparse grid approximation, full
grid reference solution and the sparse grid approximation subtracted from the
full grid solution

In the Figures 22 - 29 we can see that apart from the really steep parts
of the functions the sparse grid approximation is able to capture the function
behaviors quite well not only for the value function but also for the utility and
policy functions.

73

To get a good approximation without using a really high sparse grid level
(and thus many points), we want to use adaptive sparse grids. Our goal is to
analyze if it is better to minimize the error of the value function approximation,
which then implicitly leads to a better approximation of the policy functions, or
if it is better to improve the value function approximation in the area where the
policy functions are steep and thus normally not approximated that well. Let
us focus our investigation on the deposit function since we observe the biggest
errors here. Notice though that the analysis results can be transferred to policy
functions in general.

8.1.3 Plots for adaptive sparse grids

Let us visualize the resulting sparse grids and sparse grid approximations for
value and deposit function adaptivity respectively. Note that we indicate the
grid points by their respective function values as bullet points.

In Figures 30 and 31 the resulting approximations and sparse grid after
value function adaptivity are shown. You can see that the sparse grid is refined
in the area in which the value function is steep. Note that this is not the area
where the deposit function is steep.

The plots shown in Figures 32 and 33 visualize the sparse grid and the result-
ing functions after using deposit function adaptivity. Notice that the resulting
sparse grid looks completely different to the one we obtained by adaptivity with
respect to the value function. Now there are more grid points in the area where
the deposit function is steep.

Figure 30: Scatter and surface plot of the value and the deposit function for
state 1 for the adapted sparse grid with value function adaptivity

74

Figure 31: Scatter and surface plot of the value and the deposit function for
state 2 for the adapted sparse grid with value function adaptivity

Figure 32: Scatter and surface plot of the value and the deposit function for
state 1 for the adapted sparse grid with deposit function adaptivity

Since it is not clear a priori where the sparse grid should be adapted to get
a good approximation of the deposit function or policy functions in general, we
aim to compare the accuracies resulting from different types of adaptivity to
which we turn now.

75

Figure 33: Scatter and surface plot of the value and the deposit function for
state 2 for the adapted sparse grid with deposit function adaptivity

8.1.4 Accuracy for adaptive sparse grids

To get more insight into the approximation quality of different types of adaptiv-
ity (see Section 7.2 for descriptions) we look into the discrete relative e1,r-, e2,r-
and e∞,r-errors noted in the beginning of this section, see (50). We compute
a reference solution on a sparse grid of level l = 11 and interpolate both the
reference solution and the approximations of the adapted sparse grids and lower
level regular sparse grids to uniformly distributed points. We always use the
coarsening parameter ν = ε/10 with respect to the value function.

Note that in all accuracy plots we denote the respective er-errors on the
y-axis and the number of grid points on the x-axis.

We start by analyzing the adaptivity process by looking at the resulting
errors after the iterations of Algorithm 2 before the grid is refined as explained
for Algorithm 6. Thus, these are intermediate results that would be final solu-
tions if one stops the algorithm after the respective number of adaption steps.

To visualize the adaption process, we plot intermediate results with stars
indicating the results before the respective refinement steps in Figures 34 -35
for different refinement thresholds ε. There are several things we can extract
from the error plots. For the value function accuracy, it is easy to see that value
function adaptivity works well. For the deposit function accuracy, it strongly
depends on the starting level, the adaptive refinement threshold and the number
of refinement steps. In Figure 34 we can see that the deposit function accuracy
stagnates for the last adaption step for most adaptivity versions, whereas this
is not the case for the latter iterations for ε = 10−5 shown in Figure 35. This
indicates that refinement with less focus on specific features works better here.

76

0 500 1000 1500 2000 2500

Number of grid points

10 -3

10 -2

10 -1

10 0
e1-error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000 2500

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000 2500

Number of grid points

10 -3

10 -2

10 -1

10 0
e -error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000 2500

Number of grid points

10 -3

10 -2

10 -1

10 0
e1-error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000 2500

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000 2500

Number of grid points

10 -2

10 -1

10 0
e -error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

Figure 34: Adaptivity process: accuracy plots of different adaptivity versions
starting at level l = 2 with refinement threshold ε = 10−4 with stars indicating
the results before the respective refinement steps

0 1000 2000 3000 4000 5000

Number of grid points

10 -4

10 -3

10 -2

10 -1

10 0
e1-error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -4

10 -3

10 -2

10 -1

10 0
e2-error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -3

10 -2

10 -1

10 0
e -error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -4

10 -3

10 -2

10 -1

10 0
e1-error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -2

10 -1

10 0
e -error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

Figure 35: Adaptivity process: accuracy plots of different adaptivity versions
starting at level l = 2 with refinement threshold ε = 10−5 with stars indicating
the results before the respective refinement steps

77

0 1000 2000 3000 4000 5000

Number of grid points

10 -4

10 -3

10 -2

10 -1

10 0
e1-error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -4

10 -3

10 -2

10 -1

10 0
e2-error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -3

10 -2

10 -1

10 0
e -error: Value function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -4

10 -3

10 -2

10 -1

10 0
e1-error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -3

10 -2

10 -1

10 0
e2-error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10 -2

10 -1

10 0
e -error: Deposit function

Value fct adap

Value and policy fct adap

Policy fct adap

Deposit fct adap

Value and deposit fct adap

Figure 36: Accuracy plots of different adaptivity versions starting at level l = 2
with refinement threshold ε = 10−1, 10−2, 10−3, 10−4, 10−5 (stars on the respect-
ive lines) after using at most eight adaption steps

To compare the final results of using different refinement thresholds for a
fixed maximum number of adaption steps, we present the plots given in Figure
36. We can extract again that value function adaptivity performs well for the
value function approximation. In rare cases (here for small ε) other adaptivity
versions outperform value function adaptivity for the deposit function accuracy.

We point out that it depends on the model parameters if value function
adaptivity or deposit function adaptivity is better. Moreover, note that the
combined criteria can be suitable in some situations. However, in general if one
is not particularly interested in a specific policy function and if one does not
want to spend a lot of time on parameter fine-tuning, we strongly recommend
value function adaptivity which turns out to be the best approach in most situ-
ations. Further, notice that it requires a lot of fine-tuning and testing, or an
algorithm for parameter optimization to find a good combination of paramet-
ers. Note that self-adaptivity is an approach to lower the refinement threshold
automatically. Some resulting accuracies using self-adaptivity are presented in
the following paragraph.

Self-adaptivity To give the reader some insight into the effect of using self-
adaptivity, we present Table 8 which contains the results of different self-
adaptivity processes with the self-adaptivity parameter η, the starting refine-
ment threshold εstart, the final refinement threshold εfinal, the resulting number
of grid points and the respective er-errors. Note that η = 1 means that we do
not use self-adaptivity and thus εfinal is equal to εstart. We use the same ap-
proach as above for the error computations (with the reference solution of level
l = 11). You can get multiple insights. First of all notice that by using self

78

η εstart εfinal Dof ev1
1,r ev1

2,r ev1
∞,r

1 1.00·10−1 1.00·10−2 13 1.22·10−1 1.29·10−1 2.23·10−1

0.25 1.00·10−1 3.91·10−4 180 9.40·10−3 9.90·10−3 1.82·10−2

1 1.00·10−2 1.00·10−3 37 3.85·10−2 3.95·10−2 6.96·10−2

0.25 1.00·10−2 1.56·10−4 322 5.60·10−3 5.90·10−3 1.08·10−2

1 1.00·10−3 1.00·10−4 118 1.36·10−2 1.41·10−2 2.66·10−2

0.25 1.00·10−3 6.25·10−5 254 6.80·10−3 7.10·10−3 1.16·10−2

1 1.00·10−4 1.00·10−4 406 4.50·10−3 4.80·10−3 8.20·10−3

0.25 1.00·10−4 1.00·10−4 406 4.50·10−3 4.80·10−3 8.20·10−3

Table 8: Accuracy results for different (self-)adaptive sparse grids starting at
level l = 2 with at most eight adaption steps: self-adaptivity parameter η,
starting refinement threshold εstart, final refinement threshold εfinal, er-errors
for the value function for state 1

adaptivity we are not stuck with far less points than initially aimed since the re-
finement threshold is automatically lowered. Thus, one can stop the algorithm
by using the maximum amount of points as stopping criterion instead of e.g.
using the maximum number of adaption steps. By starting with a higher re-
finement threshold εstart in combination with self-adaptivity, one does not run
into the risk of adding non-important points due to a refinement threshold that
was chosen too low. We point out though that by starting with a low refine-
ment threshold one faces the risk of focusing on a single feature of the function.
Second, notice that the adaption yields more points using self-adaptivity with
εstart = 10−2 in comparison to εstart = 10−3 even with a fixed number of adap-
tion steps. This shows that an earlier refinement can result in more points at the
end. Third, notice that self-adaptivity did not have any effect for the first eight
adaption steps with starting refinement threshold εstart = 10−4. Even though
self-adaptivity can work well in practice, we restrict our following presentation
to adaptivity without self-adaption since it allows a better analysis of different
refinement thresholds.

8.2 Four-dimensional model: accuracy analysis and speed com-
parisons

Let us present our results for the 4d model (51) - (52) explained in Appendix
A. We give different relative errors for different sparse grid levels and we again
compare different adaptivity versions, see subsections 7.1 and 7.2 for the al-
gorithmic approach. Further, we investigate the runtime of Matlabs backslash
operator (SuitSparse Umfpack) in comparison to the one of ILUC precondi-
tioned BiCGSTAB, see Section 7.3 for descriptions.

8.2.1 Accuracy

We compute the accuracy for different sparse grid levels and adaptivity versions
by using a reference solution that we compute on a higher sparse grid level.

79

Instead of computing the error on the full grid of the full grid reference solution
we compute the error by interpolating on uniformly distributed points for both
the reference and the analyzed solutions.

Regular sparse grids Let us begin our accuracy analysis by presenting er-
rors for the value function and all policy functions for regular sparse grids of
different levels.

We start by giving the respective er-errors and convergence rates for the
value function, the deposit a function, the deposit h function and the con-
sumption function. We compute the reference solution on a sparse grid of level
l = 8.

Level l Dof ev1,r ρev1,r ev2,r ρev2,r ev∞,r ρev∞,r

2 136 7.12·10−2 – 7.64·10−2 – 1.76·10−1 –
3 368 3.79·10−2 0.91 4.00·10−2 0.93 1.05·10−1 0.75
4 961 8.40·10−3 2.17 1.02·10−2 1.97 3.93·10−2 1.42
5 2 441 5.20·10−3 0.69 6.20·10−3 0.72 1.92·10−2 1.03
6 6 065 2.40·10−3 1.12 3.00·10−3 1.05 1.02·10−2 0.91
7 14 801 1.20·10−3 1 1.40·10−3 1.1 4.60·10−3 1.15

Table 9: Accuracy of different sparse grid levels: er-errors for the value function

Level l Dof ed
a

1,r ρeda1,r
ed
a

2,r ρeda2,r
ed
a

∞,r ρeda∞,r

2 136 1.98·10−1 – 2.29·10−1 – 5.55·10−1 –
3 368 9.80·10−2 1.02 1.35·10−1 0.76 5.31·10−1 6.37 · 10−2

4 961 4.53·10−2 1.11 8.10·10−2 0.74 4.64·10−1 0.2
5 2 441 2.96·10−2 0.61 5.33·10−2 0.6 3.67·10−1 0.34
6 6 065 1.18·10−2 1.33 2.71·10−2 0.98 2.97·10−1 0.31
7 14 801 6.50·10−3 0.86 1.35·10−2 1.01 1.63·10−1 0.86

Table 10: Accuracy of different sparse grid levels: er-errors for the deposit a
policy function

80

Level l Dof ed
h

1,r ρ
ed
h

1,r
ed
h

2,r ρ
ed
h

2,r
ed
h

∞,r ρ
edh∞,r

2 136 1.23·10−1 – 1.64·10−1 – 5.51·10−1 –
3 368 5.89·10−2 1.06 9.26·10−2 0.82 4.45·10−1 0.31
4 961 3.07·10−2 0.94 5.57·10−2 0.73 3.94·10−1 0.17
5 2 441 2.15·10−2 0.51 3.77·10−2 0.56 3.41·10−1 0.21
6 6 065 9.20·10−3 1.22 1.87·10−2 1.01 2.33·10−1 0.55
7 14 801 5.00·10−3 0.88 8.70·10−3 1.1 1.12·10−1 1.06

Table 11: Accuracy of different sparse grid levels: er-errors for the deposit h
policy function

Level l Dof ec1,r ρec1,r ec2,r ρec2,r ec∞,r ρec∞,r

2 136 2.98·10−1 – 3.29·10−1 – 9.16·10−1 –
3 368 1.13·10−1 1.4 1.45·10−1 1.18 6.58·10−1 0.48
4 961 3.41·10−2 1.72 6.82·10−2 1.09 5.38·10−1 0.29
5 2 441 2.07·10−2 0.72 4.09·10−2 0.74 4.34·10−1 0.31
6 6 065 9.60·10−3 1.11 2.24·10−2 0.87 3.27·10−1 0.41
7 14 801 4.20·10−3 1.19 9.60·10−3 1.22 1.31·10−1 1.32

Table 12: Accuracy of different sparse grid levels: er-errors for the consumption
policy function

First, notice that for all of the sparse grid levels presented in Tables 9 -
12 the algorithm converges to the reference solution computed for level l = 8.
Notice that by adding levels we get a higher accuracy for all error measures for
all functions. Thus, by adding more levels the algorithm converges (in the sense
of going to a higher sparse grid level) to the reference solution (for our model
and algorithm parameters). Further, notice that the convergence rates vary
for the different functions, e.g. going from level l = 6 to level l = 7 increases
the accuracy for the consumption function more than the ones for the deposit
functions. Moreover, notice that the e∞-error of the policy functions only is
reduced slightly by going to higher sparse grid levels (apart from going from
level l = 6 to level l = 7). Additionally, we can see that the convergence is not
stagnating for the presented levels and it thus pays off to go to higher sparse
grid levels.

Adaptive sparse grids Let us turn to the analysis of different adaptivity ap-
proaches. We again restrict our presentation of adaptivity to the value function
and the deposit functions. We compare the results for value function adaptiv-
ity, deposit function adaptivity and by logical OR combined value and deposit
function adaptivity. We compute the reference solution on a sparse grid of level
l = 8 and do not add points which are not in this grid in our adaption by limit-
ing the maximum number of adaption steps. We do this because we do not want
our adaptive methods to outperform our reference solution which could yield

81

0 2000 4000 6000 8000 10000

Number of grid points

10
-3

10
-2

10
-1

e1-error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 2000 4000 6000 8000 10000

Number of grid points

10
-3

10
-2

10
-1

e2-error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 2000 4000 6000 8000 10000

Number of grid points

10
-3

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 2000 4000 6000 8000 10000

Number of grid points

10
-3

10
-2

10
-1

10
0

e1-error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 2000 4000 6000 8000 10000

Number of grid points

10
-2

10
-1

10
0

e2-error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 2000 4000 6000 8000 10000

Number of grid points

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
e -error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

Figure 37: Adaptivity process: accuracy plots for different adaptivity versions
starting at level l = 2 with refinement threshold ε = 10−4

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

e1-error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

e2-error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

10
0

e1-error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-2

10
-1

10
0

e2-error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
e -error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

Figure 38: Adaptivity process: accuracy plots for different adaptivity versions
starting at level l = 2 with refinement threshold ε = 10−5

82

wrong insights. Note though that due to better "initial" guesses after refining
the grid, the adaptive algorithm could still slightly outperform the higher level
regular sparse grid one in rare situations.

For all adaptivity versions, we start with level l = 2 and do not use self-
adaptivity to give a better presentation of different refinement thresholds ε.
Notice that for all experiments we use the coarsening parameter ν = ε/10 with
respect to the value function. We again denote the relative errors on the y-axis
and the number of grid points on the x-axis.

We compare different adaptivity versions, in particular value function ad-
aptivity, deposit function adaptivity and with logical OR combined value and
deposit function adaptivity. Figures 37 and 38 contain plots that show the er-
errors for different refinement thresholds ε arising in the respective adaptions.
To visualize the adaption process, we plot intermediate results with stars in-
dicating the results before the respective refinement steps. You can see that in
most cases value function adaptivity outperforms the other adaptivity versions
for both the value function and the deposit function. We should point out
that deposit function adaptivity works well to get a low e∞-error of the deposit
function with a small number of points.

To compare the final results of using different refinement thresholds for

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

e1-error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

e2-error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

10
0

e1-error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

10
-2

10
-1

10
0

e2-error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

0 5000 10000 15000

Number of grid points

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

e -error: Deposit a function

Value fct adap

Deposit a fct adap

Value and deposit a fct adap

Figure 39: Accuracy plots of different adaptivity versions starting at level l = 2
with refinement threshold ε = 10−1, 10−2, 10−3, 10−4, 10−5 (indicated by stars
on the respective lines) after using at most five adaption steps

83

a fixed number of maximum number of adaption steps, we present the plots
in Figure 39. Notice that all adaptivity versions work well for the deposit
function approximation. However, for the value function approximation, one
can see that value function adaptivity works better than the other adaptivities.
We further point out that that the error is decreasing for lower refinement
thresholds and thus more points, i.e. the additional points pay off to get a
better approximation. Thus, either adding even more points by using a lower
refinement threshold or using more adaption steps could pay off.

8.2.2 Runtime

All of the following experiments are done on a machine of type PowerEdge R900
with 24x Intel(R) Xeon(R) CPU X7460 with 2.66 GHz, 256 GB Ram and an
ATI Technologies Inc ES1000 (rev 02) graphics card.

As explained in Section 7.3, we restrict our runtime analysis to the compar-
ison of Matlabs backslash operator and ILUC preconditioned BiCGSTAB.

There is no descriptive convergence bound for BiCGSTAB (and also for
other Krylov subspace solvers) for non-symmetric matrices. Nevertheless, often
the distribution of the eigenvalues and the condition numbers gives some hind-
sight into the performance of an iterative solver. Let us present the eigenvalues
of the system matrix for different sparse grid levels. The eigenvalues arise that
for the first iteration of Algorithm 2 for the 4d model (51) - (52) are shown in
Figure 40. One can easily see in that there is a cluster of eigenvalues around
(0, 0) but more importantly notice that the eigenvalue range grows with rate
O(h−2) where h denotes the mesh width on the boundary. The condition num-
bers are given in Table 13.

Now let us look at the effect of preconditioning with the ILUC factorization
by investigating the condition numbers for the 2-norm.

You can see in Table 14 that with ILUC the condition numbers are far
lower. We are now interested in the convergence of BiCGSTAB, in particular

Level l Condition: 1-norm Condition: 2-norm
0 200.6458 67.4618
1 644.2919 143.7569
2 3.2046 · 103 484.1335
3 1.4978 · 104 2.0532 · 103

4 1.3034 · 105 1.6303 · 104

5 1.9338 · 106 1.7799 · 105

6 3.5727 · 107 1.9734 · 106

7 6.8861 · 108 2.3317 · 107

Table 13: Condition numbers of the system matrix for different sparse grid
levels arising in the first iteration of Algorithm 2 for the 4d model (51) - (52)

84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Eigenvalues for sparse grid level l = 0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-1.5

-1

-0.5

0

0.5

1

1.5

Eigenvalues for sparse grid level l = 1

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

-3

-2

-1

0

1

2

3

Eigenvalues for sparse grid level l = 2
-6 -4 -2 0 2 4 6 8

-5

-4

-3

-2

-1

0

1

2

3

4

5

Eigenvalues for sparse grid level l = 3

-25 -20 -15 -10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Eigenvalues for sparse grid level l = 4
-80 -60 -40 -20 0 20 40 60 80

-25

-20

-15

-10

-5

0

5

10

15

20

25

Eigenvalues for sparse grid level l = 5

-200 -150 -100 -50 0 50 100 150 200 250 300

-60

-40

-20

0

20

40

60

Eigenvalues for sparse grid level l = 6
-600 -400 -200 0 200 400 600 800 1000 1200

-150

-100

-50

0

50

100

150

Eigenvalues for sparse grid level l = 7

Figure 40: Eigenvalues for different sparse grid levels arising in the first iteration
of Algorithm 2 for the 4d model (51) - (52)

in the computation time but also in the number of iterations. Even though we
presented the eigenvalues for lower levels we are especially interested in higher
dimensions. Let us thus look at the convergence behavior of preconditioned
BiCGSTAB (precBiCGSTAB) and compare the computation times with the
ones of the direct solver.

85

Level l Condition: ILUC(10−3) Condition: ILUC(10−6)
0 1 1
1 1.0750 1.0348
2 1.0593 1
3 1.3483 1.0002
4 6.0024 1.0008
5 314.1479 1.0066
6 1.6498 · 104 1.1531

Table 14: Condition numbers in the 2-norm of the ILUC-preconditioned system
matrix for different sparse grid levels and different drop tolerances arising in
the first iteration of Algorithm 2 for the 4d model (51) - (52)

We give the results for ILUC with BiCGSTAB with ILUC computed in every
iteration in comparison to Umfpack. We denote the setup time of ILUC(10−3)
by set, the iterative solver (BiCGSTAB) time by itsol, the total time tot =
set + itsol and the computation time of the direct solver by dir.

In Table 15 we can see that the setup time takes up a large part of the total
computation time, and thus reducing this time by not recomputing the ILUC
factorization every iteration may yield improvements. Let us look into this by
comparing the average computation times for solving the linear system for the
respective sparse grid levels (and the respective number of grid points). We use
Algorithm 7 with parameters given in Appendix A to compute ILUC less often.

Let us turn to the solver runtime presented in Figure 41 where the stars
indicate the different sparse grid levels l = 1, . . . , 8. The plot shows that us-
ing an iterative solver instead of a direct one pays off for higher sparse grid
levels. Additionally, notice that reducing the number of ILUC recomputations
increases the speed only by a small margin.

The reduced runtime for solving the linear system also reflects in the total

Level l set itsol tot dir

1 0.003 0.010 0.013 0.092
2 0.001 0.006 0.007 0.002
3 0.007 0.007 0.014 0.024
4 0.048 0.013 0.061 0.106
5 0.301 0.090 0.391 0.410
6 2.229 0.593 2.822 21.515
7 18.131 4.827 22.958 52.579
8 138.995 51.870 190.865 527.94

Table 15: Runtimes for different levels for ILUC preconditioned BiCGSTAB in
comparison to the SuitSparse Umfpack direct solver

86

computation time of Algorithm 2 which is visualized in Figure 42. Notice that
the total computation time grows less than exponentially with respect to the
number of grid points. We point out that solving the linear system is the main

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of grid points 10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Average runtime for solving the linear system

Direct solver

ILUC recomputed every iteration

ILUC not recomputed every iteration

Figure 41: Average computation times of different methods for solving the
arising linear system for levels l = 1, . . . , 8 (indicated by stars on the respective
lines)

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of grid points 10
4

10
-1

10
0

10
1

10
2

10
3

10
4

Total algorithm runtime

Direct solver

ILUC recomputed every iteration

ILUC not recomputed every iteration

Figure 42: Total computation time for the Algorithm 2 for different methods
for solving the arising linear system for levels l = 1, . . . , 8 (indicated by stars
on the respective lines)

87

bottleneck of Algorithm 2 for the 4d model (51)-(52). Since the linear system
has to be solved in every iteration the plot looks similar to the one in Figure 41.

Let us give the average number of iterations of precBiCGSTAB to share
some insight into how well ILUC preconditioning works. First and most im-
portantly, we can see in Figure 43 that the required number of iterations is
always really low and thus the preconditioning works well in the sense that the
preconditioned system is easy to solve. Thus, the main costs do not arise from
a high number of iterative solver iterations but from the ILUC construction
and its application within the iterative solver. Moreover, notice that the re-
quired amount of iterations grows with the number of grid points. On average
the number of required BiCGSTAB iterations is higher when we recompute the
ILUC factorization less often but the numbers are still acceptable. We point
out that this number does not grow with the sparse grid level since it depends
on when and how often ILUC is recomputed.

To give some insight when ILUC is recomputed, we show in which iterations
it is done for the respective levels l = 1, . . . , 8. Figure 44 shows that in the first
iterations we have to recompute the ILUC more often, whereas in the last
iterations we can use the same ILUC factorization for multiple iterations. We
interpret this as this being mainly due to the better initial guess for the iterative
solver in these iterations. Thus, it can be efficient to simply recompute ILUC
in the first iterations and just follow Algorithm 7 for the remaining iterations.
Further, note that we have to recompute ILUC more often when we go to
higher sparse grid levels. Note that we never need to recompute ILUC in the

1 2 3 4 5 6 7 8

Sparse grid level

0

5

10

15

20

25

30

Average number of BiCGSTAB iterations:

ILUC recomputed every iteration

1 2 3 4 5 6 7 8

Sparse grid level

5

10

15

20

25

30

Average number of BiCGSTAB iterations:

ILUC not recomputed every iteration

Figure 43: Average numbers of required iterations of precBiCGSTAB for dif-
ferent levels

88

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 1

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 2

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 3

0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Iterations in which ILUC is recomputed
for level l = 4

0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Iterations in which ILUC is recomputed
for level l = 5

0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Iterations in which ILUC is recomputed
for level l = 6

0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Iterations in which ILUC is recomputed
for level l = 7

0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Iterations in which ILUC is recomputed
for level l = 8

Figure 44: Iterations of Algorithm 2 in which ILUC is recomputed for level
using Algorithm 7 for solving the linear system, given for sparse grid levels
l = 1, . . . , 8

last iterations and one could thus use more iterations of Algorithm 2 without
high recomputation costs.

8.3 Six-dimensional model: accuracy analysis and speed com-
parisons

Let us present our results for the 6d model (53) - (54) explained in Appendix
A. In the beginning, we do an accuracy analysis for regular sparse grids, see
Algorithm 2 presented in Section 7.1 for our approach. We then compare the
different adaptivity versions and the runtime of Matlabs backslash operator
(SuitSparse Umfpack) to the one of ILUC preconditioned BiCGSTAB, see Sec-
tion 7.2 and 7.3 respectively for descriptions. This section is similarly structured
to Section 8.2 with numerical results for the 4d model (51) - (52) and we aim
to particularly point out the differences and similarities of the results for the
6d model to the results presented therein.

8.3.1 Accuracy

We again compute the accuracy for different sparse grid levels and adaptivity
versions by using a reference solution that we compute on a higher sparse grid

89

level. As in the last subsection, we interpolate on uniformly distributed points
for both the reference and the analyzed function for the error computations.

Regular sparse grids Let us begin our accuracy analysis by presenting re-
lative errors for the value function and all policy functions for regular sparse
grids of different levels. We compute the reference solution on a sparse grid of
level l = 6.

The respective er-errors and convergence rates for the value function, the
deposit function and the consumption function are given in Tables 16 - 18.

One can see that by adding levels we achieved a higher accuracy for all
error measures for all functions. Thus, the algorithm converges, in the sense of
going to higher sparse grid levels, to the reference solution (for our model and
algorithm parameters). Further, note that the convergence rates indicate that
higher sparse grid levels pay off since they are not stagnating for the presented

Level l Dof ev1,r ρev1,r ev2,r ρev2,r ev∞,r ρev∞,r

1 256 1.42·10−1 – 1.45·10−1 – 2.25·10−1 –
2 880 8.62·10−2 0.72 8.90·10−2 0.71 1.55·10−1 0.54
3 2 768 4.52·10−2 0.93 4.72·10−2 0.91 9.32·10−2 0.73
4 8 205 1.79·10−2 1.34 1.88·10−2 1.33 4.32·10−2 1.11
5 23 288 8.30·10−3 1.11 8.80·10−3 1.09 1.98·10−2 1.13

Table 16: Accuracy of different sparse grid levels: er-errors for the value function

Level l Dof ed1,r ρed1,r
ed2,r ρed2,r

ed∞,r ρed∞,r

1 256 1.33·10−1 – 1.55·10−1 – 3.08·10−1 –
2 880 8.74·10−2 0.61 1.01·10−1 0.61 2.09·10−1 0.56
3 2 768 5.44·10−2 0.68 6.47·10−2 0.64 1.25·10−1 0.74
4 8 205 2.90·10−2 0.91 3.65·10−2 0.83 8.90·10−2 0.49
5 23 288 1.23·10−2 1.23 1.44·10−2 1.34 3.05·10−2 1.54

Table 17: Accuracy of different sparse grid levels: er-errors for the deposit
policy function

Level l Dof ec1,r ρec1,r ec2,r ρec2,r ec∞,r ρec∞,r

1 256 2.70·10−1 – 2.80·10−1 – 4.13·10−1 –
2 880 1.53·10−1 0.82 1.58·10−1 0.82 2.59·10−1 0.67
3 2 768 7.52·10−2 1.02 8.02·10−2 0.98 1.85·10−1 0.48
4 8 205 2.92·10−2 1.36 3.20·10−2 1.33 9.72·10−2 0.93
5 23 288 1.31·10−2 1.16 1.52·10−2 1.07 5.78·10−2 0.75

Table 18: Accuracy of different sparse grid levels: er-errors for the consumption
policy function

90

levels.

Adaptive sparse grids Again, we compare different adaptivity approaches
by computing a reference solution on a sparse grid of level l = 6. Note further
that we do not add points which are not in this grid in our adaption by limiting
the maximum number of adaption steps. Further, we again denote the relative
errors on the y-axis and the number of grid points on the x-axis.

We compare value function adaptivity, deposit function adaptivity and with
logical OR combined value and deposit function adaptivity. To visualize the
adaption process, we again plot intermediate results with stars indicating the
results before the respective refinement steps. The plots in the Figures 45 - 48
show the er-errors for different refinement thresholds ε arising in the respect-
ive adaptions. You can see that for the presented refinement thresholds value
function adaptivity outperforms the other adaptivity versions for value function
approximation accuracy. For deposit function accuracy, one sometimes gets a
lower e1-error with deposit function adaptivity for a low number of adaption
steps. However, in general value function approximation works better than the
other presented adaptivity types.

To compare the final results of using different refinement thresholds for a
fixed number of maximum number of adaption steps, we present the plots in
Figure 49. As in the lower dimensional experiments, value function adaptivity

0 500 1000 1500 2000

Number of grid points

10
-2

10
-1

10
0

e1-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000

Number of grid points

10
-2

10
-1

10
0

e2-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000

Number of grid points

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000

Number of grid points

10
-2

10
-1

10
0

e1-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000

Number of grid points

10
-2

10
-1

10
0

e2-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 500 1000 1500 2000

Number of grid points

0.15

0.2

0.25

0.3

0.35

0.4

e -error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

Figure 45: Adaptivity process: accuracy plots for different adaptivity versions
starting at level l = 1 with refinement threshold ε = 10−2

91

0 1000 2000 3000 4000 5000

Number of grid points

10
-2

10
-1

10
0

e1-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10
-2

10
-1

10
0

e2-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10
-2

10
-1

10
0

e1-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10
-2

10
-1

10
0

e2-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 1000 2000 3000 4000 5000

Number of grid points

10
-2

10
-1

10
0

e -error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

Figure 46: Adaptivity process: accuracy plots for different adaptivity versions
starting at level l = 1 with refinement threshold ε = 10−3

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

10
0

e1-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 5000 10000 15000

Number of grid points

10
-3

10
-2

10
-1

10
0

e2-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 5000 10000 15000

Number of grid points

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 5000 10000 15000

Number of grid points

10
-2

10
-1

10
0

e1-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 5000 10000 15000

Number of grid points

10
-2

10
-1

10
0

e2-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 5000 10000 15000

Number of grid points

10
-2

10
-1

10
0

e -error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

Figure 47: Adaptivity process: accuracy plots for different adaptivity versions
starting at level l = 1 with refinement threshold ε = 10−4

92

0 0.5 1 1.5 2

Number of grid points 10
4

10
-3

10
-2

10
-1

10
0

e1-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-3

10
-2

10
-1

10
0

e2-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e1-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e2-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e -error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

Figure 48: Adaptivity process: accuracy plots for different adaptivity versions
starting at level l = 1 with refinement threshold ε = 10−5

0 0.5 1 1.5 2

Number of grid points 10
4

10
-3

10
-2

10
-1

10
0

e1-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-3

10
-2

10
-1

10
0

e2-error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e -error: Value function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e1-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e2-error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

0 0.5 1 1.5 2

Number of grid points 10
4

10
-2

10
-1

10
0

e -error: Deposit function

Value fct adap

Deposit fct adap

Value and deposit fct adap

Figure 49: Accuracy plots of different adaptivity versions starting at level l = 1
with refinement threshold ε = 10−1, 10−2, 10−3, 10−4, 10−5 (indicated by stars
on the respective lines) after using at most four adaption steps

93

works better than the other adaptivity types for the value function approxim-
ation. For the deposit function on the other hand, the combined adaptivity of
value and deposit function adaptivity also yields good results. Additionally, we
point out that for refinement thresholds ε = 10−4 and ε = 10−5 the accuracy
does not increase even though many more points are used, i.e. the convergence
is stagnating in this described sense. Therefore, one should start with a smaller
refinement threshold and make use of self-adaptivity to add points that help
for a better approximation quality.

8.3.2 Runtime

All of the following experiments are done on a machine of type PowerEdge R920
with 48x Intel(R) Xeon(R) CPU E7-4850 v2 with 2.3 GHz, 1.5 TB Ram and a
Matrox Electronics Systems Ltd. G200eR2 graphics card.

In Table 19, results are given when we recompute the ILUC preconditioner
in every iteration. All runtimes are given in seconds and as averages over all
HJB iterations for the respective sparse grid levels. One can see that using ILUC
preconditioned BiCGSTAB allows to compute solutions in higher dimensions
in acceptable time. Notice that e.g. for level l = 6 we need less than a minute
in comparison to multiple hours for the direct solver. As for the 4d model, we
can see that the setup time takes a large part of the total computation time
and thus reducing this time by not recomputing the ILUC factorization every
iteration may yield improvements. Let us look into this by comparing the av-
erage computation times for solving the linear system for the respective sparse
grid levels (and the respective number of grid points). We use Algorithm 7 with
parameters given in Appendix A to compute ILUC less often.

You can see in Figure 50 that using an iterative solver instead of a direct
one pays off for higher sparse grid levels. Notice that the difference is even
bigger for 6d model than for the 4d model. In contrast to the solver runtime
for the 4d model, reducing the number of ILUC recomputations increases the
speed by quite a bit.

This average runtime of solving the linear system also reflects in the total

Level l set itsol tot dir

1 0.011 0.033 0.044 0.087
2 0.014 0.006 0.021 0.056
3 0.142 0.031 0.173 0.575
4 1.105 0.158 1.263 33.929
5 6.302 1.022 7.324 514.093
6 35.615 7.128 42.743 9580.439

Table 19: Runtimes for different levels for ILUC preconditioned BiCGSTAB in
comparison to the SuitSparse Umfpack direct solver

94

computation time of Algorithm 2. Notice that Figure 51 shows that the total
computation time grows again less than exponentially with respect to the num-
ber of grid points. You can see that solving the linear system more efficiently
pays off and results in a big reduction of the total computation time. This is
due to the fact that solving the linear system is one of the main bottlenecks
of Algorithm 2 for the 6d model (53)-(54). We point out that there is another
bottleneck which is also on of the reasons that the difference of the different
solver approaches is less notable than in Figure 50 besides the logarithmic scale.
This bottleneck is the computation of the finite difference operators since we
have to compute the forward and backward difference operator for every dimen-
sion and thus twelve operators for the first derivative approximations. Notice
though that this is easily parallelizable by simply computing all of them at the
same time (e.g. one per core) instead of one after another. Hence, solving the
linear system is the only main bottleneck again.

Let us turn to the average number of iterations of precBiCGSTAB. First
and most importantly, we can see in Figure 52 that the required number of
iterations are always really low and thus the preconditioning works well in the
sense that the preconditioned system is easy to solve. Thus, the main costs
again do not arise from a high number of iterative solver iterations but from
the ILUC construction and its application within the iterative solver. Further,
notice that the required amount of iterations grows with the number of grid
points. On average, the number of required BiCGSTAB iterations is higher
when we recompute the ILUC factorization less often but the numbers are still
acceptable. We point out that this number does not grow with the sparse grid

0 1 2 3 4 5 6 7

Number of grid points 10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Average runtime for solving the linear system

Direct solver

ILUC recomputed every iteration

ILUC not recomputed every iteration

Figure 50: Average computation times of different methods for solving the
arising linear system for levels l = 1, . . . , 6 (indicated by stars on the respective
lines)

95

0 1 2 3 4 5 6 7

Number of grid points 10
4

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Total algorithm runtime

Direct solver

ILUC recomputed every iteration

ILUC not recomputed every iteration

Figure 51: Total computation time for the Algorithm 2 for different methods
for solving the arising linear system for levels l = 1, . . . , 6 (indicated by stars
on the respective lines)

1 2 3 4 5 6

Sparse grid level

2

4

6

8

10

12

14

Average number of BiCGSTAB iterations:

ILUC recomputed every iteration

1 2 3 4 5 6

Sparse grid level

6

8

10

12

14

16

18

20

Average number of BiCGSTAB iterations:

ILUC not recomputed every iteration

Figure 52: Average number of required iterations of precBiCGSTAB for differ-
ent levels

level since it depends on when and how often ILUC is recomputed.

To give some insight when ILUC is recomputed, we show in which iterations
it is done for the respective levels l. Figure 53 shows that in the first iterations

96

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 1

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 2

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 3

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 4

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 5

0 1 2 3 4 5 6 7 8 9 10

Iteration

Iterations in which ILUC is recomputed
for level l = 6

Figure 53: Iterations of Algorithm 2 in which ILUC is recomputed using Al-
gorithm 7 for solving the linear system, given for sparse grid levels l = 1, . . . , 6

we have to recompute the ILUC more often, whereas in the last iterations we
can use the same ILUC factorization for multiple iterations. We interpret this
as this being mainly due to the better initial guess for the iterative solver in
these iterations. Thus, it can be efficient to simply recompute ILUC in the
first iterations and just follow Algorithm 7 for the remaining iterations. In
contrast to the 4d model, the number of recomputations does not grow as
fast with the sparse grid level. This is due to the fact, that the precomputed
stochastic matrix contributes more to the resulting system matrix which thus
leads to smaller differences of the matrices between the iterations. Thus, the
preconditioner can more easily be used in multiple iterations.

8.4 Remarks on our numerical results

We can extract multiple results from our numerical studies. First, sparse grid
finite differences work quite well in practice for solving continuous time eco-
nomic models. For a two-dimensional model, we showed that our numerical
scheme converges to the full grid solution for which it is proven that it con-
verges to the correct solution. Second, the experiments with different types
of adaptivity indicate that value function adaptivity is performing well for ap-
proximating the value function. To get a good approximation of the policy
functions, it can sometimes be better to use a criterion suited to this func-
tion or a combined criterion. Note though that for policy functions it strongly
depends on the choice of parameters like starting sparse grid level or starting
refinement threshold how well it performs. However, in general we recommend
to use value function adaptivity since it leads to the best results in most cases.
Third, by using BiCGSTAB together with ILUC we achieve a great runtime

97

reduction which allows it to compute solutions for higher dimensional models
or higher sparse grid levels. The number of required ILUC recomputations is
by far lower when a "bigger" part of the matrix is precomputed as it is the case
for stochastic processes and thus does not change between the iterations. Note
that this could be a drawback for high dimensional models where the system
matrix changes completely in every iteration and thus one may have to recom-
pute ILUC in every iteration. We point out that without preconditioning or
several other preconditioning approaches we did not get convergence of Krylov
subspace solvers for our models in most cases.

Note that with the current Matlab implementation we cannot go to higher
sparse grid levels since it requires allocating large amounts of memory and we
thus face memory constraints. Thus, for [Ahn18] several Matlab functions are
rewritten using MEX-files.

98

9 Conclusion and Outlook
Conclusion In this work we explained a sparse grid finite difference approach
for solving economic models following the numerical scheme of [AHL+17].

To get a general convergence result for sparse grids finite difference schemes
for solving the HJB equation due to [BS90], we would need monotone sparse
grid interpolation. However, we showed that interpolation on sparse grids is
not monotone in general even if we restrict ourselves to one-dimensional mono-
tonicity for concave monotonically increasing functions. A general theoret-
ical result based on assumptions that are fulfilled by most economic models
is hardly possible, since it often depends on model parameters if the arising
interpolations are monotone for the used sparse grid. Thus, it depends on the
model parameters if our approach works correctly without specific approaches
to overcome non-monotonicity. We present two possible approaches to over-
come non-monotonicity of sparse grid interpolation. Both approaches have the
drawback of the necessity of recomputing a big part of the algorithm (or hoping
for an automatic correction). Note further that we explain that one can also
find model parameters for which the algorithm without correction fails and give
some advices for these cases.

We analyzed the accuracy and runtime for our approach for economic models
ranging from dimension d = 2 to dimension d = 6 without any correction and
achieve good results for the used model parameters. For the 2d model, we
showed that our sparse grid solution converges to the full grid solution for
which it is proven that it converges against the correct solution. Moreover,
we implemented different adaptivity criteria and self-adaptive refinement for
adaptive sparse grids. The numerical experiments for our models indicate that
for the value function accuracy an adaptivity criterion with respect to the value
function works well. For the accuracy of the policy functions, we restricted our
presentation to the deposit function, but all results are similar for other policy
functions. Here we showed that it depends on the sparse grid parameters which
adaptivity approach is preferable, but in most cases and if one is not specifically
interested in a certain policy function, we recommend the use of value function
adaptivity.

Furthermore, we compared different approaches for solving the arising lin-
ear system. The best approach for our models was ILUC in combination with
BiCGSTAB. Note that we reference approaches of other works that could out-
perform ILUC preconditioned BiCGSTAB.

Outlook In [AHL+17] mean field games are solved, i.e. not only solving the
HJB equation but also the KF equation. Solving the KF equation is not trivial
with sparse grids since standard sparse grids do not preserve the function value
range which is important for approximating density functions. An approach
similar to the one proposed in work in progress [PF18] could be possible. Note
though that their approach for limiting the function value range can yield full
grids in the worst case and thus may not be feasible in high dimensions.

Additionally, an efficient approach to handle problems where non-monotonicities
arise could be developed.

99

Furthermore, we are looking forward to theoretical results underlying our
numerical studies. For example, proving the convergence of the approach under
the assumption that interpolation is monotone for the arising functions (even
though this can happen for heterogeneous agent models). Another useful result
would be to show that the algorithm converges to the correct solution, in case
that it converges at all.

Even when using ILUC with BiCGSTAB the majority of the computational
costs remains in solving the linear system. A problem specific approach could
outperform our algebraic one. Moreover, parallelization can further improve
the runtime. Note that there exists e.g. a fix point version of ILU and several
of the approaches presented in Section 7.3 are easily parallelizable. By using
such a preconditioner, one could fully parallelize the process of solving the
linear system to get a great runtime reduction. Additionally, one can easily
do a parallel computation of the different sparse grid finite difference operators
since there is no necessity of computing them one after another. Moreover, by
using data structures like hash or tree based ones in a low level programming
language, sparse grid computations could be speeded up. One possibility would
be to use a library like SG++.

Further (numerical) studies for other adaptivity approaches (e.g. adap-
tion with respect to certain dimensions), for higher sparse grid levels and for
other economic models could be done. Moreover, the performance of our sparse
grid finite difference approach could be compared with the sparse grid Semi-
Lagrangian approaches cited in the introduction.

We are looking forward to further research in this area.

100

References
[ABIL13] Achdou, Yves ; Barles, Guy ; Ishii, Hitoshi ; Litvinov, Grig-

orii L.: Hamilton-Jacobi equations: approximations, numerical ana-
lysis and applications. Springer, 2013

[AHL+17] Achdou, Yves ; Han, Jiequn ; Lasry, Jean-Michel ; Lions, Pierre-
Louis ; Moll, Benjamin: Income and wealth distribution in mac-
roeconomics: A continuous-time approach. (2017)

[Ahn18] Ahn, SeHyoun: Sparse grid methods for economic models. 2018

[Aiy94] Aiyagari, S R.: Uninsured idiosyncratic risk and aggregate saving.
In: The Quarterly Journal of Economics 109 (1994), Nr. 3, S. 659–
684

[Bar13] Barles, Guy: An Introduction to the Theory of Viscosity Solu-
tions for First-Order Hamilton–Jacobi Equations and Applications.
In: Hamilton-Jacobi Equations: Approximations, Numerical Ana-
lysis and Applications: Cetraro, Italy 2011, Editors: Paola Loreti,
Nicoletta Anna Tchou. Berlin, Heidelberg : Springer Berlin Heidel-
berg, 2013, S. 49–109

[Bel57] Bellman, R. E.: Dynamic programming. Princeton University
Press, 1957

[Bel61] Bellman, R. E.: Adaptive Control Processes. Princeton University
Press, 1961

[Ben02] Benzi, Michele: Preconditioning techniques for large linear sys-
tems: a survey. In: Journal of computational Physics 182 (2002),
Nr. 2, S. 418–477

[Bew86] Bewley, Truman: Stationary monetary equilibrium with a con-
tinuum of independently fluctuating consumers. In: Contributions
to mathematical economics in honor of Gérard Debreu 79 (1986)

[BG04] Bungatrz, Hans-Joachim ; Griebel, Michael: Sparse grids. In:
Acta Numerica 13 (2004), Nr. 1, S. 147–269

[BGGK13] Bokanowski, Olivier ; Garcke, Jochen ; Griebel, Michael ;
Klompmaker, Irene: An adaptive sparse grid semi-Lagrangian
scheme for first order Hamilton-Jacobi Bellman equations. In:
Journal of Scientific Computing 55 (2013), Nr. 3, S. 575–605

[BM+00] Briggs, William L. ; McCormick, Steve F. u. a.: A multigrid
tutorial. Bd. 72. Siam, 2000

[BS90] Barles, G. ; Souganidis, P.E.: Convergence of Approximation
Schemes for Fully Nonlinear Second Order Equations. 1990

101

[BS04] Bertsekas, Dimitir P. ; Shreve, Steven: Stochastic optimal con-
trol: the discrete-time case. 2004

[BS17] Brumm, Johannes ; Scheidegger, Simon: Using Adaptive Sparse
Grids to Solve High-Dimensional Dynamic Models. In: Economet-
rica 85 (2017), Nr. 5, S. 1575–1612

[Can99] Candler, G. V.: Finite-Difference Methods for Dynamic Pro-
gramming Problems. In: Computational Methods for the Study
of Dynamic Economies. Cambridge University Press, Cambridge,
England (1999)

[CC] Caffarelli, L.A. ; Cabré, X.: Fully Nonlinear Elliptic Equa-
tions. American Mathematical Soc. (American Mathematical Soci-
ety: Colloquium publications Bd. 43)

[CF15] Cacace, Simone ; Falcone, Maurizio: A dynamic domain decom-
position for a class of second order semi-linear equations. In: arXiv
preprint arXiv:1502.01629 (2015)

[CFF04] Carlini, Elisabetta ; Falcone, Maurizio ; Ferretti, Roberto:
An efficient algorithm for Hamilton-Jacobi equations in high di-
mension. In: Computing and Visualization in Science 7 (2004), Nr.
1, S. 15–29

[CILS92] Crandall, M.G. ; Ishii, H. ; Lions, P.L. ; Society, American M.:
User’s Guide to Viscosity Solutions of Second Order Partial Differ-
ential Equations. American Mathematical Society, 1992

[CL83] Crandall, Michael G. ; Lions, Pierre-Louis: Viscosity solutions
of Hamilton-Jacobi equations. In: Transactions of the American
Mathematical Society 277 (1983), Nr. 1, S. 1–42

[CP14] Camilli, Fabio ; Prados, Emmanuel: Viscosity Solution. In:
Ikeuchi, Katsushi (Hrsg.): Computer Vision: A Reference Guide.
Boston, MA : Springer US, 2014, S. 856–860

[Cra97] Crandall, Michael G.: Viscosity solutions: A primer. In: Dol-
cetta, Italo C. (Hrsg.) ; Lions, Pierre L. (Hrsg.): Viscosity
Solutions and Applications: Lectures given at the 2nd Session of
the Centro Internazionale Matematico Estivo (C.I.M.E.) held in
Montecatini Terme, Italy, June 12–20, 1995. Berlin, Heidelberg :
Springer Berlin Heidelberg, 1997, S. 1–43

[Dav04] Davis, Timothy A.: Algorithm 832: UMFPACK V4. 3—an
unsymmetric-pattern multifrontal method. In: ACM Transactions
on Mathematical Software (TOMS) 30 (2004), Nr. 2, S. 196–199

[Dav07] Davis, Timothy A.: UMFPACK version 5.2. 0 user guide. In:
University of Florida (2007)

102

[DRSL16] Davis, Timothy A. ; Rajamanickam, Sivasankaran ; Sid-
Lakhdar, Wissam M.: A survey of direct methods for sparse
linear systems. In: Acta Numerica 25 (2016), S. 383–566

[FF13] Falcone, Maurizio ; Ferretti, Roberto: Semi-Lagrangian Ap-
proximation Schemes for Linear and Hamilton-Jacobi Equations.
SIAM, 2013

[GG10] Gerstner, Thomas ; Griebel, Michael: Sparse grids. In: Encyc-
lopedia of Quantitative Finance (2010)

[GH14] Griebel, M. ; Hullmann, A.: On a Multilevel Preconditioner and
its Condition Numbers for the Discretized Laplacian on Full and
Sparse Grids in Higher Dimensions. In: Singular Phenomena and
Scaling in Mathematical Models. Springer International Publishing
Switzerland, 2014

[GHO15] Griebel, M. ; Hullmann, A. ; Oswald, P.: Optimal scaling
parameters for sparse grid discretizations. In: Numerical Linear
Algebra with Applications 22 (2015), Nr. 1, S. 76–100

[GK17] Garcke, Jochen ; Kröner, Axel: Suboptimal feedback control
of PDEs by solving HJB equations on adaptive sparse grids. In:
Journal of Scientific Computing 70 (2017), Nr. 1, S. 1–28

[GLW16] Gevret, Hugo ; Lelong, Jerome ; Warin, Xavier: STochastic
OPTimization library in C++, EDF Lab, Diss., 2016

[Gri98] Griebel, Michael: Adaptive sparse grid multilevel methods for
elliptic PDEs based on finite differences. In: Computing 61 (1998),
Nr. 2, S. 151–179

[GS99] Griebel, M ; Schiekofer, T: An adaptive sparse grid Navier–
Stokes solver in 3D based on the finite difference method. In: Proc.
ENUMATH97, 1999

[Hac13] Hackbusch, Wolfgang: Multi-grid methods and applications.
Bd. 4. Springer Science & Business Media, 2013

[Hem00] Hemker, Pieter W.: Application of an adaptive sparse-grid tech-
nique to a model singular perturbation problem. In: Computing 65
(2000), Nr. 4, S. 357–378

[HS] In:Hemker, P. W. ; Sprengel, F.: Experience with the Solution
of a Finite Difference Discretization in Sparse Grids, S. 402–413

[HS99] Hemker, Pieter W. ; Sprengel, Frauke: On the representation of
functions and finite difference operators on adaptive sparse grids.
Centrum voor Wiskunde en Informatica, 1999

103

[Hug93] Huggett, Mark: The risk-free rate in heterogeneous-agent
incomplete-insurance economies. In: Journal of economic Dynam-
ics and Control 17 (1993), Nr. 5-6, S. 953–969

[JJ02] Jin, Hehui ; Judd, Kenneth L.: Perturbation methods for general
dynamic stochastic models / Mimeo April. 2002. – Forschungs-
bericht

[JMM09] Judd, Kenneth ; Maliar, Lilia ; Maliar, Serguei: Numerically
Stable Stochastic Simulation Approaches for Solving Dynamic Eco-
nomic Models. (2009), August, Nr. 15296

[JMMV14] Judd, Kenneth L. ; Maliar, Lilia ; Maliar, Serguei ; Valero,
Rafael: Smolyak method for solving dynamic economic models. In:
Journal of Economic Dynamics and Control 44 (2014), Nr. C, S.
92–123

[KD13] Kushner, Harold ; Dupuis, Paul G.: Numerical methods for
stochastic control problems in continuous time. Bd. 24. Springer
Science & Business Media, 2013

[KK04] Krueger, Dirk ; Kubler, Felix: Computing equilibrium in OLG
models with stochastic production. In: Journal of Economic Dy-
namics and Control 28 (2004), Nr. 7, S. 1411–1436

[KK17] Kalise, Dante ; Kunisch, Karl: Polynomial approximation of
high-dimensional Hamilton-Jacobi-Bellman equations and applica-
tions to feedback control of semilinear parabolic PDEs. In: arXiv
preprint arXiv:1702.04400 (2017)

[KMV16] Kaplan, Greg ; Moll, Benjamin ; Violante, Giovanni L.: Mon-
etary policy according to HANK. (2016)

[Kos] Koster, Frank: Multiskalen-basierte Finite-Differenzen-Verfahren
auf adaptiven dünnen Gittern, Diss.

[KW15] Kang, Wei ; Wilcox, Lucas C.: Mitigating the curse of dimen-
sionality: sparse grid characteristics method for optimal feedback
control and HJB equations. In: Computational Optimization and
Applications (2015), S. 1–27

[Lan13] Langtangen, Hans P.: Computational partial differential equa-
tions: numerical methods and diffpack programming. Bd. 2.
Springer Science & Business Media, 2013

[LS88] Lions, P.-L. ; Souganidis, P. E.: Viscosity Solutions of Second-
Order Equations, Stochastic Control and Stochastic Differential
Games. In: Fleming, Wendell (Hrsg.) ; Lions, Pierre-Louis
(Hrsg.): Stochastic Differential Systems, Stochastic Control The-
ory and Applications. New York, NY : Springer New York, 1988, S.
293–309

104

[LSC03] Li, Na ; Saad, Yousef ; Chow, Edmond: Crout versions of ILU for
general sparse matrices. In: SIAM Journal on Scientific Computing
25 (2003), Nr. 2, S. 716–728

[MMV13] Maliar, Lilia ; Maliar, Serguei ; Villemot, Sébastien: Taking
perturbation to the accuracy frontier: a hybrid of local and global
solutions. In: Computational Economics 42 (2013), Nr. 3, S. 307–
325

[Mol16a] Moll, Benjamin: Lecture 1: Lecture 3:Hamilton-Jacobi-
Bellman Equations. http://www.princeton.edu/~moll/ECO521_
2016/Lecture3_ECO521.pdf. Version: 2016

[Mol16b] Moll, Benjamin: Lecture 4: Diffusion Processes, Stochastic
HJB Equations and Kolmogorov Forward Equations. http://
www.princeton.edu/~moll/ECO521_2016/Lecture4_ECO521.pdf.
Version: 2016

[Mol16c] Moll, Benjamin: Supplement to Lecture 3: Viscosity Solutions for
Dummies (including Economists). http://www.princeton.edu/
~moll/viscosity_slides.pdf. Version: 2016

[PF18] Pflüger, Dirk ; Franzelin, Fabian: Limiting function value
ranges of sparse grid surrogates. 2018

[Pfl10] Pflüger, Dirk: Spatially Adaptive Sparse Grids for High-
Dimensional Problems. München : Verlag Dr. Hut, 2010

[Pha09] Pham, H.: Continuous-time Stochastic Control and Optimiza-
tion with Financial Applications. Springer Berlin Heidelberg, 2009
(Stochastic Modelling and Applied Probability)

[PR55] Peaceman, Donald W. ; Rachford, Henry H. Jr: The numerical
solution of parabolic and elliptic differential equations. In: Journal
of the Society for industrial and Applied Mathematics 3 (1955), Nr.
1, S. 28–41

[Pro05] Protter, Philip E.: Stochastic differential equations. In:
Stochastic integration and differential equations. Springer, 2005,
S. 249–361

[RS87] Ruge, John W. ; Stüben, Klaus: Algebraic multigrid. In: Multi-
grid methods. SIAM, 1987, S. 73–130

[Saa03] Saad, Yousef: Iterative methods for sparse linear systems. SIAM,
2003

[Sch98] Schiekofer, Thomas: Die Methode der Finiten Differenzen auf
dünnen Gittern zur Lösung elliptischer und parabolischer partieller
Differentialgleichungen, PhD thesis, University of Bonn, Diss., 1998

105

http://www.princeton.edu/~moll/ECO521_2016/Lecture3_ECO521.pdf
http://www.princeton.edu/~moll/ECO521_2016/Lecture3_ECO521.pdf
http://www.princeton.edu/~moll/ECO521_2016/Lecture4_ECO521.pdf
http://www.princeton.edu/~moll/ECO521_2016/Lecture4_ECO521.pdf
http://www.princeton.edu/~moll/viscosity_slides.pdf
http://www.princeton.edu/~moll/viscosity_slides.pdf

[Sch18] Schober, Peter: Solving dynamic portfolio choice models in dis-
crete time using spatially adaptive sparse grids. (2018)

[SJ13] Schmedders, K. ; Judd, K.L.: Handbook of Computational Eco-
nomics. Elsevier Science, 2013 (Handbook of Computational Eco-
nomics Bd. 3)

[Smo63] Smolyak, S. A.: Quadrature and interpolation formulas for tensor
products of certain class of functions. In: Dokl. Akad. Nauk SSSR
148 (1963), Nr. 5, S. 1042–1053. – Transl.: Soviet Math. Dokl.
4:240-243, 1963

[Son86] Soner, Halil M.: Optimal control with state-space constraint I.
In: SIAM Journal on Control and Optimization 24 (1986), Nr. 3,
S. 552–561

[Spr01] Sprengel, Frauke: Multilevel algorithms for finite difference dis-
cretizations on sparse grids. In: Numerical Algorithms 26 (2001),
Nr. 2, S. 111–121

[Sto08] Stokey, Nancy L.: The Economics of Inaction: Stochastic Control
models with fixed costs. Princeton University Press, 2008

[Stü01] Stüben, Klaus: An introduction to algebraic multigrid. In: Mul-
tigrid (2001), S. 413–532

[TOS00] Trottenberg, Ulrich ; Oosterlee, Cornelius W. ; Schuller,
Anton: Multigrid. Academic press, 2000

[War14] Warin, Xavier: Adaptive sparse grids for time dependent
Hamilton-Jacobi-Bellman equations in stochastic control. In: arXiv
preprint arXiv:1408.4267 (2014)

[Wat15] Wathen, Andy J.: Preconditioning. In: Acta Numerica 24 (2015),
S. 329–376

[XZ17] Xu, Jinchao ; Zikatanov, Ludmil: Algebraic multigrid methods.
In: Acta Numerica 26 (2017), S. 591–721

[Y+02] Yang, Ulrike M. u. a.: BoomerAMG: a parallel algebraic multigrid
solver and preconditioner. In: Applied Numerical Mathematics 41
(2002), Nr. 1, S. 155–177

[Yu08] Yu, Xinwei: Viscosity Solutions (lecture 11). http://www.math.
ualberta.ca/~xinweiyu/527.1.08f/lec11.pdf. Version: 2008

[Zen91] Zenger, Christoph: Sparse Grids. 1991

[Zum00] Zumbusch, Gerhard W.: A Sparse Grid PDE Solver; Discretiza-
tion, Adaptivity, Software Design and Parallelization. In: Advances
in Software Tools for Scientific Computing 10 (2000), S. 133–177

106

http://www.math.ualberta.ca/~xinweiyu/527.1.08f/lec11.pdf
http://www.math.ualberta.ca/~xinweiyu/527.1.08f/lec11.pdf

A Appendix

A.1 A model with four state variables – a three-asset model
with productivity modeled by a continuous stochastic pro-
cess

We are now turning to a model with four state variables that is an extension of
our 2d-model. The theory developed and used in the lower dimensional problem
can be adapted to this problem. Thus, we only describe the differences to the
2d-model. Hence, the basic idea here is again to derive an appropriate approach
for full grid finite difference methods and then use sparse grid finite difference
method to solve this model. Due to the higher dimensionality, the standard
full grid approach is no longer useful and the main advantage of sparse grids
shows off. We refer to Section 2.2 for descriptions of the model components, to
Section 4.3 for explanations of the numerical approach and to Section 6.1 for
more details, in particular with respect to creating a monotone scheme.

A.1.1 Model formulation

We are now interested in the following maximization problem

max
{ct,dat ,dht }

E0

∫ ∞
0

e−ρtu(ct, ht)dt (51)

subject to

ḃt = wztr
b(bt)bt − dat − χ(dat , at)− dth − χ(dht , ht)− ct

ȧt = raat + dat

ḣt = dht

żt = µ(zt)dt+ σ(zt)dWt

bt ≥ b, at ≥ 0, ht ≥ 0

(52)

The diffusion is reflected on the boundaries in dimension z, i.e.

∂zv(b, a, h,
¯
z) = 0, ∂zv(a, z̄) = 0, for b ∈ (

¯
b,∞), a ∈ (

¯
a,∞), h ∈ (

¯
h,∞).

We model housing assets h to pay a utility return added to the standard utility
function instead of a monetary return, i.e.

u(c, h) = c1−γ

1− γ + rhh

Notice that we now have a stationary diffusion process instead of a two-state
Poisson process for income zt. We assume that a worker’s efficiency evolves
stochastically over time on a bounded interval [

¯
z, z̄] with

¯
z ≥ 0.

107

The HJB equation for this model is

ρv(b, a, h, z) = max
c,da,dh

u(c, h)

+ vb(b, a, h, z)(wz + rb(b)b− da − χ(da, a)− dh − χ(dh, h)− c)
+ va(b, a, h, z)(ra + da)
+ vh(b, a, h, z)(dh)

+ ∂zv(b, a, h, z)µ(z) + 1
2∂zzv(b, a, h, z)σ2(z).

A.2 A model with six state variables – a two-asset model with
four skill types modeled by continuous stochastic processes

The following model is again an extension of the 2d-model presented in Sec-
tion 6.1. It is used to analyze the high-dimensional behavior of the sparse grid
approach. Note that by introducing different weights and ranges of the differ-
ent stochastic processes or different types of stochastic processes, this multi-
dimensional modeling allows further analysis in the economic context, but we
restrict our numerical analysis to this simplified version.

A.2.1 Model formulation

We are interested in the following maximization problem

max
{ct,dt}t≥0

E0

∫ ∞
0

e−ρtu(ct)dt (53)

subject to

ḃt = (z1
t + z2

t + z3
t + z4

t)
4 wrb(bt)bt − dt − χ(dt, at)− ct

ȧt = raat + dt

ż1
t = µ(z1

t)dt+ σ(z1
t)dWt

ż2
t = µ(z2

t)dt+ σ(z2
t)dWt

ż3
t = µ(z3

t)dt+ σ(z3
t)dWt

ż4
t = µ(z4

t)dt+ σ(z4
t)dWt

bt ≥ b, at ≥ 0

(54)

Here zit, i = 1, . . . , 4 can be interpreted as different types of skill or luck that
evolve differently over time. We use the standard CRRA-utility function again
and have reflecting boundary conditions again.

108

We get the HJB equation

ρv(b, a, z1,z2, z3, z4)
= max

c,d
u(c)

+ vb(b, a, z1, z2, z3, z4)
((z1 + z2 + z3 + z4)

4 w + rb(b)b− d− χ(d, a)− c
)

+ va(b, a, z1, z2, z3, z4)(ra + d)

+ ∂z1v(b, a, z1, z2, z3, z4)µ(z1) + 1
2∂z1z1v(b, a, z1, z2, z3, z4)σ2(z1)

+ ∂z2v(b, a, z1, z2, z3, z4)µ(z2) + 1
2∂z2z2v(b, a, z1, z2, z3, z4)σ2(z2)

+ ∂z3v(b, a, z1, z2, z3, z4)µ(z3) + 1
2∂z3z3v(b, a, z1, z2, z3, z4)σ2(z3)

+ ∂z4v(b, a, z1, z2, z3, z4)µ(z4) + 1
2∂z4z4v(b, a, z1, z2, z3, z4)σ2(z4).

A.3 Parameters

Let us denote the model and algorithm parameters that we used in our nu-
merical studies. Notice that we do not state parameters here that differ in the
experiments (like sparse grid levels or adaptivity parameters). These are stated
for the respective numerical experiments in Section 8.

A.3.1 Parameters for the two-dimensional model

We use the values for the parameters given in Table 20 in our 2d model (40)-
(41).

Parameter Default value Description
γ 2 CRRA utility parameter
ρ 0.06 discount rate
rbpos 0.03 returns on liquid asset b if positive
rbneg 0.12 returns on liquid asset b if negative
ra 0.04 returns on illiquid asset a
rh 0.0003 returns on illiquid asset h
χ0 0.07 parameter of cost function
χ1 3 parameter of cost function
χ2 0 parameter of cost function (fix costs)
ξ 0 automatic deposit parameter
w 4 wage
z1 0.8 Poisson state 1 (productivity)
z2 1.3 Poisson state 2 (productivity)
λ ±1/3 Poisson parameters

Table 20: Model parameters for the 2d model

109

For Algorithm 6 for solving the 2d model, we use the parameters given in
Table 21.

Parameter Default value Description
crit 10−10 algorithm stopping criterion (maximum absolute

value function value of all grid points)
maxit 35 maximum number of iterations in Algorithm 2

∆ 100 ∆ in HJB equation

Table 21: Algorithm parameters for the 2d model

We give the lower and upper bounds for the respective states in the 2dmodel
in Table 22. Note that the lower bounds are actually model parameters, whereas
the upper bounds for the assets are numerical bounds on the computational
domain.

State Lower bound Upper bound Description
b −2 40 liquid asset
a 0 70 illiquid asset

Table 22: Bounds for the respective states of the 2d model

A.3.2 Parameters for the four-dimensional model

We use the values for the parameters in our 4d model (51) - (52) given in Table
23.

Parameter Default value Description
γ 2 CRRA utility parameter
ρ 0.06 discount rate
rbpos 0.03 returns on liquid asset b if positive
rbneg 0.12 returns on liquid asset b if negative
ra 0.04 returns on illiquid asset a
rh 0.0003 returns on illiquid asset h
χ0 0.08 parameter of cost function
χ1 3 parameter of cost function
χ2 0 parameter of cost function (fix costs)
w 4 wage
σ 0.1414 standard deviation for productivity
ẑ 1 mean of z (used for computation of µ)
θ 0.3 persistence

Table 23: Model parameters for the 4d model

For Algorithm 6 for solving the 4d model, we use the parameters given in
Table 24.

110

Parameter Default value Description
crit 10−7 algorithm stopping criterion (maximum absolute

value function value of all grid points)
maxit 35 maximum number of iterations in Algorithm 2

∆ 100 ∆ in HJB equation

Table 24: Algorithm parameters for the 4d model

We give the lower and upper bounds for the respective states in the 4dmodel
in Table 25 . Note that all lower bounds and the upper bound of productivity
are actually model parameters, whereas the upper bounds for the assets are
numerical bounds on the computational domain.

State Lower bound Upper bound Description
b −2 40 liquid asset
a 0 70 illiquid asset
h 0 70 housing asset
z 0.8 1.2 productivity

Table 25: Bounds for the respective states of the 4d model

A.3.3 Parameters for the six-dimensional model

We use the values for the parameters in our 6d model (53) - (54) given in Table
26.

Parameter Default value Description
γ 2 CRRA utility parameter
ρ 0.06 discount rate
rbpos 0.03 returns on liquid asset b if positive
rbneg 0.12 returns on liquid asset b if negative
ra 0.04 returns on illiquid asset a
χ0 0.07 parameter of cost function
χ1 3 parameter of cost function
χ2 0 parameter of cost function (fix costs)
w 5 wage
σ 0.1414 standard deviation for productivity
ẑ 1 mean of z (used for computation of µ)
θ 0.3 persistence

Table 26: Model parameters for the 6d model

For Algorithm 6 for solving the 6d model, we use the parameters given in
Table 27.

111

Parameter Default value Description
crit 10−7 algorithm stopping criterion (maximum absolute

value function value of all grid points)
maxit 50 maximum number of iterations in Algorithm 2

∆ 100 ∆ in HJB equation

Table 27: Algorithm parameters for the 6d model

We give the lower and upper bounds for the respective states in the 6dmodel
in Table 28. Note that all lower bounds and the upper bound of productivity
are actually model parameters, whereas the upper bounds for the assets are
numerical bounds on the computational domain.

State Lower bound Upper bound Description
b −2 40 liquid asset
a 0 70 illiquid asset
h 0 70 housing asset
z1 0.8 1.2 skill type 1
z2 0.8 1.2 skill type 2
z3 0.8 1.2 skill type 3
z4 0.8 1.2 skill type 4

Table 28: Bounds for the respective states of the 6d model

A.3.4 Parameters for solving the linear system

Let us give the parameters for Algorithm 7 in Table 29.

Parameter Default value Description
maxit1 30 maximum number of BiCGSTAB iterations using

the "old" LU factors
maxit2 300 maximum number of BiCGSTAB iterations using

"new" LU factors
tol1, tol2 10−12 convergence thresholds of BiCGSTAB

Table 29: Bounds for the respective states of the 6d model

112

	Introduction
	Setting and solution method used in this work
	Setting and main idea
	Basis of our approach
	Our work and main contributions

	Context of this work: related problem settings and solution methods
	Other approaches to solve high dimensional continuous time model problems
	Approaches used in economics to handle high dimensional discrete time model problems

	Structure of this work

	Setup and Basics
	General optimal control problems
	Deterministic models
	Stochastic models

	Optimal control problems in economics
	Simple economic model
	Extension: borrowing constraint
	Extension: heterogeneity - stochastic settings
	Extension: illiquid assets
	Further extensions and other models

	Motivation to solve higher dimensional models

	Sparse Grids
	Construction and extensions of sparse grids
	One-dimensional basis functions
	Multi-dimensional basis functions
	Regular sparse grids
	Non-zero boundaries
	Adaptive sparse grids

	Finite difference schemes on sparse grids
	Finite difference schemes on sparse grids based on dimensional splitting
	Finite difference schemes on sparse grids based on interpolation
	Example of finite difference operator construction

	Viscosity Solutions and General Convergence Theory
	Viscosity solutions
	Important definitions and the notion of viscosity solutions
	Uniqueness, existence and regularity of viscosity solutions

	Convergence of general numerical approximation schemes for fully non-linear second order PDEs
	Finite difference approach on full grids for a simple model
	Model
	Discretization
	Numerical approach for handling the borrowing constraint
	Numerical approach for overcoming the non-linearity
	Numerical approach for stochastic settings
	Matrix notation

	(Non-)Convergence of Sparse Grid Finite Difference Schemes for solving the HJB equation
	(Non-)monotonicity of interpolation on sparse grids
	Strictly concave monotonically increasing functions with positive coefficients
	Concave monotonically increasing functions with negative coefficients
	Non-monotone sparse grid interpolation for concave monotonically increasing functions
	Overcoming the non-monotonicity of sparse grid interpolation

	Comments on convergence in our setting
	Overcoming non-monotonicity in our setting
	Issues arising in our setting without grid correction

	Model Examples
	A model with two state variables – a two-asset model
	Model formulation
	HJB equation and first order conditions
	Numerical approach using an upwind scheme

	Higher dimensional models

	Algorithm and Implementation
	Algorithm for regular sparse grids
	Adaptive refinement on sparse grids for the HJB equation
	Adaptive refinement on sparse grids
	Adaptive refinement on sparse grids for the HJB equation
	Different types of adaptivity criteria

	Solving the linear system
	Our approach for solving the linear system
	Multilevel and other approaches used in related works

	Numerical Results
	Two-dimensional model: plots and accuracy analysis
	Accuracy for regular sparse grids
	Plots for regular sparse grids
	Plots for adaptive sparse grids
	Accuracy for adaptive sparse grids

	Four-dimensional model: accuracy analysis and speed comparisons
	Accuracy
	Runtime

	Six-dimensional model: accuracy analysis and speed comparisons
	Accuracy
	Runtime

	Remarks on our numerical results

	Conclusion and Outlook
	References
	Appendix
	A model with four state variables – a three-asset model with productivity modeled by a continuous stochastic process
	Model formulation

	A model with six state variables – a two-asset model with four skill types modeled by continuous stochastic processes
	Model formulation

	Parameters
	Parameters for the two-dimensional model
	Parameters for the four-dimensional model
	Parameters for the six-dimensional model
	Parameters for solving the linear system

