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1 Introduction

Humans have been fascinated by the idea of building robots and creating artificial
intelligence since the appereance of the first computers. In the early times engineers and
scientists were aiming to build machines controlled by a computer program, which acts
autonomously beside humans.
Although the field of robotics has made huge progress in solving many specific problems,
such as the automatisation of industrial fabrication processes or controlling simple
humanoid robots or drones, the world is far too complicated to have a comprehensive
model of everything around us in a single conventional computer program. An alternative
approach is to go one step back and not to develop a brain, which already has a model
for the world, but to create a model, following general principles, which would make the
robot able to adapt to the world. From these general principles one derives the equation
of motions, the time evolution of the internal variables. In the following we will discuss a
few different suggestions. One principle could be, to act in a way which maximises future
options. Another idea is, to minimise the prediction error of the effects of one’s actions.
A third one is, to maximise the information (entropy) of some characteristic distributions
of the robot’s internal variables.
In the first case one can think about a man in a labyrinth. At every branch-off he chooses
the direction wich has the most outgoing paths.
The second case is discussed intensively in the book entitled ‘The Playful Machine’
([DM11]). Here one might consider a bee flying against a window. While it cannot see
the barrier, it feels its effect, which yields to an error between its own and the expected
position. As a consequence it tries to act differently by changing the direction.
This thesis sticks to the third principle. A simple robot with limited knowledge about
itself and the surrounding world is controlled by a neuron, which adapts its normalised
firing rate (the activity distribution) to maximise the entropy of this distribution. The
dynamics of one neuron has already been examined by Walter ([Wal13]), but without
feedback coming from the environment. This robot with the one neuron is simulated in a
physical environment, called LPZROBOTS, developed by the group ‘Research Network
for Self-Organization of Robot Behavour’ in Leipzig.
First a small overview of the software and its various optional tools is given. The examined
robot, controller and motors are discussed in detail. This is followed by an analysis of
the idealised underlying dynamical system, for which the fixpoints, their stability and
the limit cycles are determined.
In the main part the different behaviours of the robot thrown in this environment are
described and compared. What is essential is the way in which the change of the adaption
parameters yields to specific behaviours. Additionaly a small insight of an extended
system is given in which a second neuron is added and their interaction leading to
self-organisation is shortly shown.
Finally a summary of results with an outlook of possible future research options is given.
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2 Theory and Setup

2.1 The LPZROBOTS Simulator

LPZROBOTS is a robot simulator with a graphical interface implemented in C++ and
developed by the group ‘Research Network for Self-Organization of Robot Behavior’
(Leipzig/Göttingen/Edinburgh) and based on the widely used software library ODE
(Open Dynamic Engine). The simulated world consists of simple objects with a fixed
geometric shape (like cylinders, spheres, boxes etc.), which can be connected through
different types of joints (slider joints, hidge joints etc.) to form robots. One can use
materials with different properties (elasticity, hardness etc.) for the objects. The semi-
implicit Euler method is used for integrating the differential equations ([DM11]). Each
object follows the Newtonian laws of physics, namely gravitation, friction, centrifigual
forces and others. The simulator combines many useful features. It is possible to change
parameters online from the command line. The Guilogger, an external tool, allows one
to plot the parameters and variables while running the simulation, which alternatively
can be visualised by Matrixviz. Additionally one can overload different functions and
define custom keyboard shortcuts to control the simulation process. For example, forces
and torques can be applied to the robot manually. This feature was used intensively to
generate certain dynamics. A typical simulation is built up as follows: the user defines
the frame conditions of the virtual world by setting up the environment and initialises
the obstacles (passive objects) and the agents (controlled robots). After the intialisation
the simulator enters the main loop and performs iteratively physical simulation steps
using the ODE. The update of the graphics is done by using ‘Open Scene Graph’ with a
frame rate of 25 fps ([DM11]).

A robot basically consists of three parts: A body with some geometrical shape, motors
and sensors. The robot can just gain information about its own state and the environment
through sensors (for example the position of some internal state or the actual velocity).
With its motors the robot can perform certain actions; there are for example angular
motors accelerating wheels or slider servos, which can move a weight on an axis.

Every robot comes along with a controller, the ‘brain’ of the robot, which is in principle
a function, mapping the current sensor values to motor commands. The parameters
defining the properties of this function can be adapted, making learning possible. An
important but simple controller without learning is the ‘sinecontroller’ which sends
motorcommands according to a sine function.

2.2 Barrel with one bar

The robot (Fig. 2.1) mainly examined in this thesis is closely related to the Barrel2Masses
and the SphereRobot3Masses built-in robot classes of LPZROBOTS. It is a cylinder with
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SECTION 2 THEORY AND SETUP

Figure 2.1: The robot which is examined in this thesis. The main body is a cylinder with
one internal axis on which a pendular is moved by a servo, the robot starts
moving due to the change of the barycenter. The black line and φ denote
the global z-axis and the angle between it and the internal axis. left: The
barrel in rolling motion. By construction it is (theoretically) just possible to
move along the global x-axis. right: The barrel is placed on its side. In this
position the influence of the environment is minimised.

an internal axis fixed orthogonal to the z-axis of the cylinder, with a small spherical
mass on it, called the pendular, which can be moved by a slider servo. Moving of the
small mass leads to a change of the centre of mass. The robot’s only sensor measures the
actual position of the small sphere on the axis, normalised to [-1,1]. Theoretically this
robot should just be able to move along the x-axis, but unfortunately for some parameter
configurations, strange behaviours occur. This will be shortly discussed in the appendix.
The dynamics of the robot is regulated by a controller following learning rules according
to [LG13], which are described in more detail in section 2.3.2 . The system is inspired
from the single self-coupled neuron called autapse.
The motors implemented in the simulation are realistic, hence they have finite power

and work according to the physical laws. After receiving a command from the controller
the motor does not make the pendular jump instantly to the desired position, but a force
or torque takes effect which should drive it to this state. This force/torque is calculated
using proportional-integral-derivative control (PID control), a general and widely used
mechanism from feedback and control theory.

2.2.1 Feedback and Control Theory

Consider a simple system characterised by a measurable variable, S. The system is
subject to the variation of some unknown environmental variable ν. Additionally one
is able to modify the state of the system, S, with some control input, u. Therefore the
system has the functional form S = S(u, ν, t), where t denotes the time variable. The goal
is to lock the state, S, of the system to some value, St, and keep it there, regardless of the
variation of ν. To reach this, S and the difference (error), e = S − St is measured. With
this error a control value, u(e), is calculated and applied to the system. This procedure
is repeated in every timestep. Depending on the problem, one has different possibilities
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2.2 BARREL WITH ONE BAR

to calculate the feedback control variable u(e).

2.2.1.1 PID controller

An easy and effective way is to use the following feedback gain:

u(e, t) = gP e(t) + gI

∫ t

t0
e(τ)dτ + gD

d

dt
e(t) = P + I +D (2.1)

where gP , gI and gD are the gain rates which have to be tuned carefully. Roughly
speaking, one calculates u taking the present error (P), the accumulated past errors (I)
and a prediction of future errors (D) based on its current rate of change. This method can
be generalised to more system/control variables. In the case of the robots examined in this
thesis there is the following situation: the system is characterised by the actual position,
xa, of the pendular on the bar and the desired target position, xt. For simplicity in the
following xa will often be denoted by x, hence the measurable variable S of the controller
is equal to x. The slider servo can add a force to this sphere of mass m, F = mẍ = u. So
Eq. (2.1) looks like

m
d2

dt2x(t) = gP (xt − x(t)) + gI

∫ t

t0
(xt − x(τ))dτ + gD

d
dt(xt − x(t)) . (2.2)

Setting gI = 0 and doing some algebra, this yields to

(xt − x(t)) + gD
gP

d
dt(xt − x(t)) + m

gP

d2

dt2 (xt − x(t)) = 0 , (2.3)

which is the differential equation of a damped spring with an elongation of ∆x = xt−x(t).
Compare this to the movements of extremities in nature. In LPZROBOTS the PID
controller is implemented in the following way:

m
d2

dt2x = KP

[
(xt − x) +KD

d
dt(xt − x)

]
(2.4)

where KP = gP , and KD = gD
gP

. To verify that the slider servo works as expected, the
equation of the PID controller is solved numerically and compared with the data of the
simulation. To do this Eq. (2.4) is transfered into a system of first order equations :

ẋ =: v

v̇ = ẍ = KP

m
[(xt − x)−KD(v − ẋt)]

(2.5)

The solution is calculated using a simple Euler method with stepsize dt = 0.01

v(t+ dt) = v(t) + v̇(t)dt
x(t+ dt) = x(t) + ẋ(t)dt = x(t) + v(t)dt ,

(2.6)

with the initial conditions:

x(t0) = v(t0) = 0 . (2.7)
The barrel is placed on top (see Fig. 2.1), such that the axis is oriented parallel to the

ground. Hence the only force acting on the pendular is the one generated by the slider
servo.
The figures 2.2 and 2.3 show that a relatively good matching is obtained, and hence that
the motor works adequately.
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SECTION 2 THEORY AND SETUP
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Figure 2.2: Testing of the PID controller; Red: controller output (target position xt),
green: sensor value (actual position xa), blue: numerical solution of Eq.
(2.2.1.1) with dt = 0.01. The green and blue curves fall on each other. Left:
The parameters used for the simulation, close to critical damping (KP = 200,
KD = 0.1, KI = 0). Right: Nearly undamped case. Note that for this figure
the jointbounds have been increased, hence the pendular can overshoot the
[−1, 1] interval (KP = 200, KD = 0.035, KI = 0). The stepsize is dt = 0.01.

2.2.1.2 Critical damping

In the case of gI = 0 (also called PD control) and given gP , a good choice is to set gD to
critical damping gcD. The damped harmonic oscillator

ẍ+ aẋ+ bx = 0 , (2.8)

where a is the damping and
√
b is the natural frequency has the general solution

x(t) = c1e
λ1t + c2e

λ2t , (2.9)

where λ1/2 = −a
2 ±

√
a2

4 − b are the eigenvalues of the oscillation. The oscillator is
critically damped if there is just one degenerated eigenvalue. Hence the condition is given
by

a2 = 4b . (2.10)

In case of LPZROBOTS we have (e = (xt − x)):

më = −KP (e+KDė) (2.11)

⇒ ë+ KPKD

m
ė+ KP

m
e = 0 (2.12)

Hence Kc
D = 2

√
m
KP

. The parameters for the main simulation in this thesis are

KP = 200, KD = 0.1 and m = 1 while Kc
D = 2

√
KP
m =

√
2

10 ≈ 0.1414. The damping is
slightly subcritical.
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2.3 NEURAL DYNAMICS
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Figure 2.3: Left: The target position xt is changing according to a sine function; Red:
controller output (target position xt), green: sensor value (actual position xa),
blue: numerical solution of Eq. (2.2.1.1) with dt = 0.01. The green and blue
curves fall on each other. The fitting is even better for continuous contoller
commands. Right: Illustration of how the motor works. The force acting on
the pendular is calculated according to a damped spring with centrepoint xt.

2.3 Neural dynamics

2.3.1 General principles

As a model of a neuron, two states are considered; that of being at rest or that of firing.
The state of a neuron depends on its membrane potential, x(t). Once the membrane
potential reaches a certain threshold the neuron generates a spike, then the membrane
potential returns rapidly to the resting mode. Averaging the firing events over time, one
gets a normalised firing rate, y(x(t)) ∈ [0, 1]. The time average y is hence dependent
on the membrane potential x which changes according to some input. The firing rate
statistics is given by

p(z) = 1
T

∫ t0+T

t0
δ(z − y(t))dt,

∫ 1

0
p(z)dz = 1 (2.13)

where t0 is the initial time and T the measured time. T would be substantially larger
than the time that one firing event takes. A general question arises as to how the firing rate
distribution p(y) looks like. Here two underlying general principles are considered; on the
one hand the system aims to minimise the energy used, while on the other hand attempts
to maximise its output information entropy [SK99]. Where the expectation value, µ, and
the standard deviation, σ, are fixed, the entropy of a distribution is maximised by a
Gaussian probability distribution [Gro10]:

q(y) ∝ exp
(
−(y − µ)2

2σ2

)
∝ exp(λ1y + λ2y

2) (2.14)

Following these principles the goal is to minimise the Kullback-Leibler divergence
[Gro10] of p(y) and q(y):

DKL(p, q) =
∫
p(y) ln p(y)

q(y)dy (2.15)
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SECTION 2 THEORY AND SETUP

2.3.2 One neuron with internal adaptation

In this thesis a neuron is considered, which controls the dynamics of the robot and is
coupled to itself through the environment. Let xa denote the position of the small sphere
on the bar. The membrane potential is assumed to be a linear function of xa and the
firing rate of the neuron is given by the transfer function used by Linkerhand & Gros
[LG13]

y(xa) = 1
1 + e−a(xa−b)

, (2.16)

where a(t) > 0 and b(t) are the adapting gain and threshold parameters. The target
position is given by:

xt(y(xa)) = 2
(
y(xa)−

1
2

)
= f(xa) , (2.17)

which is just the output firing rate, rescaled to [−1, 1]. The transformation is recom-
mended to make self-coupling possible, so the range of xt should be equal to the domain
of the input xa. The target function q is desired to be symmetric and centred around
the origin, hence λ1 = −λ2 = λ are chosen. The equations of motion for the internal
parameters a and b are derived using the second principle, the maximisation of entropy.
Minimising DKL in terms of a and b leads to the following equations [LG13]:

ȧ = εa

(1
a

+ (x− b)θ
)

ḃ = −εbaθ
(2.18)

where θ = 1− 2y + (−λ+ 2λy)(1− y)y and εa, εb are appropriately chosen adaptation
rates (see section 2.4).
In contrast to the autapse [Wal13], y or respectively xt is not the input for the next

time step, but xt(y) is given as a motor command to the PID controller. The input for
the neuron in the next time step is then the new position, xa(t+ dt), of the pendular,
after the force computed by the PID controller was applied.

2.4 Timescales

Every part of a physical system evolves on different timescales. In the case of the neuron
this could be the relaxation time after firing. Matching the timescales of the different
parts can be an arduous task. While choosing values for εa and εb one has to take this
into account. It has to match the rolling motion of the cylinder and the response time
of the motor. Picking a very big value should theoretically lead to a quick convergence
of the firing rate p to the target distribution q. In such a situation, the motor would
be unable to follow the rapid changes of the controller commands and the dynamics
repertoire of the robot is heavily reduced.
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2.4 TIMESCALES
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Figure 2.4: The barrel is equipped with the sine controller. The actual speed is plotted
against the time, while the period T of the controller’s sine function is
decreased at certain moments. Left: The period is decreased slowly, the barrel
accelerates. At some point (T ∈ [20, 25]) the robot cannot follow the rapidly
changing commands of the controller anymore and the barrel stops. Right:
The period is decreased directly from 60 to 30, a value for which the barrel
was still in a smooth rolling mode in the case of slow decrease. The barrel
stops immediately, hence the state of the system depends on the preceding
events.
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Figure 2.5: The average speed with standard deviation is plotted against the period. The
crosses belong to the left plot of Fig. 2.4 (slow decrease), the circles to the
right plot (rapid decrease). Note that the x-axis is inverted.

The robot is now equipped with the sine controller, which is an elementary tool to
produce rolling motions, but it does not allow learning.

The controller generates commands according to a sine function. Starting with a period
of 60 this controller leads the barrel to a smooth rolling motion. As the period of the
sine is decreased the barrel becomes faster. At some point, depending also on the actual
dynamics, this behaviour collapses and the motors cannot follow the rapid changes of the
commands anymore.

In the right picture of Fig. 2.4 the period is setted directly to 30, the system collapses.
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SECTION 2 THEORY AND SETUP
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Figure 2.6: Coherence effects for εa = 2, εb = 2.95 and λ = −5 (compare Fig. A.2 second
row). The simulation step size dt = 0.01 and the timescale (the period) of the
rolling motion are close to a rational relation. While it is a smooth motion,
the system is measured in nearly the same states leading to ‘confusing’ data
sets. All measured values concentrate around some discrete points. Left: The
z-projection sin(φ) of the axis against the position xa of the pendular, compare
to Fig. 2.1. Right: The distributions of xa the actual position (green), xt the
controller output (red) and the Gaussian target distribution q (yellow). For
the statistics 43500 data points are binned (200 bins).

But when decreasing the period slower (right picture of Fig. 2.4) the barrel rolls stable
with a period even smaller then 25.

2.4.1 Coherence

Since the state of the system can be measured just at discrete points, it may happen
that the period of some motion is a multiple of the simulation time step. In this case
one always gets the same information, the plots of the data look highly regular while
in the graphical visualisation the movement seems to be smooth. Here is an example:
Fig. 2.6 belongs to the same motion like the second row of Fig. A.2 (just with a different
εb), but one would interpret it as them belonging to some discontinuous motion where
the pendular ‘jumps’.

Note that the peaks of the right plot of Fig. 2.6 become more dense where the maxima
of the right plot of Fig. A.2, second row, is located. Comparing the phase diagram with
the simulation it becomes clear, that here coherent annihilation occurs.
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3 Results

In the following the results of the computer simulations are presented. The exact
parameters of the robot and the environment are listed in the Appendix.

3.1 Adiabatic fixpoint dynamics

First, the robot is placed on top (see Fig. 2.1 left plot), to minimise the influence of the
environment. Gravitation and centrifugal forces have no effect then. For a fixed value
a = 2 the system’s dynamics are determined by the actual position, x := xa, and velocity,
v, of the pendular plus the adapting parameter b of the transfer function:

ẋ(t) = v(t)

v̇(t) = KP

m
[(xt(t)− x(t))−KD(v − ẋt(t))]

ḃ(t) = −εba(1− 2y + (−λ+ 2λy)(1− y)y) .

(3.1)

For a fixed value b the fixpoints and stability of the (x, v) sub-system are calculated.
These fixpoints are called adiabatic fixpoints of the whole system, in analogy to adiabatic
changes of states in thermodynamics (b is changing slowly). Note that, since xt(t) =
xt(x(t)) = 2

(
1

1+ea(b−x(t)) − 1
2

)
it follows that ẋt(t) = ∂xt

∂x ẋ = ∂xt
∂x v. Hence, for an adiabatic

fixpoint:

ẋ(t) = 0 ⇒ v∗ = 0
v̇(t) = 0

(3.2)

v̇(t) = KP

m
[(xt(t)− x(t))−KD(v − ẋt(t))]

= KP

m

[
(xt(t)− x(t))−KD(1− ∂xt

∂x
)v
]

= 0
(3.3)

⇒ x∗t (t)− x∗(t) = 0

⇒ x∗t = x∗ = f(x∗) =
( 1

1 + e−a(x∗−b) −
1
2

)
,

(3.4)

since v∗ = 0.
This is in accordance with what one would expect from a controller, i.e.: if the target
position xt is equal to the actual position xa, no further action is needed. The second
fixpoint condition cannot be solved in a closed form. However it is possible to express
b(x∗):

b(x∗) = 1
a

ln
( 2

1 + x∗
− 1

)
+ x∗

b′(x∗) = 1− 2
a

1
2(1 + x∗)− (1 + x∗)2 .

(3.5)
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SECTION 3 RESULTS
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Figure 3.1: Fixpoint analysis of the (x, v) sub-system for a = 2 and constant b. Since the
slope of the transfer function is d

dxxt = 2ay(1 − y) ≤ 2 · 2 · 1
2 ·

1
2 = 1 = d

dxx

there is exactly one intersection. Left: The green and red curves denote
the identity and the transfer function for different values of b (thick: b = 0,
dotted: b = −0.25, dashed: b = 0.25) respectively. The blue dots denote the
adiabatic fixpoints for different values of b. Right: The numerical solution of
Eq. (3.4) with an accuracy of 0.001. Since the slope is very high at 0 (it is

1
b′(0) = 1 − 2

a = −∞ from Eq. (3.5)), small perturbations of b lead to large
changes of the adiabatic fixpoint’s position. This, combined with the time lag
of the system between xt and xa is what finally drives the dynamics.

Additionally a graphical analysis offers some insight (see Fig. 3.1, the intersecions of
the graphs correspond to fixpoints of the system).

To determine the stability of an adiabatic fixpoint (x∗, v∗) the eigenvalues of the
Jacobian are calculated

J (x∗, v∗) =
(

0 1
KP
m (−1 + z) +KD · v · ∂z∂x −KD(1− z)

)

=
(

0 1
KP
m (−1 + z∗) −KD(1− z∗)

)
,

(3.6)

where z∗ = ∂xt
∂x x∗,v∗

= 2ay∗(1− y∗) and y∗ = y(x∗). The obtained eigenvalues are given
by

λ1/2 = tr(J ∗)±
√
tr(J ∗)2 − 4 · det(J ∗)

2 , (3.7)

where tr(J ∗) and det(J ∗) are the trace and determinant of J ∗ = J (x∗, v∗). The signs
of the real parts of the eigenvalues determine the stability of the fixpoint.
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Figure 3.2: Examination of the fixpoint (x∗ = 0, v∗ = 0, b∗ = 0) of Eq. (3.1). At t = 147
a small perturbation is added to b (δb = 10−7). The system quickly converges
to the limit cycle. Left: The oscillation as a function of time. Right: The
green and blue curves denote the phase space plot projected to the (x, b) plane
and the adiabatic fixpoint x ∗ (b) respectively. Above the black line ḃ > 0,
below ḃ < 0.

det(J ∗) = 0 · (−KD(1− z∗))− KP

m
(−1 + z∗)) · 1

= KP

m
(1− z∗)

≥ KP

m

(
1− 2 · 2 · 1

2 ·
1
2

)
= 0

tr(J ∗) = 0−KD(1− z∗)

≤ −KD(1− 2 · 2 · 1
2 ·

1
2)

= 0 ,

(3.8)

since z∗ = 2ay∗(1− y∗) and y∗(1− y∗) ≤ 1
2 ·

1
2 . Note that for KD = 0.1 and KP

m = 200
the argument of the squareroot is negative. Hence

<(λ1/2) = tr(J ∗) ≤ 0 , (3.9)

with equality for y∗ = 1
2 (⇒ x∗ = 0). The adiabatic fixpoint is stable for all x 6= 0.

Now the dynamics of b is taken into account.

ḃ = −εba(1− 2y + (−λ+ 2λy)(1− y)y)
= εba(2y − 1)(1− λ(1− y)y)

(3.10)

Since y ∈ [0, 1], for λ < 0 the sign of ḃ is determined by the sign of (2y − 1), which is
determined by the relation between x and b
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Figure 3.3: Phase plane plots of the limit cycle. The dotted lines denote x∗(a, b). The
critical point of the Hopf-bifurcation is around a ≈ 1.7, compared to a = 2 in
case of the autapse [Wal13].

ḃ


< 0, for x < b

= 0, for x = b

> 0, for x > b

(3.11)

If x < b then ḃ < 0 and hence ẋ∗ > 0 (compare Fig. 3.1) and vice versa. For a = 2,
λ = −25 and εb = 0.7 this leads to an oscillation.

The fixpoint of the (3.1) system (x, v, b) is determined as follows:

ẋ = 0⇒ v∗ = 0
ḃ = 0⇒ b∗ = x∗

v̇ = 0⇒ x∗ = x∗t = f(x∗) = 0 ,
(3.12)

thus the only solution is (x∗ = 0, v∗ = 0, b∗ = 0).
The simulations show that this is an unstable fixpoint and since the system is bounded

there has to be a limit cycle. Fig. 3.2 shows how the system converges to the limit cycle
if the unstable fixpoint is perturbed.
This limit cycle can be viewed in the following way: the phase point tries to go to the
stable adiabatic fixpoint, but the adapting threshold parameter, b, always moves that
away, so that it can never actually reach it (compare to the so called ‘Carrot and Donkey
Dynamics’ [GLW14]).
The structure of the limit cycle depends on a. For smaller values of a, its radius

decreases until it vanishes by a Hopf-bifurcation at around a = 1.7, while for bigger values
of a the radius increases (see Fig. (3.3)). In the following the simulations are done with
a = 2.

If a simulation is started away from the fixpoint, the pendular quickly joins an oscillation
motion, the limit cycle of the system. Calculating in every timestep the adiabatic fixpoint,
one clearly sees how the motion is driven by this stable adiabatic fixpoint and its rapid
motion when b passes 0 (see Fig. 3.4).
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Figure 3.4: Examination of the dynamics with negligible influence of the environment
(standing barrel of Fig. 2.1). Left: The motion of the small pendular. The
green curve denotes the actual position xa, the blue dots show the adiabatic
fixpoint x∗. Right: The measured probability distributions (red: target posi-
tion xt, green: actual position xa), differ from the Gaussian target distribution
(yellow). For the statistics 43500 data points are binned (200 bins).

3.2 Barrel with one internal axis

To investigate the different rolling modes of the barrel, the robot is placed on the ground,
its z-axis being parallel to it. The phase space gains two extra dimensions by the
orientation of the internal axis, namely the angle φ of the internal axis relative to the
ground and its angular velocity φ̇ (see Fig. 2.1). Hence the phase space (x,v,b,φ,φ̇) is five
dimensional, the dynamics of the system is investigated by numerical simulations. The
behaviour of the robot (a periodic motion of the robot corresponds to a limit cycle of the
underlying dynamical system), at least to some extent, can still be explained with the
results of the previous section.
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Figure 3.5: Phase diagrams, e.g the sine of the angle φ between the ground and the
internal axis (see Fig. 2.1) against the actual position xa of the pendular
(left column) and the position xa of the small pendular as a function of
time. (The light-blue dots denote the adiabatic fixpoints x∗(b) of the sub-
system (x,v,b) not the output xt of the controller) against the time t (right
column) for λ = −25 and εb = 0.7. The first/second/third rows show the
zero/1to1/1to3-modes respectively.
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Figure 3.6: The bf-mode for εb = 0.05. The adiabtaic fixpoints x∗(b) are modulating the
dynamics, while the rolling motion and the embodiment of the barrel leading
to the smaller oscillations.

3.2.1 Rolling modes

The simulations are done for different values of εb and λ. In most of the simulations, in
the first few seconds a force is applied to the robot manually; leading it to different, stable
rolling modes. In all the simulations the robot could be forced into the zero-mode. In
this mode the internal axis is perpendicular to the ground, hence the robot is in a resting
state while the pendular is oscillating along the axis. The oscillation is slightly shifted
from the origin, because gravitation pulls the pendular down. For high values of εb this is
the only accessible mode. There is also a range of εb values for which two other modes
occur, where the barrel is rolling in one direction. According to the ratio of the number
of oscillations of the pendular and the rolling oscillations of the whole robot these modes
are refered to as one-to-one-mode (1to1-mode) and one-to-three-mode (1to3-mode).
Three different modes have been recovered for parameters λ = −25, εb = 0.7 and

a = 2 (see Fig. 3.5). The plots of the measured probabililty distributions are noted in
the appendix (Fig. A.2), they are not converging to the Gaussian target distribution. In
the case of the 1to1-mode one oscillation of the pendular corresponds to one turn of the
barrel and respectively in the case of the 1to3-mode three oscillations of the pendular
correspond to one turn of the barrel.

In the zero-mode the barrel is not rolling and it is similar to the mode examined for the
standing barrel, the only difference being the shift in the centre of mass due to gravitaional
force. The other two modes, especially the 1to3-mode, only occur together with the
rolling motion. For small εb the barrel can achieve another mode, where it oscillates by
rolling around a centre point, while not converging to the resting zero-mode (see Fig. 3.6).
This mode is denoted by bf-mode (back-and-forth-mode).

3.2.2 Speed of the modes

An important question is, in which way can one drive the barrel to some specific state by
controlling the adaption rates carefully. Here it is examined how the average speed of the
barrel depends on εb.
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Figure 3.7: The average speed of the rolling modes is plotted as a function of the εb
adaption rate. Crosses and circles correspond to the measured values of the
1to1-mode and the 1to3-mode respectively. The blue curve, as defined by c√εb
with c = 0.2642 on the left and c = 0.161 on the right, seems to approximate
the measured values of the 1t1-mode nicely. Left: Plots for λ = −25, compare
to Fig. 3.5. The 1to1-mode is stable for εb ∈ [0.1, 1] while the 1to3-mode
for εb ∈ [0.5, 1.35]. For εb < 0.1 the bf-mode occurs. The zero-mode occurs
for all values (for εb > 1.35 it is the only observed mode). Right: Plots for
λ = −5. The 1to1-mode is stable for εb ∈ [0.2, 3.2] and the 1to3-mode only
for εb ∈ [1.4, 3.2]. For εb < 0.2 the bf-mode occurs. The zero-mode occurs for
all values (for εb > 3.2 that is the only observed mode).

The average speed of the zero-mode is ostensibly 0. The 1to1-mode has the highest
average speed, the pendular is always shifted in the rolling direction, while in the case
of the 1to3-mode the pendular is sometimes shifted in the opposite direction and hence
decelerates the barrel. For small values of adaptation, εb < 0.05, the rolling modes
disappear and are replaced by the bf-mode. For high values of adaptation, εb > 3.3, only
the zero-mode is stable. Consequently, it is difficult to derive an analytic relation between
the average speed and the adaptation rate. Still, numerical simulations suggest a scaling
rule

v ∼
√
εb (3.13)

for the average speed of the barrel in the 1to1-mode (see Fig. 3.7).

3.3 Barrel with two internal axes

As a next step the complexity of the system is increased. A second internal axis, also
with a small pendular on it, is added orthogonal to the first one (see Fig. 3.8), with
a slider servo to move the second pendular. The robot is able to move only along the
global x-axis, but now there are more options to change the barycenter of the robot. Two
identical and independent neurons with the learning rules discussed in Sec. 2.18 control
each of the motors.
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3.3 BARREL WITH TWO INTERNAL AXES

Figure 3.8: Barrel2Masses from LPZROBOTS, the motors that move the pendulars are
controlled independently by one neuron each. Left: The barrel standing on
top, thus the influence of the environment is minimised. Right: The barrel in
rolling motion. Note the phase-shift between the two pendulars.
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Figure 3.9: The controller is initialised with exactly the same parameters (λ = −5,
εb = 0.5) for both neurons. The light-green solid and the dark-green dotted
curves denote the actual positions of the pendulars repectively. Left: The
robot is placed on top. The two pendulars fullfill an identical motion (both
curves fall on each other). No self-organisation effects occur due to the lack of
coupling. Right: The barrel is placed on its side. As an effect of the feedback
of the robot and the environment, a constant phase-shift emerges and the
barrel peforms a rolling motion (compare Fig. 3.8).

While the neurons do not get any direct information from each other they are implicitly
coupled through the robot and the environment. The state of one neuron changes the
state of the robot or environment, which then has an effect on the second neuron and
vice versa. This can be compared to the swarming of fish in biology. Each fish is an
independently acting agent, nonetheless the swarm motion of fish is higly structured.
The question is wether in the case of the barrel being controlled by two neurons, do
self-organised effects occur?
To examine this the barrel is first placed on top (see left plot of Fig.3.8). In this

position the feedback of the environment is minimised, since the motion of the pendulars
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has nearly no effect on the state of the robot (see Fig. 3.8 left plot). The two motors
act independently. When the barrel is placed on its side (see Fig. 3.8 right plot), moving
the pendulars has a strong effect on the motion of the robot in the environment, hence
one can expect some self-organisation. Fig. 3.9 shows the position of the pendulars with
respect to time. In the first case the neurons behave identically. This is unsurprising,
since they are both started with the same initial conditions. In the second case as an
effect of the environment, the two neurons perform the same motion, but now with a
small phase-shift, while the barrel is in a smooth rolling motion.

Finally εb is varied (see Fig. 3.10). First a value is chosen, such that the barrel is
in a smooth rolling motion (εb = 0.25 upper right plot). Increasing εb leads to faster
oscillations of the pendulars and a higher average speed of the barrel (εb = 4 upper right
plot). At some point the rolling motion becomes unstable, the barrel performs small
‘jumping’ motions with a very low average speed (εb = 8 lower left plot). Here again an
effect of mismatch of timescales occurs. But after decreasing εb the barrel quickly joins
the rolling motion again (εb = 0.5 lower right plot).
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Figure 3.10: The barrel with two axes in rolling motion (Upper left: Slow motion (εb =
0.25, < v >= 0.0952. Upper right: Fast motion (εb = 4, < v >= 0.3261)).
Lower left: The fast rolling motion becomes unstable (εb = 8, < v >= 0.0457),
another slow but unsmooth rolling mode emerges. Lower right: εb is decreased
from 8 to 0.5 at t = 1252. The pendulars return quickly to the constant
phase-shift.
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4 Summary and Discussion

One goal of this work was to launch the LPZROBOTS simulator in Frankfurt and to
prepare the foundations for further investigations. It turned out that this software can
be very useful to test some parts of the theory developed previously in this group.
An important thing is, that the simulations are realistic and theoretically they can be
repeated with real robots. More specifically, the aim of this thesis was to model an
elementary sensory-motor loop embedded to the LPZROBOTS environment using simple
robots controlled by adapting neurons. The model can be sketched as follows.
The brain of the robot (the neuron) gets some input xa from the environment and using
this, generates an output xt to reach some desired state. The body (the servos), then
tries to bring it to the new state (important: this is not happening instantaneously!).
The movements are performed using somewhat realistic motions, in our case the pendular
is controlled through a spring. This is similar to the way humans move their extremities
for example.
We show that already a very simple robot controlled by a single neuron performs a non
trivial dynamics. Minimising the influence of the environment, considering only the small
pendular on the axis, the dynamics is driven by the rapid shifts of the adiabatic fixpoint
under the slowly adapting internal threshold b, which yields to the oscillation movements
of the pendular. Taking into account the environment, the neuron drives the robot to
a natural motion of the barrel - the rolling mode. It is possible to drive the robot to
different modes by controlling just one parameter, the εb adaptation rate. For small values
we got the bf-mode, for intermediate values the rolling modes are dominating and for
high values the resting mode was the only possible state. These modes can be compared
to different motions of humans, like standing, walking and running. Walking and running
are not just distinguishable by the different speed, they are intrinsicelly different dynamic
patterns.
We used the learning rules derived by Linkerhand & Gros [LG13], which are based on
the principle of entropy maximisation of the adapting firing rates. Since we considered a
slightly different system (no exponential decay of the membrane potential), the measured
statistics are not converging to the desired target distribution. It would be interesting to
test other learning rules, which yield to such a convergence.
At the end of the thesis we present briefly a more complex system with more than one
neuron involved. Although there is no direct connection between the two neurons they are
coupled strongly through the environment. After starting the barrel from a natural rolling
position, the two independent neurons interact immediately and organise themselves in a
way such that smooth rolling motions of the barrel occur.
The next step would be to consider larger systems, other learning rules and different
motors. One of the current projects of the group deals with a snake-like robot with many
ankle segments, each controlled by a neuron, which show strong effects of self-organisation.
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Appendix

A.1 Parameters

A.1.1 Robot

The robot class is inherited from sphererobot3masses.
1 c. diameter = 1;
2 c. spheremass = 1; // mass of the body of the robot (the cylinder )
3 c. pendularmass = 1.0; // mass of the servo pendular ( small sphere )
4 c. pendularrange = 0.3; // range of the slider from center
5 // in multiple of diameter [-range , range ]
6 c. motorpowerfactor = 200;
7 c. motorsensor = true;
8 c. brake =0;
9 c. axesShift =0;

A.1.1.1 Joint

1 dParamLoStop = -conf. diameter *conf. pendularrange
2 dParamHiStop = conf. diameter *conf. pendularrange
3 dParamStopCFM = 0.1
4 dParamStopERP = 0.9
5 dParamCFM = 0.001

A.1.1.2 Servo

1 _min = -conf. diameter *conf. pendularrange
2 _max = conf. diameter *conf. pendularrange
3 KP = conf. pendularmass *conf. motorpowerfactor = 200
4 KD = 0.1 //(this is slightly subcritical , critical
5 // damping for KD = 2 sqrt( spheremass /KP) = 0.14142135
6 KI = 0

[-pendularrange,pendularrange] is the region where the servo can move the centre of
the spring (the domain of the targetposition). [dParamLoStop,dParamHiStop] is the
region where the small pendular, which is fixed to the spring, can move. In our case we
chose these regions to be equal.
A.1.2 Controller

1 a = 2
2 epsilon_a = 0
3 epsilon_b \ element (0 ,4)
4 lambda \ element { -5 , -25}

A.1.3 Simulation

1 cameraspeed = 100.000000 camera speed
2 fps = 25.000000 frames per second
3 friction = 0.100000 rolling friction coefficient
4 gravity = -9.810000 strengh of gravity ( -9.81 is earth gravity )
5 noise = 0.000000 global noise strength
6 randomseed = 1428564641 random number seed ( cmdline -r) ( readonly )
7 realtimefactor = 1.000000 speed of simulation wrt. real time (0: full speed )
8 simstepsize = 0.010000 stepsize of the physical simulation (in seconds )
9 controlinterval = 4 interval in steps between subsequent controller calls
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A.2 Manual

Here we provide a step by step installation guide for the LPZROBOTS package. Also
check the webpage http://robot.informatik.uni-leipzig.de and http://robot.informatik.uni-
leipzig.de/software/doc/html/index.html for further informations.

A.2.1 Installation

Go to https://github.com/georgmartius/lpzrobots and copy the link in the white box on
the right side (something like https://github.com/georgmartius/lpzrobots.git). Open a
terminal and type

1 git clone https :// github .com/ georgmartius / lpzrobots .git

It will start downloading the newest version in a folder called ‘lpzrobots’. Enter the
folder and type

1 make all

it will ask where to install, choose
1 /usr or /usr/ local

if you have sudo rights, else install it to your home directory
1 /home/ yourlogin

In this case you have to modify your .bashrc file. Go to your home directory and type
1 vim . bashrc

scroll to the end and insert
1 export PATH =/ home/ yourlogin /bin: $PATH
2 export LD_LIBRARY_PATH =/ home/ yourlogin /lib

and restart the process. For the installation mode chose ‘d’ and confirm. It will start
the installation (it can take over one hour). When it is finished go to a simulation folder
and type

1 make

It will create an executable file called ’start’. You can run the simulation with
1 ./ start

Be careful, many simulations are not updated and hence do not work. /lpzrobots/ode_-
robots/examples/basic and /lpzrobots/ode_robots/simulations/barrel should work for
example. Check the tutorial for the example called ‘basic’ (http://robot.informatik.uni-
leipzig.de/wiki/doku.php?id=tutorials).

A.2.2 Creating a Simulation

Go to /lpzrobots/ode_robots/simulation. It makes sense to copy an existing template
simulation first (for example template_sphererobot). Call

1 ./ createNewSimulation .sh template_sphererobot mysimulation

here ‘mysimulation’ is the name of your simulation. This will copy all files which are
necessary. Do not change anything in the libraries. If you want to change something,
copy the file into your simulation directory and rename it (of course you have to rename
the class too). You have to adapt the includes (if the included file is in the same directory
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A.3 UNEXPLAINABLE BEHAVIOUR
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Figure A.1: The measured probability distributions of the 1t1-mode for the whole length
of the simulation (blue curve) compared to the data corresponding to before
(light-green curve) and after (dark-green curve) turning for λ = −25 and
εb = 3.15. The curves are falling on each other. For the statistics 43500
(90000 for the whole length of the simulation) data points are binned (200
bins).

use #include “example.h”, if it is from a library use #include <ode_robots/example.h>
or #include <selforg/example.h> respectively). You have to add the files you copied to
your directory (which you want to compile) to Makefile.conf .

1 FILES = main example1 example2

A.3 Unexplainable Behaviour

Theoretically, the barrel examined in this thesis should just be able to move along the
x-axis. Still, for bigger values of εb and λ, while rolling, the barrel suddenly turns around
a small angle ( ∼ ±30◦). This happens at different timepoints for the same parameters
(but with different initial conditions, since the barrel is forced into the rolling motion
manually). We have not found any explanation for this behaviour. At least the turning
does not change something in the running simulation. Fig. A.1 shows the measured
statistics for a simulation in which the barrel has turned.

A.4 Measured Probability Distributions

Here the measured probability distributions of the modes are presented.
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Figure A.2: Phase diagrams as in fig. 3.5 (left column) and measured probability distri-
bution (right column). The red and green curves denote the distributions of
the target p(xt) and actual p(xa) positions respectively. Both are different
from the target Gaussian distribution q (yellow). Here it becomes clear how
the dynamic works. The pendular moves fast on the straight lines and slowly
at the turning points. For the statistics 43500 data points are binned (200
bins).
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Figure A.3: The bf-mode for a low adaptation rate εb = 0.05. For the statistics 43500
data points are binned (200 bins).
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