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Notation

The next list describes some of the notation used throughout this thesis.

Graph Signal Processing

G = (V, E , A,X) An attributed undirected graph

N ∈ N Number of nodes in the graph

V = {v1, . . . , vN} Vertex set of the graph

E ∈ N Number of edge types

E ⊂ {1, . . . , E} × V × V Edge set of the graph

A ∈ RE×N×N Adjacency tensor

F ∈ N Number of features

X ∈ RN×F Matrix of node features

Xi,: ∈ R1×F Features of node i

X:,j ∈ RN×1 Feature j of all nodes

x : V → R Graph signal

x ∈ RN st xi = x(i) Graph signal

Graph Convolutional Networks

F Input dimension: number of features

fk ∈ N Number of features at layer k

Lc Number of convolutional layers

X(k) ∈ RN×fk Matrix of node features at layer k

X
(k)
:,j ∈ RN×1 Feature j at layer k of all nodes

Multi-Layer Perceptron

L-layer MLP MLP with L hidden layers

Quantum Chemistry
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Ha Hartree energy

eV Electronvolt

kcal/mol Kilocalorie per mol



Chapter 1

Introduction

Graph Convolutional Networks

Graphs are extensively used to model systems in a wide range of scientific fields. For
example, graphs have been employed to model social networks in social sciences, functional
networks in brain imaging, molecules in cheminformatics and regulatory networks in genetics
[Bro+16; Duv+15]. In recent years the enormous success of Deep Learning has produced an
increasing interest in modeling such systems using deep neural networks. This has resulted
in a new active field of research. This emerging field of techniques that attempt to generalize
structured deep neural models to non-Euclidean domains such as graphs and manifolds has
become known as Geometric Deep Learning [Bro+16].

In particular, convolutional neural networks (CNNs) have been extremely successful during
the last years in practical applications for processing natural images, video and speech. This
data has been processed as a grid-like structure. However, the extension of convolutional
networks to graphs is not straightforward since the graph domain posseses several challenges.
The presence of irregular and unordered neighborhoods forces to develop a new convolution
operator [Sim19].

Based on spectral approaches from Graph Signal Processing (GSP) [Shu+13; Ort+18] and
on spatial-based methods convolution can be extended to graphs. Just as in CNNs, graph
convolutions can be stacked and combined with nonlinear activation functions to build deep
models. Different variants of these models may then be used to perform supervised or
semi-supervised tasks such as graph or node classification and regression.

Spectral-based methods define convolution by the application of filters based on the spectral
properties of the graph Laplacian, while spatial-based methods construct graph convolutions
by aggregating features from the neighbors of the vertices. Spectral-based methods have
a theoretical background on graph signal processing and have achieved remarkable results
in many tasks. Nonetheless, they have exhibited several weaknesses. Regarding efficiency,
the computational cost of performing eigenvector computation increases fast with the graph
size. Besides that, the whole graph needs to be handled at the same time. This limits
the implementation of parallel solutions and makes them difficult to scale to large graphs.
Regarding generality, spectral-based models had traditionally assumed a fixed graph . Thus
these models had limited generalization capabilities [Wu+19b].
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LanczosNet

Due to the mentioned drawbacks of spectral-based methods, spatial-based methods have
gained more attention in the last few years. However, some spectral-based networks have
been proposed that try to tackle these issues. In [Lia+19] the Lanczos Network (LanczosNet)
is introduced as a promising spectral-based network which seeks more efficiency, generality,
representational capacity and efficient leverage of multi-scale information.
To address the efficiency issue, the LanczosNet uses the tridiagonal decomposition implied
by the Lanczos algorithm to obtain a low rank approximation of the graph Laplacian. In this
way an approximate eigenvector decomposition is obtained. This is also used to efficiently
leverage multi-scale information as it allows to approximate powers of the graph Laplacian.
A Multi-Layer perceptron is used to learn the spectral filters, instead of using a predeter-
mined class of polynomials. This increases the representational capacity of the model and
inables it to learn useful representations for particular tasks. The model assumes neither
a fix graph nor a fix graph size. Moreover, according to [Lia+19] the model has shown to
generalize well.
In [Lia+19] the model is tested on the task of document classification in citation networks,
where the graph is fixed, and also on the task of predicting properties of molecules, where
the graphs change. In this work we focus on the prediction of molecular properties and also
move on to molecule autoencoding tasks. Additionally in the appendix C the experiments
on document classification are presented and we also test the model at the task of link
prediction on citation networks.

Molecular Property Prediction

In molecule design an important task is to predict the physical, chemical or biological
properties of a novel molecule from its structure. A study from Harvard University [Duv+15]
proposed modeling molecules as graphs and employing graph convolutional networks to learn
the desired molecule properties.
In [Che+19b] the Alchemy dataset was introduced, which contains 119,487 organic molecules
that are screened as being more likely to be useful for medicinal chemistry and that contain
up to 12 heavy atoms. It includes 12 quantum mechanical properties, that were calculated
using the DFT Kohn-Sham method at the B3LYP level with the basis set 6-31G(2df,p).
The calculation of these properties involves solving the Electronic Schrödinger’s equation
for a particle system. The average total running time for processing a molecule is 25.41
hours. It is thus a computationally expensive approach.
Various techniques from Machine Learning have been used to try to tackle this problem.
In particular Graph Convolutional Networks have achieved very good results in the last
years. Here the goal is to use a neural network that models the computationally expensive
DFT calculation and predicts the quantum properties of organic molecules faster [Gil+17].
In [Ram+14; Wu+17] other datasets known as QM8 and QM9 had been introduced. In
this work we use these three datasets and we explore the performance of the LanczosNet
and some of its variants for the prediction of properties both in single task and multi-task
settings.
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Graph Variational Autoencoders

In drug discovery and material science a central problem is to design molecules with certain
optimized chemical properties. Since there is a very large number of possible molecules, it
is a very demanding task. One should be able to predict the properties of the molecules and
to generate molecules in an efficient way to optimize the target properties. In [BL19a] a
simple and efficient auto-encoder for molecule generation was introduced. It achieves good
results at basic tasks for the 250K Zinc [Irw+12] dataset. Following this framework, we
build an autoencoder which uses the LanczosNet for encoding.

Objectives and Contributions

The contributions of this work are the following:

1. We provide a comprehensive mathematical treatment of the LanczosNet that bridges
the gap between the current short presentation of the model and its actual structure,
and present a framework to compare it with other spectral-based methods.

2. We study the robustness of the LanczosNet at the task of predicting atomization
energy with respect to random perturbations in the eigenvalues and eigenvectors of
the graph similarity matrix S.

3. We propose a version of the LanczosNet (LanczosDistNet) that incorporates distance
information for the prediction of atomization energy which uses a Gaussian Radial
Basis Function to compute the adjacency matrix of the molecule and to construct
the similarity matrix, and reaches chemical accuracy at the prediction of atomization
energy in the QM9 dataset.

4. We experiment using the LanczosNet as the encoder in the architecture of the molecule
variational autoencoder framework introduced in [BL19a] and the graph autoencoder
structure presented in [KW16].

5. We test the influence of the number of Ritz eigenvectors in the model for the task of
node classification and link prediction in citation networks.

Layout

• Part I Background: In Chapter 2 background knowledge regarding graphs and graph
signal processing is stated. In Chapter 3 the main postulates, concepts and equations
from Quantum Mechanics and Quantum Chemistry are presented.

• Part II Graph Convolutional Networks: In Chapter 4 we discuss the setting and
the tasks we are interested in solving. In Chapter 5 some of the existent spectral-
based graph convolutional networks are analyzed, with a focus on the LanczosNet.
In Chapter 6, for the sake of comparison, spatial-based methods and the proposed
version of the LanczosNet that uses distance information are presented.

• Part III Further Analysis of the LanczosNet: In Chapter 7, the details and the con-
vergence properties of the Lanczos Algorithm are discussed. In Chapter 8, the rela-
tionship between the LanczosNet, Spectral Clustering and Diffusion Maps is explored.
In Chapter 9, the locality and other properites of the LanczosNet are studied.
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• Part IV Molecular Property Prediction: In Chapter 10, the results of molecular prop-
erty prediction on QM8, QM9 and Alchemy are presented.

• Part V Graph Variational Autoencoders: In Chapter 11, the molecule variational
autoencoder structure is explained.

• Appendix C: We perform experiments on citation networks on node classification and
link prediction.



Chapter 2

Graph Signal Processing

This chapter provides some background knowledge that is required in order to understand
and develop the methods behind Graph Convolutional Networks (GCNs). There are two
main approaches to GCNs, spectral-based and spatial-based [Wu+19b]. In this thesis we
focus mainly on the former. Spectral-based approaches rely heavily on Graph Signal Pro-
cessing (GSP) methods that leverage spectral graph theory to analyze signals on graphs.
We will introduce the notation that we will use for graphs and then we will provide an
overview of Graph Signal Processing. This chapter indends to provide a basic introduction
and definitions, while a more detailed discussion of certain aspects is presented within Part
III of this thesis.

2.1 Graphs

First we present the most important concepts from graph theory that are fundamental for
the understanding of the Spectral Graph Convolutional Networks.

Definition 2.1.1 Graph
A Graph is G = (V, E , A) where V is a set of N nodes (vertices), E is a set of edges and
A is the adjacency matrix. The adjacency matrix is a N ×N matrix with Aij = aij > 0 if
eij = (vi, vj) ∈ E and Aij = 0 if eij /∈ E.

The adjacency matrix can be either binary or real valued. We consider undirected graphs,
so that Aij = Aji for 1 ≤ i, j ≤ N .

v1

v2

v5

v4

v3

a12

a14

a24

a23 a25

Figure 2.1: Graph Example Depiction (N = 5)

Definition 2.1.2 Graph with multiple edge types
When dealing with E edge types we consider: G = (V, E , A) where V is a set of N nodes
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12 CHAPTER 2. GRAPH SIGNAL PROCESSING

(vertices), E is a set of edges and A is the adjacency tensor. The adjacency tensor is an
E ×N ×N tensor with Atij = atij > 0 if etij = (t, vi, vj) ∈ E and Atij = 0 if etij /∈ E.

For the sake of simplicity we state most concepts without considering different edge types.

Definition 2.1.3 Diagonal degree matrix
Let’s define D ∈ RN×N to be the diagonal degree matrix:

Dii := di :=
∑
j

Aij (2.1.1)

Definition 2.1.4 K-hop local neighborhood
We denote the set of nodes that share an edge with node i by Ni. More generally the set
of nodes reachable from i by a path of length at most K is denoted by N (i,K). This set is
referred to as the K-hop local neighborhood of vertex i.

Definition 2.1.5 Matrix of node features
We can associate a graph with node features X, where X ∈ RN×F is a feature matrix.

Definition 2.1.6 Attributed Graph
A graph G together with the node features X is known in the literature as an attributed
graph. This can be denoted as (G, X) or by considering G = (V, E , A,X)

v1

v2

v5

v4

v3

X =


X11 X12 . . . X1F

X21 X22 . . . X2F

X31 X32 . . . X3F

X41 X42 . . . X4F

X51 X52 . . . X5F


a12

a14

a24

a23 a25

Figure 2.2: Attributed Graph Example Depiction (N = 5)

Definition 2.1.7 Feature
We use X:,j ∈ RN to denote the j-th column of X. This corresponds to the j-th feature.

Definition 2.1.8 Feature vector of a node
For each node i ∈ V, we denote its feature vector as a row vector Xi,: ∈ R1×F .

Definition 2.1.9 Graph Signal
A graph signal is a function x : V → R defined on the nodes of a graph G. The function x
can be represented by a vector x ∈ RN , where the ith component of x represents the value
of the function x at the ith node of V.



2.2. GRAPH LAPLACIANS AND SIMILARITY MATRIX 13

x(v1)

x(v2)

x(v5)

x(v4)

x(v3)

x =


x(v1)
x(v2)
x(v3)
x(v4)
x(v5)


a12

a14

a24

a23
a25

Figure 2.3: Graph Signal x Example Depiction (N = 5)

Definition 2.1.10 Multi-dimensional Graph Signal
A multi-dimensional graph signal is a function z : V → RF defined on the nodes of a graph
G. The function z can be represented by a matrix X ∈ RN×F , where the (i, j) component of
X, Xi,j, represents the value of the j-th component of function z at the ith node of V.

In what follows we usually identify the node vi with its index i.

2.2 Graph Laplacians and Similarity Matrix

A fundamental concept lying at the heart of spectral graph theory is that of the graph
Laplacian. Based on the adjacency matrix A, the graph Laplacian L can be defined in a
number of ways.
These graph Laplacians are matrices that encode the connectivity of the graph and are
difference operators which intuitively capture the difference between the value of a signal x
on a node and a weighted sum of the signal in a neighborhood of the node [Sim19]. The
graph Laplacian is thus in some sense analogous to the (negative) Laplace operator from
calculus. For a detailed treatment of this relationship the reader is referred to [Shu+13].
Consider x ∈ RN any signal. Three of the most used Laplacians are the following:

1. Definition 2.2.1 Non-normalized Graph Laplacian
The non-normalized graph Laplacian or combinatorial graph Laplacian is defined as

LC := D −A (2.2.1)

We obtain that:

(LCx)(i) =
∑
j∈Ni

Aij [x(i)− x(j)] = di

x(i)−
∑
j∈Ni

Aij
di
x(j)

 (2.2.2)

2. Definition 2.2.2 Normalized Graph Laplacian
Another option is obtained by normalizing each weight Aij by a factor of 1√

didj
. The

normalized graph Laplacian is then defined as

LN := D−
1
2 (D −A)D−

1
2 = I −D−

1
2AD−

1
2 (2.2.3)

We obtain that:

(LNx)(i) =
1√
di

∑
j∈Ni

Aij

[
x(i)√
di
− x(j)√

dj

]
= x(i)−

∑
j∈Ni

Aij√
didj

x(j) (2.2.4)
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3. Definition 2.2.3 Random Walk Laplacian
A third way is to use the random walk matrix P := D−1A. The asymmetric graph
Laplacian or random walk Laplacian is defined as

LR := I − P (2.2.5)

We obtain that:

(LRx)(i) =
∑
j∈Ni

Aij
di

[x(i)− x(j)] = x(i)−
∑
j∈Ni

Aij
di
x(j) (2.2.6)

2.3 Graph Fourier Transform

The normalized graph Laplacian is real symmetric, positive semi-definite (PSD) and its
eigenvalues are in [0, 2]. In the context of GCNs it was found that for some applications
changing A to A + I =: Ã (adding self-loops) and using the affinity/similarity matrix S
achieves better results [KW17]. Letting D̃ be the degree matrix of Ã, we consider the
following (modified) similarity matrix.

Definition 2.3.1 (Modified) Similarity Matrix

S := D̃−
1
2 ÃD̃−

1
2 ∈ RN×N (2.3.1)

Choose L to be the non-normalized, the normalized symmetric Laplacian or the similarity
matrix S. Since L is a real symmetric matrix, it has a basis of orthonormal eigenvectors
which we denote by {ul}l=1,...,N . The associated eigenvalues are denoted as {λl}l=1,...,N .
Then Lul = λlul for l = 1, ..., N .
We obtain the eigenvalue decomposition:

L = UΛU> (2.3.2)

where U = [u1, ...,uN ] and Λ = diag(λ1, ..., λN ).

The classical Fourier transform is an expansion of a function x in terms of complex expo-
nentials which are the eigenfunctions of the (negative) Laplace operator:

x̂(ξ) := 〈x, e2πiξt〉 =

∫
R

x(t)e−2πiξtdt (2.3.3)

For an intuitive treatment of the classical Fourier transform the reader is referred to [Osg07].

Definition 2.3.2 Graph Fourier Transform
The graph Fourier transform x̂ of a function x ∈ RN is defined analogously:

x̂(λl) := 〈x,ul〉 =

N∑
i=1

x(i)ul(i) (2.3.4)

F(x) := x̂ := UTx (2.3.5)

It is thus the expansion of x in terms of the eigenvectors of the graph Laplacian.
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Definition 2.3.3 Inverse Graph Fourier Transform
The inverse graph Fourier Transform is given by:

x(i) :=
N∑
l=1

x̂(λl)ul(i) (2.3.6)

F−1(x̂) := U x̂ (2.3.7)

2.4 Graph Signal Filtering

Based on the graph Fourier transform and its inverse it is possible to equivalently represent a
signal in two different domains: the vertex domain and the domain of the Fourier transform
which is known as the graph spectral domain. Filtering may be done either in the spectral
domain or in the vertex domain. This is related to the spectral-based and spatial-based
approaches to GCNs.

1. Graph Sectral Filtering (Frequency filtering): A signal ĝ may be directly defined in
the spectral domain. These signals are commonly referred to as kernels. As in clas-
sical signal processing, filtering of a signal xin corresponds to multiplication in the
spectral domain with a kernel g which produces an amplification or attenuation of the
components of the Fourier basis.

ĥ(λl) = x̂out(λl) = x̂in(λl)ĝ(λl) (2.4.1)

In graph signal processing convolution is defined so that it directly corresponds to
multiplication in the frequency domain. If x, g : V → R are two signals we define
graph convolution via

h(i) = (x ∗G g)(i) :=

N∑
l=1

x̂(λl)ĝ(λl)ul(i) (2.4.2)

h = U(UTx� U>g) = F−1(F(x)�F(g)) (2.4.3)

where � is the Hadamard (point-wise) product.

If a kernel is represented by Gθ = diag(U>g) ∈ RN×N , the graph convolution can be
expressed as:

x ∗G Gθ = UGθU
>x = gθ(L)x (2.4.4)

where

gθ(L) := U


ĝθ(λ1)

ĝθ(λ2)
. . .

ĝθ(λN )

U> (2.4.5)

2. Graph Spatial Filtering (Filtering in the vertex domain): In this setting the output
signal xout(i) at vertex i is taken as a linear combination of the components of the
input signal at vertices within a K-hop local neighborhood of vertex i:

xout = bi,ixin(i) +
∑

j∈N (i,K)

bi,jxin(j) (2.4.6)

for constants {bi,j}i,j∈V .
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3. Relationship between Spectral and Spatial filtering: If the kernel ĝθ is a polynomial
of order K:

ĝθ(λl) =

K∑
k=0

θkλ
k
l (2.4.7)

for some parameter θ ∈ RK+1:

xout(i) =
N∑
l=1

x̂in(λl)ĝ(λl)ul(i)

=

N∑
l=1

N∑
j=1

xin(j)ul(j)

K∑
k=0

θkλ
k
l ul(i)

=
N∑
j=1

xin(j)
K∑
k=0

θk

N∑
l=1

λkl ul(j)ul(i)

=
N∑
j=1

xin(j)
K∑
k=0

θk(L
k)i,j

=
N∑
j=1

(
K∑
k=0

θk(L
k)i,j

)
xin(j)

(2.4.8)

Since (Lk)i,j = 0 whenever the shortest distance dG(i, j) between node i and node j
is greater than k we obtain a spatial filter with coefficients:

bi,j :=
K∑

k=dG(i,j)

θk(L
k)i,j (2.4.9)

Thus xout(i) is a linear combination of the input signal on the nodes in the K-hop
local neighborhood of node i (N(i,K)). This observation will be important for the
analysis of the locality of the models in this thesis.



Chapter 3

Quantum Chemistry

In this thesis we study the use of graph convolutional networks for the prediction of molecular
properties and for the generation of molecules. These are very important tasks since the
discovery of novel molecules and materials with desired properties is crucial for applications
such as drug design [Sch+17a]. Given the incredibly large number of possible molecules
and ways they can undergo chemical transformations these are not easy tasks. Currently
according to [LMT19] to underestand chemistry we require a first-principles approach based
on quantum mechanics and statistical mechanics. The framework of quantum mechanics
is vital for the understanding of the behaviour of matter on the molecular, atomic and
nuclear scales [YFF12]. At a fundamental level, quantum mechanics describes the electronic
structure of any material compound, and thereby determines the behavior of matter at large
and dictates the mutual relationships between observable microscopic properties [LMT19].
In this chapter we provide a short overview of quantum mechanics and electronic struc-
ture theory based on [She01], [Hal13] and [YFF12] in order to provide a basic background
regarding the properties we are interested on predicting.

3.1 Quantum Mechanics

Historical Development

According to [She01] the development of quantum mechanics was originally motivated by
the so called ultraviolet catastrophe and by the discovery of the photoelectric effect. These
two observations suggested limitations of classical physics. The predictions from classical
physics had failed. There was more to the universe than previously thought.
A blackbody is an idealized physical body which absorbs and emits all frequencies. Based
on classical phyiscs the Rayleigh-Jeans law can be derived. This equation describes the
intensity of blackbody radiation as function of frequency (ν) for a fixed temperature:

Bν(T ) =
2ν2kBT

c2
(3.1.1)

where kB is the Boltzmann constant and c the speed of light [Kut03]. This would predict
an energy output which diverges to infinity as the frequency tends to infinity. For low
frequencies the law works well, but for higher frequencies the approximation diverges. Based
on measurements, the spectral emission reaches a maximum and then decreases as frequency
increases, making the total energy finite. In 1900 Max Planck, in order to explain this,
postulated that the energy in the electromagnectic field at a given frequency ν should be

17
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quantized. This means that this energy should only attain integer multiples of a basic unit
equal to hν. h is now called Planck’s constant and h = 6.626× 10−34Js.

En = nhν (3.1.2)

In 1887 Heinrich Hertz had discovered that ultraviolet light can cause electrons to be ejected
from a metal surface. According to classical wave theory, if light is just an electromagnetic
wave, then increasing the intensity of the light amounts to increasing the strength of the
electric and magnetic fields. This would increase the amount of energy transferred to the
electrons. However, experiments showed that the kinetic energy of the ejected electrons
depends on the frequency of the light. Increasing the intensity of the incident light, increases
the number of emitted electrons but their kinetic energies remain the same. In 1905, Albert
Einstein, instead of assuming that the electronic oscillators had energies given by (3.1.2),
assumed that the radiation itself consisted of packets of energy

E = hν. (3.1.3)

These packets are now called photons. In this framework, increasing the intensity of light
at a given frequency simply increases the number of photons but does not affect the energy
of each photon. If each photon has a certain likelihood of hitting an electron and causing
it to escape from the metal, then the energy of the escaping electron will be determined by
the frequency of the incident light and not by the intensity of that light.
In 1911, Ernest Rutherford proposed a model of the atom in which electrons orbit a small
nucleus that contains most of the mass of the atom. In his model each atom has a positively
charged nucleus with charge Zq where Z is a positive number known as the atomic number
and q the basic unit of charge. Around the nucleus is a cloud of Z electrons and each of
them has a charge of −q.
When electricity is passed through a tube containing hydrogen gas, the gas emits light.
When the light is separated into different frequencies, only a discrete family of frequencies
are present. According to equation (3.1.3), the energy of each photon is proportional to its
frequency. The hydrogen atom consists of one almost stationary proton and one electron
orbiting it. The idea is that when current is passed through the gas some of the electrons
move to a higher-energy state. Each electron will return to a lower-energy state and will
emit a photon in the process. By observing the energies, or the frequencies, of the emitted
photons the energy change of the electron can be obtained. Each frequency corresponds to a
certain amount of energy being transferred from the hydrogen atom to the electromagnetic
field.
In 1913, Niels Bohr introduced a model of the hydrogen atom in order to explain the spec-
trum of hydrogen, the discrete set of frequencies observed. Bohr assumed the hydrogen
atom to consist of an electron that orbits a positively charged nucleus, similar to the way
in which a planet orbits the sun. Classical physics would predict that the orbiting elec-
trons experience a centripetal acceleration, and that the accelerating charges lose energy
by radiating. Thus a stable electron orbit could not exist. However, Bohr assumed stable
electronic orbits and postulated that the electron obeys classical mechanics except that its
angular momentum is quantized as:

ln = mvnrn = n~ (3.1.4)

where ~ = h/2π is the reduced Planck constant and m the mass of the electron. In Bohr’s
model following classical physics according to Coulombs’ Law there is an electrical force of
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magnitude:

F =
1

4πε0

e2

r2n
(3.1.5)

where e is the charge of the electron and ε0 is the vacuum permitivity constant. Newton’s
second law would imply that

1

4πε0

e2

r2n
=
mv2n
rn

(3.1.6)

So one can derive that

rn =
ε0n

2h2

πme2
, a0 :=

ε0h
2

πme2
, rn = n2a0 (3.1.7)

vn =
1

ε0

e2

2nh
(3.1.8)

The constant a0 is known as the Bohr radius. As seen in the formula for rn in this model a0
would be the distance between the nucleus and the electron in the hydrogen atom in ground
state. The kinetic and potential energy would be given by

Tn =
1

2
mv2n =

1

ε20

me4

8n2h2
(3.1.9)

Vn = − 1

4πε0rn
e2 =

−1

ε20

me4

4n2h2
(3.1.10)

and the total energy En would then be:

En = Tn + Vn = − 1

ε20

me4

8n2h2
=
−R
n2

(3.1.11)

where

R :=
me4

8ε20h
2

(3.1.12)

is the Rydberg constant. Furthermore, Bohr proposed that an electron could move from one
allowed state n to another m, and in the process emit a packet of light with frequency given
by

ν =
1

h
(En − Em) (3.1.13)

In 1924, Louis de Broglie proposed that matter just as light can behave as a particle and as
a wave, which is known as a wave-particle duality. In this framework de Broglie interpreted
Bohr’s quantization condition on the angular momentum as a wave condition. Thinking
of an electron as a wave superimposed on the classical trajectory of the electron, for the
wave not to interfere distructively with itself, it should complete an integral number of
wavelengths during its orbit:

2πr = nλ (3.1.14)

Einstein had shown that the momentum of a photon is given by:

p =
h

λ
(3.1.15)

Using this equation also for the electron, one obtains Bohr’s equation (3.1.4). Thus de
Broglie’s hypothesis provided a justification for Bohr’s quantization assumption. However,
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Heisenberg showed that the wave-particle duality implies the uncertainty principle in which
if the orbital radius of an electron is known, the angular momentum should be completely
unknown. In Bohr’s model the r is specified and the angular momentum is given by (3.1.4).
Therefore a new quantum theory was needed.
In 1926, Erwin Schrödinger proposed a wave theory of quantum mechanics, following de
Broglie’s hypothesis. He described how the waves evolve over time and showed that the
energy levels of the hydrogen atom (and of other systems) could be understood as eigenvalues
of a certain operator. In 1925, Werner Heisenberg proposed a matrix theory of quantum
mechanics that was later shown to be mathematically equivalent to Schrödinger’s.

Postulates of Quantum Mechanics

Here we present the six postuates of quantum mechanics following [She01] and [McQ08].

1. The state of a quantum mechanical system is completely specified by a function ψ(r, t)
that depends on the coordinates of the particle(s) and on time. This function, called
the wave function or state function, has the important property that ψ∗(r, t)ψ(r, t)dτ
is the probability that the particle lies in the volume element dτ located at r at time
t.

Schrödinger had provided in 1926 the mathematical description of quantum mechanics which
is generally accepted today. However, he did not give an accepted interpretation of the
theory. It was Max Born who proposed that the wave function should be interpreted
as determining probabilities for the observations of the system. This statistical approach
developed later into the Copenahgen interpretation of quantum mechanics.
The probability of finding a single particle somewhere is 1, so we have the following nor-
malization condition:

∞∫
−∞

|ψ(r, t)|2dτ = 1 (3.1.16)

Moreover, for many-particle systems it is also custumary to normalize wavefunctions to 1.
The wavefunction must be single-valued, continuous and finite.

2. To every observable in classical mechanics there corresponds a linear, Hermitian op-
erator in quantum mechanics.

Observable Observable Operator Operator
Name Symbol Symbol Operation
Position r r̂ Multiply by r

Momentum p p̂ −i~
(
î ∂∂x + ĵ ∂∂ + k̂ ∂

∂z

)
Kinetic Energy T T̂ − ~2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
Potential Energy V (r) V̂ (r) Multiply by V (r)

Total Energy E Ĥ − h2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ V (r)

Table 3.1: Some physical observables for a single particle and their corresponding quantum
operators. From [She01]
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3. In any measurement of the observable associated with operator Â, the only values
that will ever be observed are the eigenvalues a, which satisfy the eigenvalue equation:

Âψ = aψ (3.1.17)

If the system is in an eigenstate of Â with eigenvalue a, any measurement of quanitity A
will yield a. An arbitraty state ψ can be expanded in the complete set of eigenvectors of Â
ψi such that Âψi = aiψi via

ψ =

n∑
i

ciψi (3.1.18)

where n may go to infinity. The third postulate states that any measurement will yield one
of the eigenvalues ai. The probability that ai will be measured is the absolute square of
the coefficient, that is |ci|2. Immediately after the measurement the wavefunction collapses
to the corresponding eigenstate ψi or in case that ai is degenerate into the projection of ψ
onto the degenerate subspace.

4. If a system is in a state described by a normalized wave function ψ, then the average
value of the observable corresponding to Â is given by:

〈Â〉 =

∞∫
−∞

ψ∗Âψdτ (3.1.19)

Notice that if the system is in an eigenstate ψi of Â then

〈Â〉 =

∞∫
−∞

ψ∗i Âψidτ =

∞∫
−∞

ψ∗i aiψidτ = ai

∞∫
−∞

ψ∗i ψidτ = ai

∞∫
−∞

|ψi|2dτ = ai (3.1.20)

as expected.

5. The wavefunction or state function of a system evolves in time according to the time-
dependent Schrödinger equation

Ĥψ(r, t) = i~
∂ψ

∂t
(3.1.21)

6. The wavefunction must be antisymmetric with respect to interchange of all coordinates
of one fermion with those of another. Electronic spin must be included in this set of
coordinates.

The time-dependent Schrödinger equation for a single particle can be derived from the clas-
sical wave equation and the de Broglie relation. However, in general it cannot be derived
and is given as a postulate in quantum mechanics. In three dimensions the time-dependent
Schrödinger equation takes the form:

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t) (3.1.22)

The time-independent Schrödinger equation can be obtained by considering the wave func-
tion to be a product of spatial and temporal terms:

ψ(r, t) = ψ(r)f(t) (3.1.23)
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From this decomposition one can derive the time-independent Schrödinger equation for ψ(r):

− ~2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (3.1.24)

and
f(t) = e

−iEt
~ (3.1.25)

The Hydrogen Atom

In quantum chemistry it is generally dealt with solving the time-independent Schrödinger
equation. However, it can only be solved analytically for a few systems, one of those being
the hydrogen atom. Even in this simple case the solution is not trivial. It can be consulted
in [She01]. The potential due to electrostatic attraction is

V (r) = − e2

4πε0r
(3.1.26)

and the kinetic energy term is

T̂ = − ~
2µ
∇2 (3.1.27)

The hydrogen atom eigenvalues are

En = − e2

8πε0a0n2
n = 1, 2, . . . (3.1.28)

which coincide with the predictions from Bohr’s model (3.1.11). In practice, for molecules
approximations are used. These are the class of problems for which we use a graph convolu-
tional neural network that under the hood needs to solve Schrödinger’s equation. It is thus
a very challenging task.

3.2 Molecular Quantum Mechanics

In this section we discuss the quantum mechanics of molecules. The kinetic energy for a
system of particles is:

T̂ = −~2

2

∑
i

1

mi
∇2 (3.2.1)

The potential energy for a system of charged particles is:

V̂ (r) =
∑
i>j

ZiZje
2

4πεo

1

|ri − rj|
(3.2.2)

Let r refer to the electrons coordinates and R to the nuclear coordinates. We can write the
Time-independent Schrödinger equation for the system as:

Definition 3.2.1 Time-independent Schrödinger equation

Ĥψ(r,R) = Eψ(r,R) (3.2.3)

An approximation called the Born-Oppenheimr approximation lets us write the Hamiltonian
as follows:
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Definition 3.2.2 Non-relativstic Electronic Schrödinger Equation under the Born-Oppenheimer
approximation

Ĥ = T̂N (R) + T̂e(r) + V̂NN (R) + V̂eN (r,R) + V̂ee(r) (3.2.4)

where

• T̂N (R): Kinetic energy of the nuclei

• T̂e(r): Kintetic energy of the electrons

• V̂NN (R): Potential energy due to the repulsive electric forces between nuclei

• V̂eN (r,R): Potential energy due to the attractive electric forces between electrons and
the nuclei

• V̂ee(r): Potential energy due to the repulsive electric forces between electrons

Using the indices i, j to refer to electrons, and A,B to refer to nuclei we have that:

Ĥ = −
∑
A

~2

2MA
∇2
A −

~2

2m

∑
i

∇2
i +

∑
A>B

ZAZBe
2

4πε0RAB
−
∑
A,i

ZAe
2

4πε0rAi
+
∑
i>j

e2

4πε0rij
(3.2.5)

In atomic units:

Ĥ = −
∑
A

1

2MA
∇2
A −

1

2

∑
i

∇2
i +

∑
A>B

ZAZB
RAB

−
∑
A,i

ZA
rAi

+
∑
A>B

ZAZB
RAB

+
∑
i>j

1

rij
(3.2.6)

j

+ZA

+ZB

i
rAj

rij

rBj rAi

RAB

rBi

Figure 3.1: Molecular Hamiltonian. Based on [She03]

Due to the term
∑
A,i

ZA
rAi

it is not possible to write the wavefunction as ψ(r,R) = ψel(r)ψN (R).

The Born-Oppenheimer approximation consists on assuming that this separation is approx-
imately correct. If the nuclei coordinates R are fixed at some value Ra and ψel(r;Ra) is
solved with R as a parameter, a potential energy surface along which the nuclei move can
be obtained. For a fixed nuclear configuration we have:

Definition 3.2.3 Clamped Nuclei Schrödinger Equation

Ĥelψel(r;R) =
[
T̂e(r) + V̂NN (R) + V̂eN (r,R) + V̂ee(r)

]
ψel(r;R) = Eel(R)ψel(r;R)

(3.2.7)

It turns out that the electronic energy is the potential energy felt by the nuclei, thus min-
imizing the electronic energy with respect to nuclear coordinates gives an equilibrium con-
figuration of a molecule:

Definition 3.2.4 Schrödinger’s Equation for the Nuclear Wavefunction

ĤNψN (R) =

(
−
∑
A

1

2MA
∇2
A + Eel(R)

)
ψN (R) = EtotψN (R) (3.2.8)
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Chapter 4

Tasks of GCNs

Graph Convolutional Networks have been succesfully employed in a wide range of tasks in
which the problem can be modeled using a graph formulation. In Computer Vision they
have been used in scene graph generation, point clouds classification and segmentation, ac-
tion recognition and in other applications. In recommender systems, items and users are
treated as nodes and the different relations among the nodes along with content information
are used in the graph neural network to produce high-quality recommendations. In traffic
applications, they can be used to forecast speed, volume or density of roads on traffic net-
works. In Chemistry they have been used to predict molecular properties, to infer protein
interfaces, and to synthesize chemical compounds. Other applications include text clas-
sification, neural machine translation and combinatorial optimization problems [Zho+18;
Wu+19b]. Since graphs are a tool that can be used in a great variety of settings, the
possible applications of graph neural networks are many and they become a very general
formulation for various machine learning tasks.
In the first section of this chapter we present some general classes of problems for which
graph convolutional networks are well suited. In the second section we discuss the case of
molecules where aditionally atom embeddings are learned.

4.1 Setting and Tasks

The general setting which we follow in this thesis is the following:

We consider a set of T ∈ N attributed graphs D = {Gt : t ∈ [T ]} ⊂ B. All graphs Gt have
the same number E ∈ N of edge types and the same number F ∈ N of node feature signals.
Each graph is given by Gt = (Vt, Et, At, Xt), where:

• Vt is the set of Nt vertices.

• Et ⊂ [E]× Vt × Vt is the edge set.

• At ∈ RE×Nt×Nt is the adjacency tensor.

• Xt ∈ RNt×F is the matrix of node features.

25
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Similar as presented in [AT16] we want to solve one of the following problems:

1. Supervised Graph Regression:
We have T > 1 graphs and each graph has M ∈ N properties associated with it:
Yt ∈ RM . We seek to build a model that predicts the properties of the graphs: Find
a set of parameters θ and a function

hθ : B → RM

such that hθ(G) ≈ Y approximates the properties of the graph.

2. Supervised Graph Classification:
We have T > 1 graphs and each graph belongs to one and only one class c ∈ [C]. We
seek to build a model that predicts the class of the graphs: Find a set of parameters
θ and a function

hθ : B → [C]

such that hθ(G) assigns a class to the graph.

3. Semisupervised Node Regression:
We have a graph (T = 1) and each node v has M ∈ N features associated with it:
Yv ∈ RM . We seek to build a model that predicts the features of the nodes: Find a
set of parameters θ and a function

hθ : G → RN×M

such that hθ(G)v,: ≈ Yv for each node v ∈ V.
Note: One could also have T > 1 and learn a single model which works for different
graphs.

4. Semisupervised Node Classification:
We have a graph (T = 1) and each node v belongs to a to one and only one class
c ∈ [C]. We seek to build a model that predicts the class of the nodes: Find a set of
parameters θ and a function

hθ : G → {0, 1}N×C

such that hθ(G)v,: assigns a class for each node v ∈ V.
Note: One could also have T > 1 and learn a single model which works for different
graphs.

5. Semisupervised Edge Classification:
We have a graph (T = 1) G and each edge e belongs to one and only one class s ∈ [E].
We seek to build a model that predicts the class of the edges given a subgraph Ĝ for
which the edge types are known: Find a set of parameters θ and a function

hθ : Ĝ → {0, 1}N×(E+1)

such that hθ(Ĝ)e,: assigns a class for each possible edge e or predicts no edge.
Note: One could also have T > 1 and learn a single model which works for different
graphs.
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In this work we focus on the prediction of real-valued molecular properties such as internal
energy, and are thus interested in performing Supervised Graph Regression. Supervised
Graph Classification includes tasks such as predicting the types of toxicity of molecules
[May+15]. The problem of the classification of documents in a citation network given the
topic of some of the documents falls into the class of Semisupervised Node Classification.
The task of predicting citations between documents, given a subnetwork, can be treated
as a Semisupervised Edge Classification problem. We discuss these last two problems in
Appendix C.

4.2 Molecules as Chemical Graphs

We treat molecules as chemical graphs where the vertex set V = {(i, Zi)}1≤i≤N consists of
N atoms identified by index and their respective atomic numbers. Usually 4 bond types
are considered: single, double, triple and aromatic. The bonds are modeled as edges in
the graph where (b, i, j) ∈ E (Abij = 1) if and only if there is a bond of type b between
atom i and atom j. If there is no bond of type b then Abij = 0. The atom features
X ∈ RN×f0 are obtained as we will describe shortly. Moreover, the hydrogen atoms may
aslo be treated implicitly and not be included in V. In addition, the atomic coordinates R
can also be considered in some of the models. We consider our set of molecules D a subset
of molecules from B (usually small organic molecules) a subset of chemical compound space
(CCS) [LMT19]. One should keep in mind that this approach from Chemical Graph Theory
[Bon91] is a simplified mathematical model of molecules.

Learning Node Embeddings

In the case of a citation network, a 0-1 bag-of-features or some other encoding indicating the
presence or frequency of the words from a dictionary can be used as the feature matrix X.
In the case molecules, there are not many natural features associated with each atom and it
is thus helpful to learn an embedding for each elemnent. We consider an embedding Emb
which associates to each atomic number a feature vector in Rf0 . Then, given a molecule, to
form the feature matrix we associate each atom with its respective feature vector which is
determined by which element it is. One could define it in a more general way in which for
one Element there can be more than one type of atom, based on valency for example.

Emb : N+ → Rf0 (4.2.1)

Algorithm 1 Embedding Emb
1: Input: Atomic Number Z
2: aZ = Emb(Z) ∈ Rf0
3: Output: aZ

Algorithm 2 GetFeatures
1: Input: V = {(i, Zi)}1≤i≤N

2: X =
N∑
i=1

ei ⊗ Emb(Zi)> =

Emb(Z1)
>

...
Emb(ZN )>


3: Output: X ∈ RN×f0

The feature vectors aZ ∈ Rf0 are learnable within each model. In addition to these feature
vectors, for each element other properties can be learned, such as the reference energies as
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we will see later on the chapter on molecular property prediction. In the case of spatial-
based methods it is also possible to learn bond embeddings eb ∈ Rd according to bond type
b.

Figure 4.1: Molecule as a Chemical Graph obtained using RDkit [Rdk]



Chapter 5

Spectral-Based Graph Convolutional
Networks

In this chapter we present the general way in which a graph convolutional layer is defined
in the setting of Spectral-based Graph Convolutional Networks. We also present the other
layers and the structure of such networks. We describe and compare the following mod-
els: SpectralCNN [Bru+13], Chebyshev Spectral CNN (ChebNet) [DBV16], LanczosNet
[Lia+19] and 1st Order of the ChebNet (GCN) [KW17], with a focus on the LanczosNet.
We develop a formulation which allows us to compare the way in which the filters are ob-
tained in each model. In the next chapter we discuss some spatial-based models in order to
compare them to the spectral-based approach. In this chapter the notation can become a
little bit heavy, but most of the time we choose not to drop the dependency in the notation
on the layers and channels so that the reader who is unfamiliar with regular convolutional
networks can still understand how the spectral convolutional layer works and in order to
get a clearer picture and calculation of the number of parameters in each model.

5.1 Structure of Spectral-Based Graph Convolutional Net-
works

5.1.1 Convolution

Spectral-based graph convolutional networks follow or approximate the definition of graph
convolution presented in equation (2.4.4) of the second chapter.

Definition 5.1.1 Convolution: Input, Kernel and Output

x ∗G g = UGUTx = ĝ(L)x where G = diag(ĝ) (5.1.1)

Following [GBC16], in convolutional network terminology the first argument to the convo-
lution (x) is referred to as the input, and the second argument (g) as the kernel. The result
of the convolution operator is known as the output (x ∗G g).

In Graph Signal Processing, as discussed in chapter 2, convolving a graph signal with a
kernel is known as (spectrally) filtering the signal. In this thesis, in the context of graph
neural networks, we reserve the term filtering for the multi-dimensional graph signals. When
considering one input signal and one kernel, we employ the term application of a kernel to a

29
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graph signal. When there are multiple inputs (input channels), and to each input we apply
a kernel and then sum the outputs to form the ouput channel, we use the term filtering and
the ordered collection of kernels is referred to as a filter. This is done to avoid any possible
ambiguity regarding the way a graph convolutional layer works.

Definition 5.1.2 Application of a kernel to a graph signal
The application of a kernel g to a signal x consists on convolving x with g. We denote it
by:

ḡ : RN → RN (5.1.2)

where ḡ(x) := x ∗G g

5.1.2 Filtering

Definition 5.1.3 Filter
We refer to an ordered collection of kernels as a filter. A filter F with C ∈ N input channels
is

F = (g1, . . . ,gC) (5.1.3)

where each gc is a kernel, for c = 1, . . . , C.

Definition 5.1.4 Application of a filter to multi-dimensional graph signal
The application of a filter F = (g1, . . . ,gC) to a matrix of graph signals

[
x1, . . . ,xC

]
consists

on applying each kernel gc to each correspondent signal xc and then summing all the results.

F̄ : RN×C → RN (5.1.4)

Given C graph signals
[
x1, . . . ,xC

]
F̄
([
x1, . . . ,xC

])
:=

C∑
c=1

ḡc(x
c) :=

C∑
c=1

xc ∗G gc (5.1.5)

The input of the filtering operation is referred to as input channels and the output as feature
map.

The purpose of applying a filter to a matrix of input channels (features, graph signals) is to
extract (or generate) a new graph signal (feature). This is the same principle that classical
convolutional networks from Computer Vision follow.

5.1.3 General Form of a Graph Convolutional Layer

A graph convolutional layer at layer k consists of generating a matrix of feature maps

X
(k)
net ∈ RN×fk (5.1.6)

which is obtained by applying fk filters (Fkj)j≤fk to the matrixX(k−1) ∈ RN×fk−1 outputted
by the previous layer k − 1.

X
(k−1)
:,i are the input channels for layer k, 1 ≤ i ≤ fk−1 (5.1.7)(

X
(k)
net

)
:,j

are the output channels of layer k, 1 ≤ j ≤ fk (5.1.8)

Fkj = (gk1j , . . . ,g
k
fk−1j

) is the j-th filter of layer k (5.1.9)
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The j-th output channel of layer k is obtained by applying filter Fkj to the matrix X(k−1)

outputted by the previous layer:

Definition 5.1.5 Net layer k

(
X

(k)
net

)
:,j

= F̄kj
(
X(k−1)

)
=

fk−1∑
i=1

X
(k−1)
:,i ∗G gkij

 (5.1.10)

5.1.4 Transfer function

After obtaining the features X(k)
net usually a nonlinear transfer function φk : R→ R is applied

element-wise.

Definition 5.1.6 Layer k
X(k) := X

(k)
out := φk

(
X

(k)
net

)
(5.1.11)

In this way a new set of features X(k) is obtained which may then be used as input channels
for layer k + 1.

5.1.5 Dropout

After applying the activation function dropout can be applied. One form of applying dropout
is the following:

1. During training:
Once X(k) is obtained each feature of each node is kept with probability 0 < δk ≤ 1,
and dropped with probability 0 ≤ 1− δk < 1. That is,

X
(k)
i,j ← 0 ∈ RN with probability 1− δk (5.1.12)

2. For validation, testing and general prediction:
The output of the features is multiplied by the probability of being kept.

X(k) ← δkX
(k) (5.1.13)

5.2 Obtaining the filters

The main difference between the different spectral models lies in how the filters are learned.
fk filters are applied at each each convolutional layer k. Each filter j consists of fk−1 kernels.
The j-th filter is given by Fkj = (gk1j , . . . ,g

k
fk−1j

). One has to keep in mind that there are
fk filters per layer and that each filter contains fk−1 kernels, so there are fkfk−1 kernels at
layer k.
For the purpose of explaining how Fkj is learned, we fix the layer k, the input channel i and
output channel j and drop the dependence in the notation. We show how one kernel in one
particular layer is obtained. Based on equation (5.1.1) to apply the kernel g to a signal x
we have:

x ∗G g = UGU>x = ĝ(L)x where G = diag(ĝ)

So it is not necessary to obtain g explicitly. It is usually done by obtaining one of the
following:
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1. Kernel defined on the spectral domain ĝ or matrix of the kernel in the spectral basis
G = diag(ĝ):

ĝ = ρG(w,α) where ρG : Rd1+d2 → RN and ρG = ρ̃(spec(G)) (5.2.1)

G = πG(w,α) where πG : Rd1+d2 → RN×N and πG = π̃(spec(G)) (5.2.2)

where spec(G) refers to the eigenvalues of L. The parameters w, α may be used for
different graphs in general and for each graph the kernel is obtained by further using
its spectrum.

2. Matrix of the kernel in the standard basis: ĝ(L)

ĝ(L) = βG(w,α) where βG : Rd1+d2 → RN×N and βG = β̃(L) (5.2.3)

The parameters w, α may be used for different graphs in general and for each graph
the matrix of kernel in the standard basis is obtained by further using its respective
matrix L.

This formulation shall become clearer once with discuss the different models. Learning
consists in adapting the parameters w,α in the network to minimize a given loss function.
We now compare the different models.

5.3 Spectral CNN

The first spectral graph convolutional neural network, Spectral CNN, was introduced in
[Bru+13]. They consider the normalized symmetric Laplacian, L = LN in equation (2.3.2).
In this network a graph convolutional layer is defined by:

(
X

(k)
net

)
:,j

=

fk−1∑
i=1

UW
(k)
ij UTX

(k−1)
:,i ∀1 ≤ j ≤ fk (5.3.1)

where W (k)
ij ∈ RN×N is a diagonal matrix of learnable parameters. So the number of

parameters on layer k is Nfk−1fk. This model learns the matrix of the kernel in the
spectral domain (5.2.2) via

W := G = πG(w) where πG : RN → RN×N with πG(w) = diag(w) (5.3.2)

Advantages

1. High representational capacity: Given a single graph G, any filter can be learned since
the model learns all components of the kernels (in the spectral domain) directly from
parameters w ∈ RN as shown in equation (5.3.2).

Disadvantages

1. High computational cost: It requires calculating the eigenvalue decomposition of an
N ×N matrix which becomes expensive for large graphs. The filtering at layer k has
complexity O(N2fkfk−1) due to the multiplication with the eigenvector matrix U .
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2. Non-transferable parameters: The total number of parameters is O(N). The learned
parameters are not transferable to other graphs. The weights w ∈ RN are used
directly as the kernels (5.3.2), which only make sense for graphs with N nodes. These
parameters can’t be used for graphs with a different number of nodes and might not
generalize well to other graphs with the same number of nodes. Furthermore, even in
the case of a single graph the parameters are possibly dependent on the order of the
orthogonal basis.

5.4 Chebyshev Spectral CNN: ChebNet

Considering L = LN , the graph Laplacian is modified to

L̃ = 2L/λmax − I (5.4.1)

which has eigenvalues in [−1, 1]. The matrix represenation of the kernels in the spectral
basis are obtained from Chebyshev polynomials Ct of the diagonal matrix of eigenvalues:

Gw =
τ−1∑
t=0

wtCt(Λ̃) (5.4.2)

where Λ̃ = 2Λ/λmax − I, w ∈ Rτ and the Chebyshev polynomial are defined as follows.

Definition 5.4.1 Chebyshev Polynomials
The Chebyshev polynomials are recursively defined as:

C0(s) = 1, C1(s) = s

Ct(s) = 2sCt−1(s)− Ct−2(s) ∀t ≥ 2
(5.4.3)

Convolution of a graph signal x with the kernel gw is given by:

x ∗G gw = U

(
τ−1∑
t=0

wtCt(Λ̃)

)
U>x

=
τ−1∑
t=0

wtCt(L̃)x

=
[
C0(L̃)x, . . . , Cτ−1(L̃)x

]
w

= ĝw(L̃)x

(5.4.4)

where ĝw(L̃) :=
τ−1∑
t=0

wtCt(L̃). Now we define the interleaving of vectors to make the final

representation of a convolutional layer more compact.

Definition 5.4.2 Interleaving
The (linear) interleaving of Q ∈ N vectors y1, . . . ,yQ ∈ Rd is the vector in RdQ which is
formed by concatenating the first entries of all Q vectors, then appending the second entries
of all vectors, and so on. Consider eq ∈ RQ the q-th vector of the standard basis of RQ then

interleaving
(
y1, . . . ,yQ

)
:=

Q∑
q=1

yq ⊗ eq

= (y1
1,y

2
1, . . . ,y

Q
1 ,y

1
2,y

2
2, . . . ,y

Q
2 , . . . ,y

1
d,y

2
d, . . . ,y

Q
d )>

(5.4.5)



34 CHAPTER 5. SPECTRAL-BASED GRAPH CONVOLUTIONAL NETWORKS

To apply the j-th filter of layer k: Fkj =

(
gwk

1j
, . . . ,gwk

fk−1j

)
, where wk

ij ∈ Rτ are vectors

of learnable parameters ∀1 ≤ i ≤ fk−1, the general graph convolutional equation (5.1.10)
is followed. (

X
(k)
net

)
:,j

= F̄kj
(
X(k−1)

)
=

fk−1∑
i=1

X
(k−1)
;,i ∗G gwk

ij

=

fk−1∑
i=1

ĝwk
ij

(L̃)X
(k−1)
;,i

=

fk−1∑
i=1

(
τ−1∑
t=0

wk
ij;tCt(L̃)

)
X

(k−1)
:,i

=

fk−1∑
i=1

[
C0(L̃)X

(k−1)
:,i , . . . , Cτ−1(L̃)X

(k−1)
:,i

]
wk
ij

=
[
C0(L̃)X(k−1), . . . , Cτ−1(L̃)X(k−1)

]
wkj ∈ RN

(5.4.6)

where
wkj := interleaving

(
wk

1j , . . . ,w
k
fk−1j

)
∈ Rτfk−1

In compact notation the complete graph convolution layer can be expressed as:

X
(k)
net =

[
C0(L̃)X(k−1), . . . , Cτ−1(L̃)X(k−1)

]
W (k) ∈ RN×fk (5.4.7)

where
W (k) :=

[
wk1, . . . ,wkfk

]
∈ Rτfk−1×fk

So the total number of parameters on layer k is τfk−1fk. This model learns the matrix of
the kernel in the standard basis (5.2.3) via:

ĝ(L̃) = βG(w) where βG : Rτ → RN×N and βG(w) =

(
τ−1∑
t=0

wtCt(L̃)

)
(5.4.8)

Advantages

1. In contrast to the previous model, this model avoids the computation of the spec-
tral decomposition of L̃. The filtering at layer k can be evaluated in O(τ |E|fkfk−1)
operations.

2. The learnable parameters W (k) ∈ Rτfk−1×fk are in principle transferable and may be
applied to graphs with any number of vertices. As seen in (5.4.8), the parameters that
are learned to determine a kernel are w ∈ Rτ which do not depend on N (O(1)) and
can be applied to any graph.
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Disadvantages

1. The structure (functional form) of the spectral filter is not learnable. Note that in
(5.4.8) the kernels (matrix of the kernel in the standard basis) is always obtained as
a polynomial of L̃ of maximum degree τ − 1.

2. If τ is big, it incurs in a high computational cost of calculating

Ct(L̃)X ∀1 ≤ t ≤ τ − 1

5.5 LanczosNet

The LanczosNet was introduced in [Lia+19]. It is introduced as a promising spectral-
based network which seeks more efficiency, generality, representational capacity and efficient
leverage of multi-scale information.
As seen before, one of the drawbacks of SpectralCNN is the high computational cost of com-
puting the eigenvalue decomposition of LN . To address this efficiency issue, the Lanczos-
Net uses the the approximate eigenvalue decomposition implied by the Lanczos algorithm
[Lan50] to obtain a low rank approximation of the graph Laplacian. Moreover, one of
the disadvantages of the ChebNet is the cost of computing Ct(L̃)X when τ is big. In the
LanczosNet the approximate eigenvalue decomposition is used to approximate powers of the
graph Laplacian in order to efficiently leverage multi-scale information.
Furthermore, in the ChebNet the functional form of the spectral filter is always constrained
to be obtained as a polynomial of maximum degree τ − 1 of L̃. In the LanczosNet a Multi-
Layer perceptron is used to learn the spectral filters, instead of using a predetermined class
of polynomials. This increases the representational capacity of the model and inables it to
learn useful representations for particular tasks. This and the approximation that is used
change the locality of the model, as will be discussed on Chapter 9. In contrast to the
SpectralCNN and as the ChebNet the model assumes neither a fix graph nor a fix graph
size.

5.5.1 Motivation

The LanczosNet builds upon the previous models. Instead of using the modified Laplacian
L̃, the similarity matrix S is used. Since each Ct is a polynomial of degree t it follows that:

Ct(S)x ∈ Kt+1(S,x) := span{x, Sx, . . . , Stx} (5.5.1)

So the convolution in the Chebyshev Net (5.4.4) could be reparametrized in terms of an
orthonormal basis of Kt+1(S,x) to make the coefficients compact. This originally motiv-
ated the use of Krylov subspace methods such as Lanczos Algorithm, which provides an
orthonormal basis of Kt+1(S,x) when x and S are given as input. This would make the
kernel applied data-dependent, meaning that for each signal x the kernel would be of the
form gw(x) ∈ RN . One could run the Lanczos Algorithm with x and S as input to obtain
an orthonormal basis matrix Q̃(x) of Kτ (S,x). Then the application of the kernel would
take the form:

x ∗G gw(x) = Q̃(x)w (5.5.2)

with w ∈ Rτ . This would make the kernel coefficients compact, since each component
of w would account for one of the orthonormal vectors. However, this idea is not further
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developed since in the context of a deep graph convolutional network it would imply running
the Lanczos Algorithm fk−1 times at each layer k. Since one would have to compute
Q̃
(
X

(k−1)
:,i

)
for each of the fk−1 features i. This would have a high computational cost.

The Lanczos Algorithm still plays an important role in the LanczosNet but its purpose is
not the one explained above. It would be ideal to have to run the Lanczos Algorithm just
once (resp. once per graph) during inference in a convolutional neural network. It is possible
to obtain the same class of convolutions (5.4.4) as in the Chebyshev Net by using a direct
basis of Kt+1(S,x) instead of using an orthonormal basis as in equation (5.5.2) which yields:

x ∗G gw =
[
x, Sx . . . , Sτ−1x

]
w

= ĝw(S)x
(5.5.3)

The Lanczos Algorithm can be used to obtain an approximate eigenvalue decomposition
of the matrix S which will decrease the high computational cost of either doing the eigen-
value decomposition done by the Spectral CNN or of the exponentiation of S done by the
Chebyshev Net. The weight parameters will not be data-dependent in the sense discussed
before.

5.5.2 Approximate Spectral Decomposition

Using the K-step Lanczos Algorithm one can one obtain an approximate eigenvalue decom-
position of S ∈ RN×N with V ∈ RN×K whose columns are K orthonormal vectors which
are called Ritz eigenvectors, and a diagonal matrix R ∈ RK×K whose diagonal contains the
Ritz values and S ≈ V RV > is an approximate eigenvalue decomposition. The Ritz values
approximate the first highest K eigenvalues and the columns of V approximate the K re-
spective eigenvectors via the Implicitly Restarted Lanczos Algorithm (Algorithm 9). We
defer the detailed presentation of the Lanczos Algorithm to Chapter 7 in order to mantain
the flow of the explanation of the LanczosNet and to keep the focus of this chapter on the
spectral convolutional neural networks.

5.5.3 Convolution

Using the approximate eigenvalue decomposition implied by a K-step Lanczos Algorithm
St ≈ V RtV > an approximation of the convolution in equation (5.5.3) can be obtained:

x ∗G gw =
[
x, Sx . . . , Sτ−1x

]
w

≈
[
x, V RV >x, . . . , V Rτ−1V >x

]
w

(5.5.4)

Short and Long Scale Parameters

However for short diffusion scales t it may still be viable to compute Stx. In addition, not
every scale from 0 up to τ − 1 needs to be included. The scales can thus be divided into
two sets of non-negative integers:

1. S = {S1, . . . ,SJ}: a set of J short scale parameters (e.g. S = {0, 2, 4, 5})
These scales shall be small numbers and in the authors experiments are typically less
than 10 in order to achieve a reasonable computational cost. For these scales Stx is
computed.
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2. I = {I1, . . . , IH}: a set of H long scale parameters. (e.g. I = {10, 20, . . . , 50})
These are in principle larger numbers, but that is not required.

So convolution in equation (5.5.4) can be generalized to:

x ∗G gw :=
[
SS1x, . . . , SSJx, V RI1V >x, . . . , V RIHV >x

]
w (5.5.5)

where w ∈ RJ+H .

Learnable Filters

The matrices of the kernels that can be obtained in this way are of the form polynomial(S)
+ approxpolynomial(S). To further increase the model’s representational capacity it is pos-
sible to design learnable kernels so that the learned kernels are not only obtained from
polynomials. In view of the universal approximation property of multi-layer perceptrons
one can use MLPs to learn these kernels. Polynomials being a particular case which could
be represented.
Consider

ph : RH → R ∀ 1 ≤ h ≤ H (5.5.6)

to be each a multilayer perceptron with input dimension H and output dimension 1.
Instead of using V RIhV > in equation (5.5.5) which is a polynomial kernel in terms of the
Ritz values one can use the (learnable) multilayer perceptron ph. Denote the Ritz values
and vectors as {(rq,vq) ∈ R× RN | q = 1, . . . ,K} which are the diagonal entries of R and
the column vectors of V respectively. Moreover, let

r(I, q) := (rI1q , r
I2
q , . . . , r

IH
q )> ∈ RH (5.5.7)

the vector which contains theH long range powers of the q-th Ritz value. The h-th subkernel
associated to a long scale parameter in equation (5.5.5) is generalized to:

Ŝh(I) =
K∑
q=1

ph(rI1q , r
I2
q , . . . , r

IH
q )vqv

>
q

= V

ph(r(I, 1))
. . .

ph(r(I,K))

V >
=: V R̂h(I)V > ∈ RN×N

(5.5.8)

This leads to generalized convolution:

x ∗G gw :=
[
SS1x, . . . , SSJx, Ŝ1(I)x, . . . , ŜH(I)x

]
w (5.5.9)

where w ∈ RJ+H . If each perceptron ph : RH → R is the function which maps y 7→ yh
namely ph(y) = y · eh then equation (5.5.9) is the same as equation (5.5.5). In that case
ph(r(I, q)) = rIhq and R̂h(I) = RIh . Thus this formulation includes the (approximate)
polynomial kernels as a particular case, but is also capable of representing a larger class of
kernels.
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5.5.4 Graph Convolutional Layer

Using the definition of convolution of equation (5.5.9) and following the general form of a
convolutional layer (5.1.10) one obtains:(

X
(k)
net

)
:,j

= F̄kj
(
X(k−1)

)
=

fk−1∑
i=1

fk−1∑
i=1

X
(k−1)
:,i ∗G gwk

ij


=

fk−1∑
i=1

[
SS1X

(k−1)
:,i , . . . , SSMX

(k−1)
:,i , Ŝ

(k)
1 (I)X

(k−1)
:,i , . . . , Ŝ

(k)
H (I)X

(k−1)
:,i

]
wk
ij

=
[
SS1X(k−1), . . . , SSMX(k−1), Ŝ

(k)
1 (I)X(k−1), . . . , Ŝ

(k)
H (I)X(k−1)

]
wkj

(5.5.10)

where wk
ij ∈ RJ+H and wkj := interleaving

(
wk

1j , . . . ,w
k
fk−1j

)
∈ R(J+H)fk−1 .

X
(k)
net =

[
SS1X(k−1), . . . , SSMX(k−1), Ŝ

(k)
1 (I)X(k−1), . . . , Ŝ

(k)
H (I)X(k−1)

]
W (k) (5.5.11)

where
W (k) :=

[
wk1, . . . ,wkfk

]
∈ R(J+H)fk−1×fk

The number of learnable parameters in layer k is: (J +H)fk−1fk + par(k) where par(k) is
the number of parameters of the H multilayer percerptrons pkh in layer k.

Implementation

1. Multilayer perceptrons: The authors of the LanczosNet implement the H multilayer
perceptrons of each layer by training one unique multilayer perceptron per layer
pk : RH → RH and considering

pkh(r) := (pk(r))h (5.5.12)

This sharing of parameters of the perceptrons reduces the overall number of paramet-
ers.

2. Bias Weights at the Convolutional Layer: At layer k, one bias weight term b
(k)
j ∈ R

is learned per filter ∀1 ≤ j ≤ fk. Considering 1N ∈ RN the vector of ones, the bias
matrix at layer k, B(k) ∈ RN×fk , is given by

B(k) := [b
(k)
1 · · · b

(k)
fk

]⊗ 1N

=


b
(k)
1 · · · b

(k)
fk

b
(k)
1 · · · b

(k)
fk

...
...

...
b
(k)
1 · · · b

(k)
fk

 ∈ RN×fk
(5.5.13)

Considering the bias matrix, equation (5.5.11) becomes:

X
(k)
net =

[
SS1X(k−1), . . . , SSMX(k−1), Ŝ

(k)
1 (I)X(k−1), . . . , Ŝ

(k)
H (I)X(k−1)

]
W (k) +B(k)

(5.5.14)
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5.5.5 Multiple Edge Types

To deal with the case where there are multiple edge types (such as in chemical graphs,
where each type represents a different type of bond) the graph convolution layer needs to
be modified. Consider an attributed graph G = (V, E , A,X) but now E > 1 edge types. Let
Ae := Ae,:,: ∈ RN×N be the adjacency matrix corresponding to edge type e for 1 ≤ e ≤ E.
In [Lia+19] they proceed as follows. The simple adjacency matrix A0 is obtained as the
sum of all adjacency matrices:

A0 :=
E∑
e=1

Ae (5.5.15)

For each edge type:

Se := D̃−1/2e ÃeD̃
−1/2
e ∀ 1 ≤ e ≤ E

S := D̃
−1/2
0 Ã0D̃

−1/2
0

(5.5.16)

where Ãe := Ae + IN and D̃e is its diagonal degree matrix. Convolution in equation (5.5.9)
is further augmented to:

x ∗G gw :=
[
SS1x, . . . , SSJx, Ŝ1(I)x, . . . , ŜH(I)x, Sx, S1x, . . . , SEx

]
w (5.5.17)

where w ∈ RJ+H+E+1.

Convolutional Layer of the LanczosNet with Multiple Edge Types

A convolutional layer in the final model is given by:

X
(k)
net =

[
SS1X(k−1), . . . , SSJX(k−1), Ŝ

(k)
1 (I)X(k−1), . . . , Ŝ

(k)
H (I)X(k−1),

SX(k−1), S1X
(k−1), . . . , SEX

(k−1)]W (k) +B(k)
(5.5.18)

Input Features: X(k−1) ∈ RN×fk−1

Simple Modified Similarity Matrix: S ∈ RN×N

Modified Similarity Matrix of Edge Type e: Se ∈ RN×N

Short Scale Parameters: S := {S1, . . . ,SJ}
Long Scale Parameters: I := {I1, . . . , IH}

Weight Matrix: W (k) ∈ R(J+H+E+1)fk−1×fk

Bias Matrix: B(k) := [b
(k)
1 · · · b

(k)
fk

]⊗ 1N ∈ RN×fk

h-th Multilayer Perceptron: pkh : RH → R

Matrix of the Kernel that Corresponds to pkh: Ŝ
(k)
h (I) ∈ RN×N

Output Features: X(k)
net ∈ RN×fk

(5.5.19)
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5.5.6 Fully Connected Layer and Attention Mechanism

If Lc ∈ N is the number of convolutional layers, for the problem of graph regression, a (for
each node) fully connected layer can be applied as follows:

X
(Lc+1)
i,j =

fLc∑
s=1

wLc+1
sj X

(Lc)
i,s + bLc+1

j (5.5.20)

At this layer we have W (Lc+1) ∈ RfLc×M and bLc+1 ∈ RM where M is the number of
properties that want to be predicted. Instead of just taking the mean for each feature an
attention mechanism can be added. A perceptron with no hidden layers pa : RM → R is
introduced, where M is the number of features that are to be predicted. At the output the
sigmoid activation function is applied. The attention weight ai corresponding to the i-th
vertex is

ai := pa
(
X

(Lc+1)
i,:

)
∈ R ∀ 1 ≤ i ≤ N (5.5.21)

Each feature of node i is multiplied by the attention weight ai to obtain Z ∈ RN×M . Let
a := (a1, . . . , aN )T = pa(X) ∈ RN , where pa(X) is understood as the row-wise application
of pa, as usual.

Z := diag(a)X(Lc) ∈ RN×M (5.5.22)

Zi,j = aiX
(Lc+1)
i,j (5.5.23)

The final prediction for each feature is computed by taking the average of the value of the
feature of the nodes:

Ŷ := avgcol(Z) ∈ RM (5.5.24)

In Appendix B a graphical depiction of the LanczosNet architecture is presented. The
LanczosNet inference is presented in the following algorithm:

Algorithm 3 LanczosNet
1: Input: G, S, V,R, S1, . . . , SE ,S, I
2: Y ← GetFeatures(V)
3: for k = 1, . . . Lc do
4: X ← Y
5: Y ←

[
SS1X , . . . , SSJX

]
6: R̂1 . . . , R̂H ← LanczosKernels(R, k, I)
7: Y ← Y ⊕

[
V R̂1V

>X, . . . , V R̂HV
>X
]

8: Y ← Y ⊕
[
SX,S1X, . . . , SEX

]
9: Y ← concatenate(Y )

10: Y ← YW (k) +B(k)

11: Y ← φk(Y )
12: Y ← Dropout(Y, δk)
13: end for
14: Y ← YW (Lc+1) +B(Lc+1)

15: a1, . . . , aN ← AttNet(Y )
16: Y ← diag(a1, . . . aN )Y
17: Y ← avgcol(Y )
18: Output: Y
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The matrix of the kernel is obtained via

ĝ(S, S1, S2, . . . , SE) = βG(w, α) where βG : RJ+H+E+1+par → RN×N (5.5.25)

βG(w) =
J∑
j=1

wjS
Sj +

H∑
h=1

wJ+hŜh(I)(α) +
E∑
e=0

wJ+H+e+1Se (5.5.26)

Advantages

1. This model computes an approximate spectral decomposition of S avoiding a complete
eigenvector decomposition. Furthermore, this also helps to approximate powers Stx
at a lower computational cost than in the ChebNet in order to perform multi-scale
diffusion.

2. The learnable parameters at the convolutional layers W (k), the bias parameters b(k),
the parameters at the fully connected layer W (Lc+1) and bLc+1 , the parameters of
the multi-layer perceptrons pk, and the parameters of the attention network pa may
be applied to graphs with any number of vertices.

3. High representational capacity as not only polynomials are used to construct the filters,
as in the case of the ChebNet.

4. It includes a way of dealing with multiple edge-types. It is however a very simple
approach and one could extend the other models in the same way.

Disadvantages

1. High amount of parameters and model complexity: At each convolutional layer there
are (J +H +E + 1)fk−1 × fk + fk + par(k) to be learned, in comparison to τfk−1fk
from the ChebNet and fk−1fk from the 1st order of ChebNet that we will discuss
next. Although there are many parameters at layer k, the number of parameters is
independent of the graph size in contrast to the SpectralCNN which has Nfk−1fk
parameters per layer. At layer k applying the kernels from the long-scale parameters
is O(KNfkfk−1). For the short scale parameters it is linear on the number of edges
and the maximum short scale parameter. For the edge types it is linear on the number
of edge types and number of edges. The cost of running the Lanczos Algorithm for K
steps and getting an approximate eigendecomposition is O(K|E|+NK2 +K3) as we
will discuss on Chapter 7.

2. Given the approximate spectral decomposition and the multi-layer perceptrons used
for the spectral filtering the locality is no longer preserved, in contrast to the ChebNet
and 1st order of ChebNet.

5.6 1st order of ChebNet: GCN

In [KW17] a first-order approximation of the ChebNet was introduced. Due to its good
performance in many node classification tasks, the 1stChebNet is referred to as GCN, and
serves as a strong baseline in the research community.
A single convolution is given by

X
(k)
net = SX(k−1)W (k) (5.6.1)
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where W (k) ∈ Rfk−1×fk . It is thus a much simpler model than the LanczosNet (compare
with equation (5.5.18)) This model learns the matrix of the kernel in the standard basis
(5.2.3) via:

ĝ(S) = βG(w) where βG : R→ RN×N and βG(w) = wS (5.6.2)

A Lc-layer GCN takes the folowing form:

Y = out(S ReLu(· · ·S ReLu(SXW (1))W (2))W (3)) · · · )W (Lc)) (5.6.3)

where out is some output mechanism that depends on the task.

Advantages

1. As the ChebNet this model avoids the computation of the spectral decomposition of
S. The computational complexity of evaluating layer k is O(|E|fkfk−1).

2. Low number of parameters and model simplicity: The number of parameters at layer
k is fk−1 × fk.

3. The learnable parameters W (k) ∈ Rfk−1×fk are transferable and may be applied to
graphs with any number of vertices. The parameters that are learned to determine a
kernel are w ∈ R which do not depend on N and can be applied to any graph.

Disadvantages

1. The structure (functional form) of the spectral filter is not learnable. The matrix of
the kernel (in the standard basis) is always of the form wS, a polynomial of degree 1.

2. Is not capable of performing multi-scale diffusion at a single layer. The ChebNet and
the LanczosNet apply at a single layer higher powers of approximations of L̃ or S
which accounts to performing diffusion at higher scales.



Chapter 6

Spatial-based Graph Convolutional
Networks

The Spectral-based approach discussed in the previous chapter borrows concepts from
Graph Signal Processing and Spectral Graph Theory in order to define filtering in way
that is analogous to filtering in Signal Processing. Despite having a fancier theoretical back-
ground, these methods are routinely outperformed by spatial-based methods on many tasks
[KWG19]. Spatial-based methods follow a more direct approach to extend convolution to
graphs by considering convolution as the aggregation of features from the neighbors of the
vertices. These models can handle large graphs with less difficulty since they directly per-
form convolution in the vertex domain via aggregation of the neighboring nodes features.
Moreover, the computation can be done in a batch of nodes and the weights are easily
shared across different locations. Spatial-based models are more flexible and can deal with
edge features and edge directions. Therefore, most of the research has gone in this direction
in the last years [Wu+19b].
In this chapter we present two very general formulations of spatial-based models and the
SchNet [Sch+17a], which has achieved state-of-the-art results in many tasks in Chemistry.
This has the goal of gaining a better perspective on the whole field of graph convolutional
networks and to better understand the advantages and disadvantages of spectral-based
methods. We also present a version of the LanczosNet that also uses distance information.

6.1 Residual Gated Graph ConvNet

In [BL19b] a very general formulation of a graph convolutional network is presented. It
builds upon the structure of a regular convolutional network from Computer Vision. Con-
sider a grid structure with pixels (i, j) for 1 ≤ i, j ≤ N . Considering a single input feature
hin and output feature hout defined on each pixel and a 2D kernel K, the cross-correlation,
which is less formally also just called convolution, is calculated via [GBC16]

hout(i, j) = (hin ∗K)(i, j) =
∑
m

∑
n

h(i+m, j + n)K(m,n) (6.1.1)

Here K works as a patch of weights which can be centered at each pixel on the grid. For
graphs this is no longer possible, since each node might have a different number of neighbors
and there is no natural ordering of its neighbors. Hence a new way to define convolution
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is required. In Computer Vision in a common setting to each pixel corresponds a feature
vector

h0
ij ∈ R3

that represents the component intensities of red, green and blue respectively. Denote
hkij ∈ Rfk the feature vector at layer k. Then hk+1

ij is obtained by applying a non linear
transformation (a linear transformation and a nonlinear activation function) for all pixels
(i′, j′) in a neighborhood of pixel (i, j). For the usual, 3× 3 filters:

hk+1
ij = fk+1

CNN

(
{hki′,j′ : |i− i′| ≤ 1 and |j − j′| ≤ 1}

)
(6.1.2)

For a graph to update the feature vector of node i one considers the feature vectors of its
neighbors j:

hk+1
i = fk+1

GCNN

(
hki , {hkj : j → i}

)
(6.1.3)

Residual Gated Graph ConvNets [BL19b] aggregate the result of this operation to the
previous representation of the node

hk+1
i = fk+1

(
hki , {hkj : j → i}

)
+ hki (6.1.4)

For instance

hk+1
i = hki +ReLU

BN
W k+1

1 hki +
∑

j∈N (i)

ηk+1
ij �W k+1

2 hkj

 (6.1.5)

where BN stands for batch normalization, W1,W2 ∈ Rd×d for hki ∈ Rd and ηij is obtained
with an attention mechanism. Moreover, this framework can be extended to use edge
features, as we will present on the last part of the thesis on graph variational autoencoders.

6.2 MPNN

In [Gil+17] the existing models at the time were reformulated into a single common frame-
work called Message Passing Neural Networks (MPNNs) and new variations within this
framework were explored. Consider an undirected graph G with node features xv ∈ Rd and
edge features evw ∈ Rd. The forward pass has two phases, a message passing phase and a
readout phase. The message passing phase runs for T time steps. At each step the hidden
state htv at each node is updated based on the message mt+1

v it receives from neighboring
nodes via:

h0
v = xv (6.2.1)

mt+1
v =

∑
w∈N (v)

Mt(h
t
v,h

t
w, evw) (6.2.2)

ht+1
v = Ut(h

t
v,m

t+1
v ) (6.2.3)

for some message functions Mt and vertex update functions Ut. The readout phase computes
a feature vector for the whole graph using a readout function R:

ŷ = R({hTv |v ∈ V}) (6.2.4)
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Message Functions

Some possible message functions are of the following forms:

• Matrix Multiplication
M(hv,hw, evw) = Aevwhw (6.2.5)

• Edge Network
M(hv,hw, evw) = A(evw)hw (6.2.6)

where A(·) is a neural network which maps the edge vector evw to a d× d matrix.

• Pair Message
mt+1
wv = f(htv,h

t
w, evw) (6.2.7)

where f(·, ·, ·) is a neural network.

Readout Functions

The set2set model [VBK16] can be used as the readout function instead of performing a
simple average or sum. A linear projection is applied to each tuple (hTv ,xv). After T̃ steps
of computation, the set2set model produces a graph embedding qT̃ which is invariant to the
order of the tuples, and then this embedding is used to calculate the output of the network
[Gil+17].

6.3 SchNet

In [Sch+17a] continuous-filter convolutional layers are used to extend convolution to data
modelling objects with arbitrary positions. The network SchNet is proposed, and it is
specifically designed to respect required quantum-chemical constraints. It has achieved
very good results in a variety of tasks and datasets.
Considering the feature representation of N vertices X(k) =

[
xk1, . . . ,x

k
N

]
with xki ∈ RF

at locations R = [r1, . . . , rN ] with ri ∈ RD an interatomic continuous-filter convolution is
considered:

W (k+1) : RD → RF (6.3.1)

x
(k+1)
i := (X(k) ∗W (k+1))i =

∑
j

X
(k)
j �W

(k+1)(ri − rj) (6.3.2)

where � represents point-wise multiplication. As usual an embedding dependent on atom
type is considered:

x0
i = azi (6.3.3)

The model contains atom-wise layers which provide a recombination of the feature maps
and are defined by:

xk+1
i = W (k+1)xki + bk (6.3.4)

where W (k+1) ∈ RF×F . The interaction layers update the atomic representation based on
the molecular geometry via

xk+1
i = xki + vki (6.3.5)

where the residual vki is computed through an atom-wise layer, an interatomic continouous-
filter convolution followed by two atom-wise layers with a softplus nonlinearity. For filter the
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interatomic distances are considered and are expanded using radial basis functions located
at centers 0Å ≤ µs ≤ 30Å every 0.1Å

dij = ||ri − rj || (6.3.6)

es(ri − rj) = exp(−γ|dij − µs|2) (6.3.7)
(6.3.8)

with γ = 10Å. The filter weight is obtained via

W (ri − rj) = W̃ (e1(ri − rj), . . . , e301((ri − rj)) (6.3.9)

Comparison to Spectral-based methods

Spatial-based methods do not face many of the problems that spectral-based methods have.
First of all, there is no eigenvector decomposition that needs to be calculated which makes
them more scalable to large graphs/molecules. The locality of the model can be easily
controlled by performing the convolution considering just the direct neighbors or another
local K-hop neighborhood or by appropiately using the interatomic distances. This also
makes it easier to develop parallel solutions [Wu+19b].
Two other major advantages which are particularly important in Chemistry are that they al-
low to exploit distance information and to use bond/edge features in addition to node/atom
features. A network that learns to predict the distances between the atoms, or that re-
ceives them as input, and is able to use this information is in the position to attain a
better performance. Working on the spectral domain the author is not aware of efficiently
achieving this in a way that the distances can be exploited. The coordinates R constitute
an important part of the solution to Schrödinger’s Equation under the Born-Oppenheimer
Approximation. Using this information in turn to predict the energies might have the risk
of using part of the solution as input for the network. Since in most real datasets the co-
ordinates are not known it is important that the network’s performance does not heavily
depend on very accurate coordinates and that it can work with approximations or without
this information.

6.4 LanczosDistNet

Given the benefits and the results achieved by spatial-based methods the author considers
that they are the best option to deal with distance information. However, we will experiment
using the distances to define the adjacency matrix A. This model (LanczosDistNet) will be a
combination of spatial-based and spectral-based. The LanczosNet already has a component
that operates in the atom domain directly by using powers of S. Here we will use S1, . . . , SE
based on the 0− 1 adjaceny matrices for the different bond types as in the original model,
but instead of S we use A as the first matrix before the multiple edge-types terms.

Aij = e−d
2
ij/(2σ

2) (6.4.1)

where dij is the distance between atoms i and j and σ a width parameter to be chosen.
Then we form the similarity matrix S = D−1/2AD−1/2 and consider a convolutional layer
via:

X
(k)
net =

[
SS1X(k−1), . . . , SSJX(k−1), Ŝ

(k)
1 (I)X(k−1), . . . , Ŝ

(k)
H (I)X(k−1),

AX(k−1), S1X
(k−1), . . . , SEX

(k−1)]W (k) +B(k)
(6.4.2)



Chapter 7

Lanczos Algorithm

After our excursion to spatial-based models, lets come back to the main topic on spectral-
based methods. In this and the next two chapters we analyze further aspects of the Lanczos-
Net. The LanczosNet requires an approximation of the eigenvalues and eigenvectors of the
similarity matrix S of each graph. For small graphs it is possible to rapidly compute an
(exact) complete decomposition, however for bigger graphs for the LanczosNet to be scal-
able an approximation of some of the eigenvalues and eigenvectors is needed. This can
be achieved using an algorithm suitable for solving large eigenvalue problems such as the
Lanczos Algorithm, which is an orthogonal projection method based on Krylov subspaces.
In this chapter based on [Saa11] and [LSY97] we present the Lanczos Algorithm [Lan50] as
a tool to approximately solve the following Eigenvalue Problem:

Eigenvalue Problem:
Let S be an n× n complex matrix.
Find u ∈ CN and λ ∈ C such that:

Su = λu (7.0.1)

Recall that we want an approximate eigenvector decomposition S ≈ ŨRŨ> where we have
that Ũ = [ũ1, . . . , ũK ] ∈ RN×K is the matrix of orthonormal approximate eigenvectors of S
and R ∈ RK×K is a diagonal matrix of approximate eigenvalues. The reader might recall
that in the context of the LanczosNet we had denoted the matrix Ũ by V , here we use Vm
for another matrix.

7.1 Orthogonal Projection Methods

Orthogonal projection methods consider K, an m-dimensional subspace of CN , and seek
to approximately solve the Eigenvalue Problem by finding an approximate eigenpair λ̃ ∈
C, ũ ∈ K such that

Sũ− λ̃ũ ⊥ K (7.1.1)

which means that
(Sũ− λ̃ũ,v) = 0 ∀v ∈ K (7.1.2)

Consider {v1, . . . ,vm} an orthonormal basis of K and Vm = [v1, . . . ,vm]. Then if we take
ũ = Vmy with y ∈ Cm, equation (7.1.2) holds iff

(SVmy − λ̃Vmy,vj) = 0 j = 1, . . . ,m (7.1.3)
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So we have that
V H
m (SVmy − λ̃Vmy) = V H

m SVmy − λ̃y = 0 (7.1.4)

Letting
Bm := V H

m SVm ∈ Cm×m (7.1.5)

we obtain the following eigenvalue problem in K:

Bmy = λ̃y (7.1.6)

Now let PK : CN → K denote the orthogonal projection to K and consider the operator
Sm : CN → K given by

Sm := PKSPK (7.1.7)

which (orthongonally) projects to K, then applies S, and then projects back to K. Notice
that Sm|K : K → K, the restriction of Sm to K is represented by Bm with respect to the
basis Vm of K. Hence the name orthogonal projection method.
The Rayleigh-Ritz procedure, computes the approximate eigenvectors and eigenvalues as
described above:

Algorithm 4 Rayleigh-Ritz Procedure [Saa11]
1: Input: S,m, k ≤ m
2: Compute an orthonormal basis {vi} of the subspace K. Let Vm := [v1, . . . ,vm].
3: Compute Bm = V H

m SVm
4: Compute eigenvalues of Bm. Select the k desired ones λ̃i. Let R = diag(λ̃1, . . . , λ̃k)
5: Compute the eigenvectors yi associated with λ̃i and the approximate eigenvectors of S:

ũi = V yi. Let Ũ = [ũ1, . . . , ũk]
6: Output: R, Ũ

7.2 Krylov Subspace Methods

What remains to specify in algorithm 4 is how to select the subspace K and how to compute
the eigendecomposition of Bm. An important class of techniques for this are the Krylov
subspace methods which form one of the most important classes of methods for computing
eigenvalues and eigenvectors of large matrices [Saa11]. Thus they are helpful in the quest
of making the LanczosNet scalable for large graphs.

7.2.1 Krylov Subspaces

Definition 7.2.1 Krylov Subspace
Given S ∈ CN×N and v ∈ CN , the m-th Krylov subspace is defined by

Km(S,v) := span{v, Sv, S2v, . . . Sm−1v} (7.2.1)

If S and v are fixed we drop the dependence and denoteKm := Km(S,v). We had mentioned
these subspaces briefly in the discussion of the motivation for the LanczosNet. We had
seen that in the ChebNet the convolution of v with some kernel would lie in the subspace
Km(L̃,v) and from there came the idea of using a Krylov subspace method to find an
orthonormal basis of Km(L̃,v) to form compact data-dependent filters, although this exact
idea was not developed further due to efficiency considerations.
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7.2.2 Arnoldi Algorithm

In the context of orthogonal projection methods one can use K = Km. The following Arnoldi
algorithm [Arn51] can be used to find an orthonormal basis of Km and for numerical stabil-
ity its equivalent Gram-Schmidt modified version:

Algorithm 5 Arnoldi [Arn51; Saa11]
1: Input: S,m
2: Choose v1 with ||v1|| = 1
3: for j = 1, . . . ,m do
4: for i = 1, . . . , j do
5: hij = (Svj ,vi)
6: end for

7: wj = Svj −
j∑
i=1

hi,jvi

8: hj+1,j = ||wj ||2
9: if hj+1,j = 0 then

10: break
11: end if
12: vj+1 =

wj

hj+1,j

13: end for
14: Output: vj , hij

Algorithm 6 Arnoldi MGS [Arn51; Saa11]
1: Input: S,m
2: Choose v1 with ||v1|| = 1
3: for j = 1, . . . ,m do
4: w← Svj
5: for i = 1, . . . , j do
6: hij = (w,vi)
7: w← w − hijvi
8: end for
9: hj+1,j = ||w||2

10: if hj+1,j = 0 then
11: break
12: end if
13: vj+1 = w

hj+1,j

14: end for
15: Output: vj , hij

It is easy to prove that the vectors vj constructed by the algorithm 5 are orthogonal and
that they lie in Km. We obtain the following result:

Lemma 7.2.1 The vectors v1,v2, . . . ,vm form an orthonormal basis of the subspace Km =
span{v1, Sv1, . . . , S

m−1v1}

From lines 7 and 12, the following equations can be easily proved:

Lemma 7.2.2 Denote by Vm ∈ CN×m the matrix whose columns aree given by the vectors
v1, . . . ,vm and by Hm the Hessenberg matrix (hij = 0 for i > j + 1) whose nonzero entries
are given by hi,j from algorithm 5. Then

SVm = VmHm + hm+1,mvm+1e
H
m

V H
m SVm = Hm

(7.2.2)

Lemma 7.2.3 Arnoldi breaks at step j, this is wj = 0 if and only if the minimal polynomial
of v1 with respect to S is of degree j. In this case the subspace Kj is invariant under S and
the approximate eigenvalues and eigenvectors are exact.

From equation (7.2.2) we have in this case that Bm = Hm = V H
m SVm. Following algorithm

4 the Ritz approximate eigenvalues are the eigenvalues λ(m)
i of the Hessenberg matrix Hm.

Moreover, the Ritz approximate eigenvector associated with λ(m)
i is u(m)

i = Vmy
(m)
i where

y
(m)
i is the associated eigenvector of Hm. In case that the algorithm breaks at step j, we

would have for i ≤ j:

Su
(j)
i = SVjy

(j)
i = VjHjy

(j)
i = Vjλ

(j)
i y

(j)
i = λ

(j)
i u

(j)
i (7.2.3)

so that the eigenvalues and eigenvectors are exact.
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7.2.3 Lanczos Algorithm

In the case of interest of this thesis the matrix S is Hermitian (S = SH), since it is real
and symmetric. In this case applying Arnoldi to S leads to a real symmetric tridiagonal
Hm. Since Hm = V H

m SVm = V H
m SHVm = (V H

m SVm)H = HH
m , Hm is Hermitian and by

construction it is Hessenberg. Hence Hm is tridiagonal. Furthermore, hj+1,j is real as it is
the norm of wj and hj,j = (Svj ,vj) is real since S is Hermitian.

Lemma 7.2.4 Assume Arnoldi is applied to a Hermitian matrix S. Then

hi,j = 0 1 ≤ i < j − 1

hj,j+1 = hj+1,j j = 1, 2, . . .m
(7.2.4)

Hm is real, tridiagonal and symmetric.

If in algorithm 6 we let

αj := hj,j j = 1, . . . ,m

β1 := 0

βj := hj−1,j = hj,j−1 j = 2, . . . ,m+ 1

(7.2.5)

we obtain the Lanczos Algorithm. To obtain the eigendecomposition, an eigenvector de-
composition of the tridiagonal matrix is calculated and we have the following algorithm:

Algorithm 7 Lanczos Algorithm Approximate Eigendecompostion
1: Input: S,m
2: Choose v1 with ||v1|| = 1, β1 = 0, v0 = 0
3: for j = 1, . . . ,m do
4: wj ← Svj − βjvj−1
5: αj = (wj ,vj)
6: wj ← wj − αvj
7: βj+1 = ||wj ||2
8: if βj+1 = 0 then
9: break

10: end if
11: vj+1 =

wj

βj+1

12: end for
13: Tm = tridiag

(
{βj}mj=2, {αj}mj=1, {βj}mj=2

)
14: Find eigenvalue decompostion Rm, Bm st Tm = BmRmB

>
m

15: Ũm = VmBm
16: Output: Ũm, Rm

At step j the matrix-vector product Svj can be done in O(|E|) operations if S is the
similarity matrix of a graph. For a connected graph this dominates the cost at step j. For
the total m steps the cost becomes O(m|E|). The eigenvector decomposition of T requires
at most O(m3) operations. The matrix-matrix product between Vm and Bm can be done
in O(Nm2) operations.
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7.2.4 Convergence of the Lanczos Algorithm

It is important to study how good the approximation of the eigenvalues and eigenvectors
is, since this will impact the performance of the LanczosNet, in particular for large graphs.
In what follows we present some theoretical bounds. We also want the model not to rely
on very accurate calculations. Thus it is essential to test the robustness of the LanczosNet
in practice to small perturbations on the eigenvalues and eigenvectors. This is done in the
experiments in Chapter 10. Consider λ1 ≥ λ2 ≥ · · · ≥ λN the eigenvalues of S with respect-
ive eigenvectors u1, . . . ,uN and λ(m)

1 ≥ λ
(m)
2 ≥ · · · ≥ λ

(m)
m , ũ(m)

1 , . . . , ũ
(m)
m the approximate

eigenvalues and eigenvectors from the Lanczos Algorithm.

Theorem 7.2.5 Convergence of eigenvalues [Saa11]
The difference between the i-th exact and approximate eigenvalues λi and λ

(m)
i satisfy

0 ≤ λi − λ(m)
i ≤ (λ1 − λN )

[
κ
(m)
i tanθ(v1,ui)

Cm−i(1 + 2γi)

]2
(7.2.6)

where

γi :=
λi − λi+1

λi+1 − λN
, κ

(m)
i :=

i−1∏
j=1

λ
(m)
j − λN
λ
(m)
j − λi

i > 1, κ
(m)
1 := 1 (7.2.7)

and Cm−i is the Chebyshev polynomial of degree m− i introduced in Chapter 5 (5.4.3).

Theorem 7.2.6 Convergence of eigenvectors [Saa11]

sin
[
θ(ui, ũ

(m)
i )

]
≤
κi

√
1 + β2m+1/δ

2
i

Cm−i(1 + 2γi)
tanθ(v1,ui) (7.2.8)

with γi and κi as in the previous theorem and δi the distance between λi and the set of
approximate eigenvalues other than λ̃i.

Theorem 7.2.7 Approximation of S [Lia+19]
Let Uj = span{u1, · · · ,uj}. For any j with 1 < j < N and m > j, we have:

||S − ŨmRŨ>m||2F ≤
j∑
i=1

λ2i

(
sin(θ(v1,Uj))

∏j−1
k=1(λk − λN )/(λk − λj)

cos(θ(v1,ui))Cm−i(1 + 2γi)

)2

+
N∑

i=j+1

λ2i (7.2.9)

7.2.5 Implicitly Restarted Arnoldi Algorithm and Filtering

It may be the case that we are interested in just a part of the spectrum. For example for the
LanczosNet, we could want to get the eigenvalues with higher magnitude. The motivation
for this might be to get a better approximation of S and to perform low-high pass filtering,
as we will see in the next chapter. For this end there are some versions of the Lanczos
Algorithm that we present now. If there are unwanted eigenvalues θ1, . . . , θq, one could
apply a polynomial pq(S) to the starting vector such that pq(S)v1 has a small component
or no component in those eigenspaces, so that the new starting vector has a relatively
bigger component in the eigenspaces that we are interested on. The problem is that the
unwanted eigenvalues are usually not none beforehand. One could find approximations
of these eigenvalues, to define the polynomial filter pq and then perform the restart as in
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the Explicitly Restarted Arnoldi’s Method. However the cost of this algorithm can become
restrictive, and there exists an algorithm which is equivalent to applying a polynomial filter
to the initial vector without explicitly doing so. This algorithm is called the Implicitly
Restarted Arnoldi’s Method. This method is the one used in ARPACK [LSY97] which we
use in our experiments with the Lanczos Algorithm. We consider the motivation and the
algorithm as described in [Saa11].
Consider the decomposition:

SVm = VmHm + βm+1vm+1e
>
m (7.2.10)

and apply the the factor (t− θ1) to all basis vectors vi:

(S − θ1I)Vm = Vm(Hm − θ1I) + βm+1vm+1e
>
m (7.2.11)

One can obtain a QR (Q orthogonal, R upper triangular) decomposition Hm− θ1I = Q1R1

(S − θ1I)Vm = VmQ1R1 + βm+1vm+1e
>
m (7.2.12)

(S − θ1I)(VmQ1) = (VmQ1)R1Q1 + βm+1vm+1e
>
mQ1 (7.2.13)

S(VmQ1) = (VmQ1)(R1Q1 + θ1I) + βm+1vm+1e
>
mQ1 (7.2.14)

Then the last equation can be written as:

SV (1)
m = V (1)

m H(1)
m + vm+1(b

(1)
m+1)

> (7.2.15)

where:
H(1)
m := R1Q1 + θ1I, (b

(1)
m+1)

> := βm+1e
>
mQ1, V

(1)
m := VmQ1

The matrix H(1)
m remains a Hessenberg matrix (cf. [Arb18]). The first column of V (1)

m is a
multiple of (S − θ1I)v1:

(S − θ1I)Vme1 = (VmQ1)R1e1 + βm+1vm+1e
>
me1 = (VmQ1)R1e1 = V (1)

m r11e1 = r11v
(1)
1

The columns of V (1)
m are orthonormal since they are the result of rotations to the columns

of Vm. Similarly one can obtain (H
(1)
m − θ2) = Q2R2 and obtain:

(S − θ2I)V (1)
m Q2 = (V (1)

m Q2)(R2Q2) + vm+1(b
(1)
m+1)

>Q2

which can be written as:

SV (2)
m = V (2)

m H(2)
m + vm+1(b

(2)
m+1)

> (7.2.16)

where H(2)
m := R2Q2 + θ2I, V

(2)
m := V

(1)
m Q2. The first column of V (2)

m is a multiple of
(S − θ2I)v

(1)
1 . Thus

V (2)
m e1 = c (S − θ2I)v

(1)
1 = c (S − θ2I)(S − θ1I)v1

for a generic scalar constant c. Q1 and Q2 are Hessenberg matrices and

(b
(2)
m+1)

> = (b
(1)
m+1)

>Q2 = βm+1e
>
mQ1Q2 = [0, 0, . . . , η1, η2, η3]
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Let V̂m−2 = [v̂1, . . . , v̂m−2] that consists of the first m−2 comlumns of V (2)
m and the matrix

Ĥm−2 the leading (m− 2)× (m− 2) principal submatrix of Hm. Then

SV̂m−2 = V̂m−2Ĥm−2 + β̂m−1v̂m−1e
>
m−2 where

βm−1v̂m−1 := η1vm+1 + h
(2)
m−1,m−2v

(2)
m−1

To extend the algorithm to other degrees [Saa11] considers the implicit-shift QR procedure:

Algorithm 8 q-step Shifted QR [Saa11]
1: Input: H, q, θ
2: for j = 1, . . . , q do
3: (H − θjI) = QR
4: H ← RQ+ θjI
5: end for
6: Output: H,Q

Denoting [Ĥ,Q] = QR(H, θ1, . . . , θq) and k := m− q the algorithm becomes:

Algorithm 9 Implicitly Restarted Arnoldi Algorithm [Saa11]
1: Input: S,m, q
2: Perform an m-step Arnoldi to get: AVm = VmHm + v̂m+1e

>
m

3: Select the q shifts θ1, . . . , θq from the eigenvalues of Hm

4: [Hm, Q]← QR(Hm, θ1, . . . , θq)
5: k = m− q
6: Hk = Hm(1 : k, 1 : k)
7: Vk ← VkQ
8: ηk = Qm,k
9: v̂k+1 ← v̂k+1 + ηkv̂m+1

10: Continue SVk = VkHk + v̂k+1e
>
k with q additional Arnoldi steps.

11: Output: Ũm, Rm

Filtering

Using the Implicitly Restarted Lanczos Algorithm one can approximate the eigenvalues of
higher magnitude, by using as the shifts the approximations with smallest magnititude. This
helps the approximation of S and at the same time a model that uses this approximation
will have kernels which implictly have ĝ(λ) = 0 for λ of small magnitude (depending on the
graph) which as we will see in the next chapter (Figure 8.3) constitute mid-range frequencies.
However, this changes from graph to graph, so that this does not mean that ĝ(λ) = 0 for
certain range of λ for all graphs.
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Chapter 8

Connection to Spectral Clustering
and to Diffusion Maps

In the last chapter we explored the Lanczos Algorithm to calculate an approximate eigen-
vector decomposition of S. On Chapter 2 we had seen how these eigenvectors are used to
define a Graph Fourier Transform and to perform spectral filtering on graphs. However, we
still need to address the meaning of such an operation that was defined in analogy to that
of Classical Signal Processing. In this chapter we explore the connections of the LanczosNet
to other methods and discuss the interpretation of the spectral domain.
The LanczosNet carries important connections to normalized spectral clustering [SM00;
NJW02] and to diffusion maps [CL06]. In normalized spectral clustering the coordinate
vectors constructed from the eigenvectors of the normalized Laplacian LN are used for
clustering. In diffusion maps the eigenvectors of the random walk matrix P are used to
construct coordinates called diffusion maps that generate efficient representations of com-
plex geometric structures. The associated diffusion distances define multiscale geometries
that are useful for data parametrization and dimensionality reduction. In this chapter we
provide a motivation and discussion of spectral clustering and diffusion maps and show how
the LanczosNet relates to these two. This shall provide a partial theoretical background to
elucidate how the LanczosNet works under the hood.
As mentioned in previous chapters, working in the spectral domain in the case of molecules
makes it challenging both mathematically and from a chemical standpoint to interpret and
justify the way the network operates. What we treat in this chapter has a much more natural
interpretation for other tasks such as node classification. In the case of molecules, the idea
of running diffusion processes using the spectral decomposition to diffuse information along
the molecule is still helpful. Moreover, one could claim that the spectral approach helps to
capture substructures in the molecule and global properties.

8.1 Spectral Clustering

Finding good clusters is a very important task in machine learning and pattern recognition
with applications in many different fields. In spectral clustering methods the points are
clustered using the eigenvectors of matrices derived from the data. These methods became
popular in the early 2000’s following the work of [SM00] and [NJW02], which we follow here
together with [Lux07]. The task of semi-supervised node classification stated in Chapter 4
is linked to clustering via the cluster assumption, which is that if points are in the same
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cluster, they are likely to be in the same class, and the equivalent low density separation
assumption, which is that the decision boundary should lie in a low-density region [CSZ06].
In this setting, were some of the labels of the nodes are known, clustering algorithms are
useful for classification.

Notation and Definitions

We use the notation from Chapter 2 and additionally need the next definitions. Given a
subset B ⊂ V, we denote its complement V \B by B and define the indicator vector

1B = (x1, . . . , xN )> ∈ RN

to be the vector with xi = 1 if vi ∈ B and xi = 0 otherwise. We also consider

w(B,C) :=
∑

i∈B,j∈C
aij (8.1.1)

to be the sum of the weights of the edges between nodes in B and nodes in C. To measure
the size of a subset B ⊂ V consider

vol(B) :=
∑
i∈B

di (8.1.2)

where vol(B) measures the size of B by summing over the weights of the edges with at least
one vertex on B (twice if both endpoints are in B). A subset B ⊂ V is called connected
if any two vertices can be joined by a path wih all intermediate points lying in B. A
subset B is called a connected component if it is connected and if there are no connections
between vertices in B and B̄. Nonempty sets B1, . . . , Bk form a partition of the the graph
if Bi ∩Bj = ∅ and B1 ∪ . . . ∪Bk = V.

Eigenvalues and Eigenvectors of the Laplacians

It can be easily shown that the following relationships between the eigenvalues and eigen-
vectors of the matrices discussed on Chapter 2 hold:

Matrix Eigenvalues Eigenvectors
LC 0 = γ1 ≤ γ2 ≤ . . . ≤ γN wl

LN 0 = η1 ≤ η2 ≤ . . . ≤ ηN ≤ 2 vl
S := I − LN 1 = 1− η1 ≥ 1− η2 ≥ . . . 1− ηN ≥ −1 vl
LR 0 = η1 ≤ η2 ≤ . . . ≤ ηN ≤ 2 D−1/2vl
P 1 = 1− η1 ≥ 1− η2 ≥ . . . 1− ηN ≥ −1 D−1/2vl

Table 8.1: Relationship between eigenvalues and eigenvectors

Furthermore, the following result gives the number of connected components of a graph as
the multiplicity of an eigenvalue of the matrices above.

Proposition 8.1.1 Number of Connected Components and the Spectrum of L
[Lux07]
Let G be an undirected graph with non-negative weights. Then:
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• The multiplicity k of the eigenvalue 0 of LC , LN , LR is equal to the number of connected
components B1, . . . , Bk in the graph.

• The eigenspace of the eigenvalue 0 of LC and LR is spanned by the indicator vectors
1B1 , . . .1Bk

of those components.

• The eigenspace of the eigenvalue 0 of LN is spanned by the vectors D1/2
1B1 , . . . D

1/2
1Bk

of those components.

• The multiplicity k of the eigenvalue 1 of S is equal to the number of connected com-
ponents B1, . . . , Bk in the graph.

• The eigenspace of the eigenvalue 1 of S is spanned by the vectors D1/2
1B1 , . . . D

1/2
1Bk

of those components.

Clustering and Graph Cuts

The goal is to find a partition of the graph such that the edges betweeen different groups
have a very low weight and the edges within a group have high weight. Given a number
k of desired clusters, the mincut problem consists in choosing a partition B1, . . . , Bk that
minimizes

cut(B1, . . . , Bk) :=
1

2

k∑
i=1

w(Bi, Bi) (8.1.3)

the sum over the weights of the edges leaving a cluster. This approach has the disadvantage
that it favours forming small clusters of isolated nodes in the graph, since the sum in (8.1.3)
increases with the number of edges going accross two partition parts. To tackle this problem
the size of the clusters can be explicitly considered in the function to be minimized. The
normalized cut Ncut was introduced in [SM00] and it considers the size of a subset B using
vol(B) and defines the objective function:

Ncut(B1, . . . , Bk) :=
1

2

k∑
i=1

w(Bi, Bi)

vol(Bi)
=

k∑
i=1

cut(Bi, B̄i)

vol(Bi)
(8.1.4)

This seeks to balance the size of the clusters by computing the cut cost as a fraction of
the total weight of the edges from nodes in the cluster to all nodes in the graph. This
balancing condition makes the problem NP-hard [SM00]. Thus in practice the problem is
solved approximately.

Ncut Relaxation and Spectral Clustering

Spectral clustering methods solve relaxed versions of the Ncut problem. For the case of
finding two clusters (k = 2) consider the cluster indicator function f ∈ RN defined by

fi =


√

vol(B)
vol(B) i ∈ B

−
√

vol(B)

vol(B)
i ∈ B̄

(8.1.5)

It can be shown that (Df)>1 = 0, f>Df = vol(V), f>LCf = vol(V)Ncut(B,B). Hence
minimizing the Ncut can by solved by the following problem:

min
B

f>LCf subject to f as in (8.1.5), Df ⊥ 1, f>Df = vol(V) (8.1.6)



58CHAPTER 8. CONNECTION TO SPECTRAL CLUSTERING AND TO DIFFUSION MAPS

The problem can be relaxed by allowing f to take arbitrary values:

min
f∈RN

f>LCf subject to Df ⊥ 1, f>Df = vol(V) (8.1.7)

Letting g := D1/2f , the problem becomes

min
g∈RN

g>D−1/2LCD
−1/2g subject to g ⊥ D1/2

1, ||g||2 = vol(V) (8.1.8)

In terms of LN the problem reads as:

min
g∈RN

g>LNg subject to g ⊥ D1/2
1, ||g||2 = vol(V) (8.1.9)

This is in the form of the Rayleigh-Ritz theorem (cf. [Saa11]) and the solution g is the
eigenvector corresponding to the second (lowest) eigenvalue of LN .
For the case of more than two clusters (k > 2), consider indicator vectors

hj = (h1j , . . . ,hNj)
> ∈ RN

given by

hij =


1√

vol(Bj)
i ∈ Bj

0 otherwise for j = 1, . . . , k; i = 1, . . . , N.
(8.1.10)

Consider H = [h1, . . . ,hk] ∈ RN×k the matrix which has the k indicator vectors as its
columns. Then h>j Dhj = 1 and h>j LChj = cut(Bj , Bj)/vol(Bj). So that the problem of
minimizing the Ncut becomes:

min
B1,...,Bk

Tr(H>LCH) subject to H>DH = I and H as in (8.1.10) (8.1.11)

Relaxing the values for hj and considering T = D1/2H the problem reads as:

min
T∈RN×k

Tr(T>LNT ) subject to T>T = I (8.1.12)

This is the standard form of a trace minimization problem, a form of the Rayleigh-Ritz
Theorem. The solution is T with the first k eigenvectors of LN . Thus according to the
relation between the eigenvectors of LN and LR (table 8.1) H = D−1/2T consists of the first
k eigenvectors of LR (largest eigenvectors of P ). These eigenvectors which are constructed
to approximate indicator vectors of the classes can be used for clustering.

Normalized Spectral Clustering Methods

Remember that S and LN have the same eigenvectors so that the next formulation follows
from the discussion above. In [NJW02] the normalized spectral clustering algorithm is
presented as follows.
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Algorithm 10 Normalized Spectral Clustering
1: Input: A
2: Compute the similarity matrix S
3: Compute the k largest eigenvectors of S
4: Let U ∈ RN×k the matrix with u1, . . . ,uk as columns
5: Form T ∈ RN×k by normalizing the rows to norm 1.
6: For i = 1, . . . , N , let yi ∈ Rk be the vector corresponding to the i-th row of T
7: Cluster the points (yi)i=1,...,N with the k-means or another algorithm into clusters
C1, . . . , Ck

8: Output: Clusters B1, . . . , Bk with Bi := {j : yj ∈ Ci}

Under specific assumptions on A and the true clusters, the rows of Y in algorithm 10 will
form tight clusters around k well-separated points at 90◦ from each other on the surface of
the k-sphere according to their true clusters [NJW02].
When there is no underlying graph and just node features xi ∈ RF are known, A ∈ RN×N
is defined by Aij = exp(−||xi − xj ||2/2σ2) for i 6= j and Aii = 0, where σ2 is a scaling
parameter that controls how rapidly the affinity Aij falls off with the distance between
xi and xj . In the context of graphs, A can be taken to be the adjaceny matrix of the
graph. In this basic formulation this means that either the node features are used or the
network (graph) information. However for many tasks, both the node features and the links
between the nodes are important to obtain a good performance. One could also use the node
features as before and let Aij = 0 whenever there is no edge between the nodes, however
this approach still does not permit to use the node features to extract new features, as in
convolutional neural networks.
Models such as the one in [TL11] use a simple solution to integrate the node features via
concatenation of the node features to the coordinates given by the eigenvectors of S and
then using a support vector machine or logistic regression for classification. Spectral-based
graph convolutional networks, such as the LanczosNet, also use the spectrum of the graph
and the node features but in a different way. We discuss this at the end of this chapter, but
for this end we first need to give an overview of the general framework of diffusion maps
[CL06].

Random Walk Point of View

The problem of Ncut minimization can also be studied in terms of a random walk on the
graph. Given a graph, select a starting node v0 according to some initial distribution p0:

p0(i) = P(v0 = i) (8.1.13)

and select a neighbor v1 at random, and move to this neighbor. Then we select a neighbor
v2 of this node at random and move to it, and so on. The random sequence of nodes selected
in this way is a random walk on the graph.
If at the t-th step we are at node vt = i we move to node j with probability

P(vt+1 = j|vt = i) =
ai,j
di

(8.1.14)

Thus the sequence of random nodes is a Markov chain. Denote by pt the distribution of vt:

pt(i) = P(vt = i) (8.1.15)
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Consider P = D−1A = (pij)i,j∈V the random walk matrix introduced in Chapter 2. Then
the rule of the walk (equation (8.1.14)) can be expressed as:

pt+1 = P>pt (8.1.16)

viewing the distribution of the t-th node as a vector in RN . So that

pt = (P>)tp0 (8.1.17)

Therefore the probability ptij that starting at node i, we reach j at step t is given by the ij-
entry of P t. In general the probability distributions p0,p1, . . . are different. A distribution
p0 is called stationary or steady state for graph G if p1 = p0. In this case pt = p0 for all
t. This walk is called a stationary walk. If the graph is connected and non-bipartite, then
the random walk with transition probability matrix P has a unique stationary distribution
π = (π1, . . . , πN )> given by

πi =
di

vol(V)
(8.1.18)

It turns out that the theory of random walks is closely related to many branches of graph
theory and basic properties of a random walk are determined by the spectrum of the graph
[Lov93]. Moreover, an equivalence between Ncut and transition probabilities of the random
walk has been established in [MS01].

Proposition 8.1.2 Ncut via transition probabilities
Let G = (V, A) be connected and non-bipartite. Assume that we run the random walk (Zt)t∈N
starting with Z0 in the stationary distribution π. For disjoint subsets B,C ⊂ V, denote by
P(C|B) := P(Z1 ∈ C|Z0 ∈ B). Then

Ncut(B,B) =
1

2

(
P(B|B) + P(B|B)

)
(8.1.19)

This can be proven as follows. First notice that

P(Z0 ∈ B,Z1 ∈ C) =
∑

i∈B,j∈C
P(Z0 = i, Z1 = j) =

∑
i∈B,j∈C

πipij =
1

vol(V)

∑
i∈B,j∈C

aij

Therefore it also holds that

P(Z1 ∈ C|Z0 ∈ B) =
P(Z0 ∈ B,Z1 ∈ C)

P(Z0 ∈ B)
=

 1

vol(V)

∑
i∈B,j∈C

aij

(vol(B)

vol(V)

)−1
=
w(B,C)

vol(B)

Thus

Ncut(B,B) =
1

2

(
w(B,B)

vol(B)
+
w(B,B)

vol(B)

)
=

1

2

(
P(B|B) + P(B|B)

)
Thus minimizing Ncut (for k = 2) accounts for searching for a cut such that the random
walk seldom transitions from B to B and vice versa.
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8.2 Diffusion Maps

In the derivation of normalized spectral clustering for k = 2 we saw that the eigenvector
corresponding to the second eigenvalue ṽ of LN can be used for clustering. This vector
corresponds to the top nonconstant eigenvector D−1/2ṽ of P the transition matrix. The
sign of the values of this vector can be used for finding clusters and computing cuts. As
seen in the case for k > 2 and in algorithm 10 further higher-order eigenvectors can also be
used as an approximation for clustering. Moreover, using multiple eigenvectors allows for a
parametrization of the datasets which can be used in other applications beyond clustering
[CL06].
In [CL06] a set of tools known as diffusion maps and distances were introduced. These allow
to define multiscale geometries for data parametrization. This framework relates spectral
properties of Markov processes, such as the random walk discussed in the previous section,
to their geometric counterparts and it unifies and generalizes previous ideas in the field.
Consider (Z,A, µ) to be a measure space where Z is the data set and µ represents the
distribution of points on Z. Let k : Z × Z → R be a kernel that satisfies:

k(z, y) = k(y, z)

k(z, y) ≥ 0

The weight between the nodes is specified by k and constitutes a definition of the local
geometry of Z. Similar as in the previous section it is possible to construct a Markov chain
from the graph defined by (Z, µ, k). Let

d(z) =

∫
Z

k(z, y)dµ(y) (8.2.1)

be a local measure of volume and degree in the graph. Define

p(z, y) =
k(z, y)

d(z)
(8.2.2)

which satisfies a normalization property:∫
Z

p(z, y)dµ(y) = 1 (8.2.3)

p can be considered the transition kernel of a Markov chain on Z. p(z, y) represents the
probability of transition from node z to node y in one time step and is proportional to the
edge weight k(z, y). The operator P is an averaging or diffusion operator

Pf(z) :=

∫
Z

p(z, y)f(y)dµ(y) (8.2.4)

for a function f : Z → R. Moreover, pt(z, y) is the probability of transition from z to y in
t time steps and is given by P t. Running the chain forward in time will allow to integrate
the local geometry and to reveal relevant geometric structures of Z at different time scales.
This can be done by taking different powers of P .
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In the case of interest of this thesis, Z is finite with N points, and P has a sequence of
eigenvalues {λl}l=0,...,N−1 and eigenvectors {ψl}l=0,...,N−1 such that

1 = λ0 ≥ |λ1| ≥ |λ2| ≥ . . . ≥ |λN−1|

and
Pψl = λlψl

As seen before, if the graph is connected and non-bipartite the Markov chain has a unique
stationary distribution given by:

π(y) :=
d(y)∑

u∈Z
d(u)

(8.2.5)

These concepts allow to define a family of distance between points in Z.

Definition 8.2.1 Diffusion distances [CL06]
The family of diffusion distances {Dt}t∈N is defined by:

Dt(z, y)2 := ||pt(z, ·)− pt(y, ·)||2L2(Z,dµ/π) =

∫
Z

(pt(z, u)− pt(y, u))2
dµ(u)

π(u)
(8.2.6)

Dt(z, y) is a weighted L2 distance between the distributions pt(z, ·) and pt(y, ·). Recall
that for any u ∈ Z, pt(z, u) gives the probability of jumping from z to u in t time steps.
Dt(z, y) is small if there is large probability of transition from z to y as in that case the path
probabilities between z and u and the one between u and y would tend to become similar
for u ∈ Z. This depends on the scale paramater t, at each scale points are closer if they are
highly connected in the graph, so that the distances can be used for clustering. Moreover,
Dt(z, y) can be computed using the eigenvectors and eigenvalues of P :

Dt(z, y) =

∑
l≥1

λ2tl (ψl(z)− ψl(y))2

 1
2

(8.2.7)

An approximation can be constructed. Let s(δ, t) = max{l ∈ N such that |λl|t > δ|λ1|t}.
Then the diffusion distance is calculated to relative precision δ via

Dt(z, y) ≈

s(δ,t)∑
l≥1

λ2tl (ψl(z)− ψl(y))2

 1
2

(8.2.8)

Definition 8.2.2 The family of diffusion maps {φt}t∈N is defined by:

φt(z) :=


λt1ψ1(z)
λt2ψ2(z)

...
λts(δ,t)ψs(δ,t)(z)

 (8.2.9)

Each component of φt(z) is referred to as diffusion coordinate. φt : Z → Rs(δ,t) embeds the
data set into Euclidean sapce of s(δ, t) dimensions. Furthermore, it holds up to relative
precision δ that:

||ψt(z)− ψt(y)|| = Dt(z, y) (8.2.10)



8.3. FREQUENCY INTERPRETATION 63

In our setting we have a graph G = (V, E , A) together with node features X. One approach
would be to embed the node features X at different time scales. This would mean taking
Z = X , using a kernel k and find an embedding of the data. One could also consider the
Markov transition matrix P = D−1A and Z = V to find diffusion maps to embed each node
at different time scales:

φt(i) :=


λt1ψ1(i)
λt2ψ2(i)

...
λts(δ,t)ψs(δ,t)(i)

 (8.2.11)

P is similar to S,
P = D−1/2SD1/2 and ψl = D−1/2ul (8.2.12)

where
1 = λ0 ≥ |λ1| ≥ |λ2| ≥ . . . ≥ |λN−1|

and
Pψl = λlψl and Sul = λlul

In the LanczosNet, and in other spectral methods, an approach related to this last one is
taken. The eigenvectors of S are used to compute frequency representations of X via:

X̂ := U>X (8.2.13)

qt(X̂) := ΛtU>X (8.2.14)

In the LanczosNet, one uses the Lanczos algorithm to obtain the Ritz values with biggest
magnititude and suppresses the Ritz values with smaller magnititude. The frequency rep-
resentation X̂ is weighted by the powers of the Ritz values λtl . Multiple frequency represent-
ation at different time scales t are taken. This would correspond to diffusing the signals in
X using the matrix S at different scales t to obtain new node features that diffuse the values
along neighborhoods at different scales. In the LanczosNet, rather than just weighting by
λtl , a filter is applied in the spectrum. The spectral filters are applied to the frequency rep-
resentations which are obtained by projecting the node features X onto multiple diffusion
maps (using ul instead of ψl) with different time scales via:

ĝ(qt(X̂)) := ĝ(Λt)U>X (8.2.15)

The eigenvectors in U capture the geometry and the different powers of the Ritz values
allow to capture the geometry and to diffuse the information at different time scales. The
spectral filters create new node features by increasing or decreasing the components of the
projection of previous node features onto the eigenvectors of S.

8.3 Frequency Interpretation

Why are these representations called frequency representations? In classical Fourier analysis
the eigenvalues (2πξ)2 of the Laplace operator carry a notion of frequency. For ξ close to
zero, the associated eigenfunctions e2πiξt are smooth and slowly oscillating functions. For
ξ far from zero, the associated eigenfunctions oscillate more rapidly [Shu+13]. It turns
out that for graphs, the graph Laplacian eigenvalues and eigenvectors also give a notion
of frequency. For low ηl (for S high 1 − ηl), its associated eigenvector varies slowly along
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the graph, meaning that if two vertices are connected by a large weight the values of the
eigenvectors at these vertices are likely to be similar. The eigenvectors associated with larger
eigenvalues ηl (smaller for S) are more likely to have dissimilar values on vertices connected
by a high weight. For the unnormalized graph Laplacian LC , the frequency interpretation
is more straightforward. Consider the graph Laplacian quadratic form

F2(x) := x>Lcx =
∑

(i,j)∈E

Aij [x(j)− x(i)]2 (8.3.1)

This has value zero only if x is constant, and is small if x has similar at neighboring
vertices connected by high weights. From the Courant-Fischer Theorem one has that w1

minimizes F2, is constant on each component and further eigenvectors wl minimize F2

subject to an orthogonality constraint. Thus low eigenvalues γl are associated with smoother
eigenfunctions and higher eigenvalues with more oscillating functions. For the normalized
graph Laplacian LN consider

F̂2(x) := x>LNx =
∑

(i,j)∈E

Aij

[
x(j)√
dj
− x(i)√

di

]2
(8.3.2)

Again, from the Courant-Fischer Theorem u1 minimizes this form and is given by D1/2
1

||D1/21|| in
the case of a connected graph, and further eignevectors minimize this functional subject to
an orthogonality constraint. To evaluate this notion of frequency lets consider the following
definition:

Definition 8.3.1 Set of zero crossings [Shu+13]
The set of zero crossings of a signal x on a graph G is defined as:

ZG(x) := {e = (i, j) ∈ E : x(i)x(j) < 0} (8.3.3)

The following plots show |ZG(vl)| for two molecules from the Alchemy dataset [Che+19b]
after adding self-loops. This illustrates the frequency notion, where higher ηl are associated
with eigenfunctions with more zero crossings.

Figure 8.1: Frequency notion of the eigenvalues



Chapter 9

LanczosNet and the Desired
Properties of GCNs

According to [Bre19] four important properties that graph neural networks should have are
locality, invariance under vertex re-indexing, weight sharing and independence with respect
to graph size. For spectral-based methods possible additional concerns are the independence
with respect to the basis and the transferability of the model, which is closely related to
the stability of the filters in the case when the filters are designed and computed directly
in the spectral domain. In this chapter we analyze the LanczosNet with respect to these
desired properties and later in the chapters on experiments we test and illustrate some of
these aspects in practice.

Locality: Local Reception Field

Spectral-based methods do not just use first-hop neighbors and capture more complex graph
properties [KWG19]. However, in practice the property that is being predicted might be
known to depend only on local neighborhoods. For instance, in the problem of predicting
the potential energy of a molecule, the atomization energy is usually modelled as a sum of
atomic contributions that depend only on a local neighborhood of each atom. According
to [Bar+17a] this assumption is referred to as the atomic decomposition ansatz and can be
motivated by the nearsightedness of electronic matter.
We have seen in Chapter 2 (2.4.8) that when the kernel ĝ is a polynomial of degree K and
xin is the input signal, the result of the convolution xout = xin ∗ g satisfies for each node i
that xout(i) is a linear combination of the input signal in the K-hop local neighborhood of
node i.
If we recall the way the Lanczos convolutional layer is defined in equation (5.5.18)

X
(k)
net =

[
SS1X(k−1), . . . , SSJX(k−1), Ŝ

(k)
1 (I)X(k−1), . . . , Ŝ

(k)
H (I)X(k−1),

SX(k−1), S1X
(k−1), . . . , SEX

(k−1)]W (k) +B(k)

then we see that SSj performs a linear combination of the input signals in the Sj-hop neigh-
borhood of each node. Moreover, S, S1, . . . , SE aggregate information only of direct neigh-
bors. However, the transformations Ŝ(k)

h (I) are learned via a multi-layer perceptron and
use an approximate eigendecomposition of S so that there are no locality guarantees. Even
if instead of using Ŝ(k)

h (I) one used the approximate polynomial filter given by V RIhV > as
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in equation (5.5.5) it may not be a local operation. In this case there would be a bound
implied by Theorem 7.2.7.

Figure 9.1: Example Molecule from Alchemy [Che+19b] and Kernel Learned by the Lanczos-
Net on the Alchemy Dataset

Even when S operates on a one-hop neighborhood over-smoothing is a concern. As we saw
in the previous chapter by taking different powers of S the signals are being diffused at
different scales. A model with multiple layers may suffer from over-smoothing. This over-
smoothing has the effect that the representation of the atoms becomes indistinguishable
even for atoms that are far away from each other [Lua]. Hence a deep model might not be
able to learn a good representation for the task at hand. The following result is known, so
that taking very high powers of S and using many layers can contribute to over-smoothing
of the signals.

Proposition 9.0.1 [Lua]
Suppose that a graph G has k connected components and {v1, . . . ,vk} are the eigenvectors
corresponding to the eigenvalue 1 of S. If G has no bipartite components, then for any
x ∈ RN

lim
m→∞

Smx = [v1, . . . ,vk]θ (9.0.1)

for some θ ∈ Rk.

Invariance under Vertex Re-indexing

Let x ∈ RN be a graph signal in the original indexing, S the similarity matrix, m ∈ N and
x̂ = Smx the filtered signal in the original indexing. If we change the index of atoms i and
j and consider M = M(i, j) the corresponding row permutation matrix then in the new
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indexing we have:

xnew = Mx

Snew = MSM>

x̂new = Smnewxnew = MSmM>Mx = M(Smx) = M x̂

Thus x̂new(i) = x̂(j), x̂new(j) = x̂(i), and for the rest of indices the value of the filtered
signal is the same. Similarly the same invariance under vertex re-indexing is guaranteed for
the other terms in the Lanczos convolutional layer (5.5.18).

Invariance under Change of Basis

Here we are concerned just with the dependence on the basis. One drawback of the SpecCNN
is that the filters depend on the basis chosen. In the LanczosNet, the kernels are not learned
directly. The kernels are computed as functions of the eigenvalues based on the learnable
parameters. If one uses all eigenvectors the filters are guaranteed to be independent of
the basis and its order. However, if only K eigenvectors are taken and λK = λK+1 then
the projection of x into the span of the first K (highest eigenvalue magnitude) changes
depending on which eigenvector(s) one chooses for that eigenspace. So that the output of
the LanczosNet can change if two algorithms return the eigenvectors of a multi-dimensional
eigenspace in different order or if they return a different basis for the eigenspace of λK and
not all the basis belongs to the first (highest magnitude) K eigenvectors. Moreover, if one
uses the Lanczos Algorithm to approximate the first eigenvectors then different eigenvectors
in the associated eigenspace may be approximated.

Transferability

Figure 9.2: Original Molecule Figure 9.3: Modified Molecule

In [Bro+16] it is pointed out that a small perturbation of the graph can lead to very large
changes in the eigenvectors of S, especially those associated with high frequencies. Thus
if the magnitude of the component of the kernel on some of those frequencies is big, the
convolution may change even at other locations. Given the multi-scale approach and the
definition of filters in the spectral domain, a change in the graph in one location can cause the
filters to change at other locations. In [LIK19], they address the transferability of spectral
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filters. They claim that spectral filters such as the ones defined on the SpectralCNN (5.3.2)
are not transferable and have a high computational complexity. The non-transferability
claim is based on the sensitivity of the Laplacian decomposition to small perturbations in
A. By defining the filters via rational functions the spectral decomposition is avoided and
is done entirely in the spatial domain. These are referred to as functional calculus filters
and include for example the ChebNet and the 1st Order of ChebNet which use polynomials
and the CayleyNets [LIK19]. The LanczosNet does not belong to this class, since the filters
are computed in the spectral domain with the use of a multi-layer perceptron. In [LIK19]
they studied the transferability of this type of filters with respect to small pertubations on
the graph as changes on the weights. We recall that the LanczosNet also uses polynomial
filtering so that changes in the filters defined via spectral filters might not cause a big change
in the prediction.

Figure 9.4: Transferability: A change around carbon atom C : 7, causes the entry of the
kernel matrix in the atom domain F (1, 1) (weight from C : 1 to C : 1) to change from 0.08
to 0.005 and for O : 2 (F (2, 2)) from −0.0008 to −0.0188 for a kernel with big components
(in magnitude) for high frequencies (for these atoms there was no change in the indexing)



Chapter 10

Numerical Experiments: Property
Prediction

10.1 Molecular Property Prediction

We have seen in Chapter 3 that one of the fundamental tasks in quantum chemistry involves
solving Schrödinger’s equation to find equilibrium configurations for particle systems and
to calculate their associated energies. Usually the energy is separated into two contribu-
tion terms. Rather than learning the energy of the whole molecule Etot, one learns the
atomization energy Eatomization, which is the energy required to break the molecule into its
constituent atoms [Gil+17; Bar+17a]. For the calculations it is actually taken to be the
opposite of this quanitity, so that it is the energy of the molecule with respect to separate
atoms. The other term used to calculate Etot is the sum of the reference energies Eref (Zi)
of the atoms i in the molecule. The reference energy of an atom is taken to be the opposite
of the energy required to break it into free electrons and a nucleus. So that the total energy
can be calculated as follows:

Etot = Eatomization +

N∑
i=1

Eref (Zi) (10.1.1)

The greatest contribution to Etot comes from the second term. However, since the reference
energies do not change from one molecule to another, one usually predicts the atomization
energy and then sums the reference energies, which are fixed or are learnable for each atomic
number Z. The atomization energy is usually calculated as a sum of atomic contributions
as in [Bar+17a].

Eatomization =
N∑
i=1

Eatomic(i) (10.1.2)

Atomwise Approach for the Prediction of Internal Energy

Consider U0 to be internal energy at 0K. To initialize the model with a good guess of the
energy we follow an atomwise approach [Sch+17a] and consider the average contribution to
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atomization energy per atom and its standard deviation with respect to the training set:

µ =
1

ntrain

ntrain∑
n=1


U0,n −

Nn∑
i=1

U0,Zni

Nn

 (10.1.3)

σ2 =
1

ntrain

ntrain∑
n=1



U0,n −

Nn∑
i=1

U0,Zni

Nn

− µ

2

(10.1.4)

and then for each atom we predict ŷi and calculate its contribution to the atomization
energy via

ẑi = µ+ σŷi (10.1.5)

Considering the reference energies, the final prediction for the internal energy of molecule
n at 0K (U0,n) becomes:

Û0,n =

Nn∑
i=1

ẑi +

Nn∑
i=1

Eref (Zni) (10.1.6)

where Eref (Z) is the learnable reference energy of the element with atomic number Z. If we
are predicting just atomization energy we omit the second sum. The training loss function
for a mini-batch B is given by the mean squared error:

LB =
1

|B|
∑
n∈B
|Û0,n − U0,n|2 (10.1.7)

Properties

For the datasets QM9 and Alchemy the properties that are going to be predicted are the
following. The definitions are taken from [Gil+17]:

• Energies

1. Internal Energy at 0K (U0)

2. Atomization Energy at 0K (U0-atom): Energy required to break up the molecule
into all of its constituent atoms if the molecule is at absolute zero.

3. Internal Energy at 298.15K (U)

4. Atomization Energy at room temperature (U-atom): Energy required to break
up the molecule into all of its constituent atoms if the molecule is at room tem-
perature.

5. Enthalpy at 298.15K (H)

6. Enthalpy of atomization at room temperature (H-atom): Similar to the atom-
ization energy, but it assumes the system is held at fixed pressure.

7. Gibbs Free Energy at 298.15K (G)

8. Gibbs Free Energy of atomization (G-atom): Similar to the atomization energy,
but assumes the system is held at fixed pressure and temperature.
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• Fundamental Vibrations

1. Zero Point Vibrational Energy (zpve): Here it taken to be the energy due to
vibration at 0K.

• Electronic Energies

1. Highest Occupied Molecular Orbital Energy (HOMO): At 0K electrons stack in
states from lower to higher energy. The energy of the highest occupied electronic
state is referred to as HOMO.

2. Lowest Unoccupied Molecular Orbital Energy (LUMO): The energy of the lowest
electronic state that is unoccupied is known as LUMO.

3. Electron energy gap (gap): It is the difference between LUMO and HOMO. It
is thus the lowest energy transition that can occur from an occupied state to
an unocuppied state. It determines the longest wavelength (smallest frequency)
that the molecule can absorb (cf. equation 3.1.13).

• Spatial Distribution of electrons in the molecule

1. Electronic Spatial Extent (R2): Second moment of the charge distribution:

〈R2〉 =

∫
drr2ρ(r)

2. Norm of the Dipole Moment (mu): The dipole moment approximates the electric
field far from a molecule.

p(r) =

∫
dr′ρ(r′)(r − r′)

3. Norm of static polarizability α (alpha): α measures the extent to which a mo-
lecule can spontaneously incur a dipole moment in response to an external field.

• Heat Capacity

1. Molar Heat Capacity at Constant Volume at 298.15K (Cv)

Settings

We consider the the single-task setting in which each model predicts one single property
and the multi-task setting where we use a single model to predict all properties.

Loss and Evaluation Functions

S is taken to be the validation set for early stopping and model selection and the test set
to assess the quality of the prediction. For molecule mi, P (mi) ∈ R is the property that is
being predicted in the single task setting and for the multitask setting the properties are
given by P(mi) ∈ Rp. hθ denotes the function learned by the neural network. Moreover,
σj denotes the standard deviation of property j. The most used errors are the MAE for
evaluation and the MSE for training:
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Definition 10.1.1 MAE: Mean Average Error

MAE(hθ;P, S) :=
1

|S|

|S|∑
i=1

|hθ(Gmi)− P (mi)| (10.1.8)

Definition 10.1.2 nMAE: Normalized Mean Average Error

nMAE(hθ;P, S) :=
1

|S|

|S|∑
i=1

|hθ(Gmi)− P (mi)|
σ

(10.1.9)

nMAE(hθ;P, S) :=
1

|S|

|S|∑
i=1

1

p

p∑
j=1

|(hθ(Gmi)−Pj(mi)|
σj

(10.1.10)

Definition 10.1.3 MSE: Mean Squared Error

MSE(hθ;P,B) :=
1

|B|

|B|∑
i=1

|hθ(Gmi)− P (mi)|2 (10.1.11)

Definition 10.1.4 nMSE: Normalized Mean Squared Error

nMSE(hθ;P,B) :=
1

|B|

|B|∑
i=1

|hθ(Gmi)− P (mi)|2

σ2
(10.1.12)

nMSE(hθ;P, B) :=
1

|B|

|B|∑
i=1

1

p

p∑
j=1

|hθ(Gmi)j −Pj(mi)|2

σ2j
(10.1.13)

Models, Baselines and Hyperparameters

We perform experiments on the LanczosNet (and the LanczosDistNet with σ = 2) and
expand the 1st Order Chebyshev (GCN), a very used baseline model, to also include bond
types in the same way that the LanczosNet does, we call this model GCN(+ bond type) or
GCN+. We do this since the incorporation of bond types is a simple approach and is not
the most salient feature of the LanczosNet. This enables us to focus on the gain of using
the learnable spectral filter approach of the LanczosNet and its multiscale mechanism. We
also compare to the original GCN without bond types and to other models with the results
reported in the literature.
We experimented with different number of layers, hidden dimensions, short scales, long
scales, number of eigenvectors, weight decay, learning rate and use of attention function
and output mechanisms. For the experiments on node classification and link prediction
on Appendix C we did a grid search and found different best hyperparameters than those
reported on the literature [Lia+19; KW16] for those tasks, which achieved slightly better
results in our experiments. On molecular property we experimented with different combina-
tions of hyperparameters. We found most of the original hyperparameters to work the best
on different tasks, however for the single task setting for the prediction of internal energy
or atomization energy, eliminating the attention function, and using a sum mechanism as
output yields better results.
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In addition, for better initialization of the model, we follow the approach of computing
the average contribution to atomization energy per atom (10.1.3) and predicting for each
atom the difference in its contribution to this value and then following equation 10.1.2.
Moreover, for Alchemy we add to the model learnable reference energies that are used to
predict internal energy. Regarding implemenation, using the final loss in the original unit
and thus avoiding divisions of certain parameters by small numbers in PyTorch [Pas+17],
brings more stability in learning and better performance. For single tasks on QM9 and
Alchemy we further increase the number epochs to 400, for multitask and for QM8 the
number of epochs used was 200. We use a batch size of 64.

10.2 QM8

In the paper on which the LanczosNet was introduced [Lia+19] the model is tested on
the QM8 dataset [Ram+15a; Wu+17]. It showed better results in the multi-task setting
than many other models at that time (cf. table 2 in [Lia+19]). However, new datasets
have become the standard benchmarks. This dataset is a subset of GDB-17 and provides
electronic properties of 21,786 molecules with up to 8 C,N,O,F atoms (and H). It gives four
excited-state properties at three different levels of accuracy (TDDFT using: CC2, PBE0
and CAM-B3LYP): energy of first excited state with respect to ground electronic state
(E1, Ha), energy of second excited state with respect to ground electronic state (E2, Ha),
oscillator strength 1 (f1, dimensionless) and oscillator strength 2 (f2, dimensionless). In our
experiments on QM8 we train for 200 epochs with early stopping of window size 10 and the
best validation model is selected.

Single Task

We consider the task of predicting E1− CC2.

Uses Distances Model Train MAE Validation MAE Test MAE
No GCN(+bond type) 1.64± 0.09 3.09± 0.02 2.97± 0.01

LanczosNet 0.59± 0.03 2.47± 0.03 2.39± 0.01

Yes DTNN [Sch+17b] - - 5.77
MPNN [Gil+17] - - 5.27
GC [AT+16] - - 4.64

GGRNet [SM19] - - 3.58
PotentialNet [Fei+18] - - 4.23

Table 10.1: Results for models trained on E1 − CC2 (kcal/mol)

10.3 QM9

QM9 [Ram+14; Wu+17] contains 133885 organic molecules with up to 9 C,O,N,F atoms
(and H). It is a subset of the GDB-17 database and it includes the reference energies of
these elements.
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Single Task

We consider the task of predicting U0-atom.

Uses Distances Model Train MAE Validation MAE Test MAE
No GCN(+bond type) 0.95± 0.02 1.57± 0.03 1.61± 0.02

LanczosNet 0.47± 0.01 1.29± 0.02 1.33± 0.00
MPNN [Gil+17] - - 0.72

Yes LanczosDistNet 0.48 0.93 0.92
MPNN [Gil+17] - - 0.45
SchNet[Sch+17a] - - 0.31
MEGNet [Che+19a] - - 0.21
SOAP [Bar+17b] - - 0.18
DTNN [Sch+17b] - - 0.84
GGRNet[SM19] - - 31.1

Table 10.2: Results for models trained on U0-atom (kcal/mol) for QM9

The LanczosNet model which incoporates distance information (LanczosDistNet) reaches an
error of 0.92 kcal/mol which is below chemical accuracy for atomization energy (1 kcal/mol).
Without distance information the error achieved was 1.33 kcal/mol. Without the use of the
spectral filters, the model which we call GCN+ reaches 1.61 kcal/mol.

Multitask

No Distances Coulomb M.
Target Property Unit LanczosNet GCN+ MMN [Ram+15b] MMN
0 mu D 0.444 0.480 0.602 0.519
1 alpha a30 0.603 0.821 3.10 0.85
2 HOMO Ha 0.00360 0.00414 0.0660 0.00506
3 LUMO Ha 0.00386 0.00464 0.00854 0.00645
4 gap Ha 0.0050 0.0060 0.0100 0086
5 R2 a20 32.7 37.5 125.7 46.0
6 zpve Ha 0.00127 0.00188 0.01109 0.00207
7 U0 Ha - - - -
8 U Ha - - - -
9 G Ha - - - -
10 H Ha - - - -
11 Cv cal

molK 0.28 0.39 1.77 0.39
12 U0-atom kcal/mol 10.56 16.32 15.10 2.27
13 U-atom kcal/mol 10.61 16.49 15.10 2.27
14 G-atom kcal/mol 10.67 16.59 15.10 2.27
15 H-atom kcal/mol 9.90 15.32 15.10 2.27

Table 10.3: Test MAE for Models Trained on All Targets QM9
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Training all models jointly on the 12 targets yields higher errors for the atomization energies.
Moreover, for this setting the output of the model is computed by taking an average over
all nodes as in the original LanczosNet.

10.4 Alchemy

The Alchemy dataset [Che+19b] contains 12 quantum mechanical properties of 119487
organic molecules with up to 12 C,N,O,F,S,Cl atoms (and H). It is a subset of the GDB
MedChem database which compared to GDB-17 contains molecules which are screened as
being more likely useful for medicinal chemistry. 99776 molecules constitute the training
set. In the training set, there are only 5840 molecules with more than 10 heavy atoms. The
validation set contains 3951 molecules with 11 or 12 heavy atoms. The test set conatains
15760 molecules with 11 or 12 heavy atoms.
Remark: Thus the models are mostly trained with molecules comprising either 9 or 10
heavy atoms, but are validated and tested on molecules with 11 or 12 heavy atoms.

Single Task

We consider the task of predicting internal energy at 0K (U0). We treat the atomic reference
energies as trainable parameters of the model and initialize them based on the values given
in [Kir].

Uses Distances Model Train Validation Test
No GCN(+bond type) 1.84± 0.08 5.79± 0.04 4.93± 0.06

LanczosNet 0.61± 0.04 4.85± 0.10 4.21± 0.01

Yes LanczosDistNet 0.46 2.50 2.21

Table 10.4: MAE for models trained on U0 in kcal/mol

H.A Train Validation Test
9 0.68± 0.04 - -
10 0.56± 0.04 - -
11 0.63± 0.05 4.33± 0.09 3.66± 0.01
12 0.76± 0.04 6.43± 0.16 5.88± 0.06

Table 10.5: LanczosNet MAE on U0
kcal/mol, Average over 3 runs

H.A Train Validation Test
9 0.45 - -
10 0.46 - -
11 0.51 2.10 1.80
12 0.75 3.71 3.46

Table 10.6: LanczosDistNet MAE on U0 in
kcal/mol

Heavy A. Train Validation Test
9 2.04± 0.07 - -
10 1.71± 0.10 - -
11 1.79± 0.09 5.13± 0.02 4.30± 0.05
12 2.30± 0.14 7.77± 0.08 6.85± 0.10

Table 10.7: GCN(+bond type) MAE on U0 in kcal/mol, Average over 3 runs
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Figure 10.1: Validation Loss Curves on U0

Figure 10.2: Train Loss Curves on U0

We further trained a model up to 1000 epochs, however the validation loss stays almost
constant. We also tried changing the learning rate but the same behaviour was observed.
Recall that the molecules from the training set come from a different distribution than
those in validation and test. The training set is composed of mostly molecules with 9 and
10 heavy atoms while validation and training only have molecules with 11 and 12 heavy
atoms. Furthermore, the Alchemy dataset also contains S and Cl, we initialized the reference
energies based on [Kir]. These two factors might account for the less accuracate results in
comparison to QM9. The LanczosNet without distances reaches an error of 4.21 kcal/mol,
while the model which incorporates distances yields an error of 2.21 kcal/mol, both above
chemical accuracy. Training the LanczosNet on GPU for 400 epochs on an Nvidia GeForce
RTX 2080 Super the total training time is 13.6h and 122.4 s/epoch.
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Multitask

No Distances Distances
Target Property Unit LNet* GCN+* GCN ChebyNet MPNN MPNN
nMAE 0.1715 0.1994 0.2542 0.2598 0.1355 0.0655

0 zpve Ha 0.00484 0.00626 0.00683 0.00743 0.00259 0.00113

1 Cv Ha·10−6

K 1.72 2.2 2.31 2.49 1.17 0.5
2 gap Ha 0.0080 0.0078 0.0133 0.0130 0.0112 0.0056
3 G Ha - - - - - -
4 HOMO Ha 0.00533 0.00505 0.01024 0.01000 0.00940 0.00358
5 U Ha - - - - -
6 alpha a30 2.51 3.28 3.94 4.16 2.45 1.12
7 U0 Ha - - - - - -
8 H Ha - - - - - -
9 LUMO Ha 0.00635 0.00634 0.01121 0.01125 0.01023 0.00478
10 mu D 0.557 0.579 0.778 0.769 0.716 0.194
11 R2 a20 128.3 145.1 183.7 180.0 132.1 16.9

Table 10.8: Test MAE for Models Trained on All Targets Alchemy *: our results, - : the
models were trained to predict all 12 properties, usually one does not predict these properties
directly without using or learning reference energies, therefore we omit the results as they
do not represent the true achievable performance of the models, rather a bad initializiation
of the models

10.5 Robustness with respect to Eigenvalues and Eigenvectors
of S

Given the small size of the molecules it was not necessary to use the Lanczos Algorithm for
the approximation of the eigenvalues. For the tasks of node classification and link prediction
we do use the Lanczos Algorithm and compare performance with different number of Ritz
vectors in Appendix C. Here we apply noise to the eigenvectors and eigenvalues and study the
robustness of the models with respect to perturbations on the eigenvalues and eigenvectors.
Since for bigger molecules it might make sense to calculate (approximate) less eigenvectors,
we also test the performance using less eigenvectors and eigenvalues during prediction.

Random Noise

First we apply noise to the eigenvectors and eigenvalues via

λnoisy = λ+ εval, εval ∼ N (0, σ2val) (10.5.1)

vnoisy =
v + εvec
||v + εvec||

, εvec ∼ N (0, σ2vecIN ) (10.5.2)

We then test the model on the molecules with these changes:
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σval

σvec − 0.001 0.005 0.01 0.05 0.1 0.5

− 1.331 1.344 1.580 2.097 8.348 18.857 90.685
0.001 1.338 1.350 1.582 2.107 8.347 18.771 90.349
0.005 1.983 2.013 2.205 2.673 8.844 19.159 89.197
0.01 4.263 4.229 4.396 4.806 10.480 19.738 89.820
0.05 3.5× 109 1.2× 109 3.0× 108 4.0× 1010 2.1× 108 2.9× 108 6.5× 108

Table 10.9: QM9: LanczosNet Test MAE (kcal/mol) on U0-atom with Noise on the
Spectrum - Average over 10 Runs

σval

σvec − 0.001 0.005 0.01 0.05 0.1 0.5

− 4.198 4.200 4.213 4.264 5.977 10.948 50.565
0.001 4.213 4.211 4.227 4.277 6.023 11.068 50.515
0.005 7.006 7.067 7.071 7.112 9.059 14.096 51.323
0.01 12.006 12.428 12.398 12.521 14.160 18.269 52.080
0.05 1.3× 1010 15.7× 108 3.9× 109 2.8× 108 3.3× 109 5.0× 107 2.5× 108

Table 10.10: Alchemy: LanczosNet Test MAE (kcal/mol) on U0 with Noise on the Spec-
trum - Average over 10 Runs

We observe that very small changes in the eigenvalues do not change the prediction much,
however relatively bigger changes can cause the prediction error to explode. The error on
the eigenvalues (and eigenvectors) can cause the model to confuse a high frequency vector
with a low frequency vector and viceversa. We have observed in the learned kernels big
slopes around 1 and at the other end of the spectrum (see Figure 9). This could explain
part of this phenomenon.

Using Less Eigenvectors during Prediction

In these experiments we examine the change in the model prediction if we use just q eigen-
vectors with highest magnitude in the model trained using 20 eigenvectors, as this setting
can be present if one has bigger molecules and just has q approximations.

q = 20 q = 15 q = 10 q = 5 q = 1

1.33 2.99 8.21 11.42 15.38

Table 10.11: QM9: LanczosNet(K = 20) Test MAE (kcal/mol) on U0-atom

q = 20 q = 15 q = 10 q = 5 q = 1

4.20 6.08 8.27 12.55 19.11

Table 10.12: Alchemy: LanczosNet(K = 20) Test MAE (kcal/mol) on U0



Chapter 11

Graph Variational Autoencoders

The design of molecules with target optimized properties is of fundamental importance
in drug discovery and material science. Recently the advances of machine learning and
deep learning have enabled signficant advances in the task of molecule generation. Several
methods have been proposed including graph variational autoencoders and molecular ad-
versarial networks. Many of these methods for molecular graph generation employ graph
convolutional networks as building blocks. In this chapter we focus on graph variational
autoencoders and present the approach introduced in [BL19a]. Some of the details might be
different and we make our own implementation. Another task for which graph autoencoders
have been used is link prediction. We perform experiments on citation prediction in citation
networks in Appendix C.

11.1 Autoencoders

We start by presenting the usual formulation of autoencoders and variational autoencoders
following [GBC16] and [Sol20]. An autoencoder is a neural network that is trained to at-
tempt to copy its input to its output. It contains inside a hidden layer z that describes a
code used to represent the input. The network can be seen as consisting of an encoder func-
tion z = f(x) that learns a mapping from the data, x, to a low dimensional latent space Z,
and a decoder that produces the reconstruction x̂ = g(z). A possible loss function would be
L(x̂;x) = ||x̂−x||2. They were traditionally used as an unsupervised approach for learning a
lower-dimensional feature representation from unlabeled training data . The recent theoret-
ical connections between autoencoders and latent variable models have made autoencoders
a very active field of research and a very important tool for generative modelling.
The dimensionality of the latent space will influence the reconstruction quality. An autoen-
coder whose code dimension is less than the input is called undercomplete. This forces the
network to learn the most important features of the training data. If the hidden code has
dimension greater than the input it is called overcomplete and regularization mechanisms
are used. We will focus on undercomplete autoencoders and use a latent dimension of 56
for a fair comparison in the experiments we perform.

Variational Autoencoders

The notion of encoding function f(x) can be generalized to an encoding distribution pφ(z|x)
and the decoding function g(z) to a decoding distribution qθ(x|z). In this way a variational
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autoencoder is built. The encoder predicts the conditional distribution of the hidden repres-
entation z given the data x and the decoder predicts the conditional distribution of the data
x given the hidden representation z. Since we want to capture an underlying structure in
the latent space from which we can sample new data, we don’t want the encoder to simply
separate all points far away from each other. To achieve this a prior distribution p(z) for
the hidden variable can be selected. The loss function is formed by the reconstruction loss
and a regularization term that penalizes pφ(z|x) if it differs from p(z). A usual prior is
p(z) = N (0, I). This encourages the encodings to distribute evenly around the center of the
latent space and penalizes the network if it tries to memorize the data by clustering points
in specific regions. To measure how different the encoding distribution is from the prior
distribution the Kullback-Leibler divergence can be used, which we present in what follows.

Information Theory

Consider P and Q two probability distributions over z:

Definition 11.1.1 Self-information
The self-information of z is given by

I(z) := −logP (z) (11.1.1)

In the discrete case it quantifies information with less likely events having higher information
content and in the continuous case it is defined in analogy.

Definition 11.1.2 Shannon Entropy
The Shannon Entropy quantifies the amount of uncertainty in a probability distribution

H(P ) := Ez∼P [I(z)] = −Ez∼P [logP (z)] (11.1.2)

Definition 11.1.3 Kullback-Leibler (KL) divergence
The Kullback-Leibler divergence from Q to P is given by

DKL(P ||Q) := Ez∼P

[
log

P (z)

Q(z)

]
= Ez∼P [logP (z)− logQ(z)] (11.1.3)

DKL(P ||Q) satisfies that it is non-negative and is 0 if and only if P and Q are equal
almost everywhere. Minimizing DKL(P ||Q) with respect to Q has the effect of choosing a Q
which has high probability where P has high probability, while minimizing DKL(Q||P ) with
respect to Q has the effect of selecting Q with low probability where P has low probability.
If pφ(z||x) is modeled as a N (µ, diag(σ2)) and p(z) as a N (0, I) then:

DKL(pφ(z||x)||p(z)) =
1

2

∑
k

(σ2k + µ2k − 1− logσ2k) (11.1.4)

Related to the KL divergence is the cross-entropy, which we will also use in the loss function
of the molecule autoencoder and in the node classification and link prediction tasks in
Appendix C.

Definition 11.1.4 Cross-Entropy

H(P,Q) := H(P ) +DKL(P ||Q) = −Ez∼P [logQ(z)] (11.1.5)
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11.2 Molecule Variational Autoencoder

We follow the framework presented in [BL19a]. Assume that we have J different atom types
and consider a d-dimensional latent space. Given an attributed graph G = (V, E , A,X) the
variational autoencoder works in 3 steps:

1. Encoding:
An encoder GNE finds the parameters µ, σ ∈ Rk of the encoding normal distribution
pφ(z||G). ε is sampled from a N (0, Ik). The latent representation of the graph G is
calculated as z = µ+ σ � ε for training, otherwise µ.

2. Prediction of molecular formula:
A multi-layer perceptron MLP takes the latent representation z as input and a bag-
of-atoms b ∈ NJ is generated which indicates the number of atoms per atom-type in
the molecule.

Figure 11.1: Bag of Atoms Example

3. Prediction of bonds and molecule construction:
A decoder GND takes as input the latent represenation z and the bag-of-atoms b and
calculates the probability of a bond (and its bond type) between each pair of atoms.
Then a so called beam search is performed to build the reconstruction molecule.

Figure 11.2: Prediction of Bonds Example
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Algorithm 11 Molecule Variational Autoencoder
1: Input: Gin
2: µ, σ = GNE(G)
3: ε ∼ N (0, I)
4: z = µ+ σ � ε
5: b = MLP (z)
6: Â = GND(z,b)
7: Gout = BeamSearch(Â)
8: Output: Gout

11.2.1 Molecule Variational Encoder

The molecule encoder in [BL19a] follows the Residual Gated Graph ConvNet [BL19b] which
we covered on Chapter 6 and edge features are used. We start at layer 0 with input features
at each node which can be taken from the atom type and for the edges from the bond type
(although in general further information such as distances can be added).

h0
i = xi ∈ Rd (11.2.1)

e0ij ∈ Rd (11.2.2)

At each convolutional layer, convolution is applied to form new atom and bond features.

(hl+1, el+1) = GCN(hl, el) (11.2.3)

Here GCN works via

hl+1
i = hli +ReLU

BN
W l+1

1 hli +
∑

j∈N (i)

ηl+1
ij �W

l+1
2 hlj

 (11.2.4)

el+1
ij = elij +ReLU

(
BN

(
V l+1
1 elij + V l+1

2 hli + V l+1
3 hlj

))
(11.2.5)

ηl+1
ij =

sig(elij)∑
j′∈N (i)

sig(elij′) + ε
(11.2.6)

where BN stands for batch normalization [IS15], W l+1
1 ,W l+1

2 , V l+1
1 , V l+1

2 , V l+1
3 ∈ Rd×d,

ηl+1
ij ∈ Rd is obtained with an attention mechanism and sig denotes the sigmoid function
which along with the division is applied component-wise. The latent representation is
obtained as a gated sum of edge features.

µ =
N∑

i,j=1

sig(A1e
L
ij +B1h

L
i + C1h

L
j )�D1e

L
ij (11.2.7)

σ =

N∑
i,j=1

sig(A2e
L
ij +B2h

L
i + C2h

L
j )�D2e

L
ij (11.2.8)

for matrices Ai, Bi, Ci, Di ∈ Rk×d where k is the latent dimension. A parametrization of
the latent vector z is used:

z = µ+ σ � ε, ε ∈ N (0, I) (11.2.9)
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Using the LanczosNet

To use the LanczosNet as the graph encoder we perform Lc convolutional layers, then a
node-wise fully connected layer to obtain X(Lc+1) ∈ RN×2k, and then

µ = sum
(
X

(Lc+1)
:,:k+1

)
(11.2.10)

log(σ) = mean
(
X

(Lc+1)
:,k+1:

)
(11.2.11)

where sum and mean denote the column-wise sum and mean.

11.2.2 Molecule Decoder

Given the latent representation z the task is to decode it and reconstruct the molecule.
First, we predict the number of atoms of each type in the molecule. This is achieved using
a multilayer perceptron together with softmax that will predict the probability of n atoms
of atom type j to be present for n = 0, . . . , Nmax and j = 1, . . . , J . For each atom type
the number of atoms with the maximum probability is taken to form the bag-of-atoms b.

Algorithm 12 MLP
1: Input: z
2: M = mlp(z) ∈ RJ×(Nmax+1)

3: b = argmax(M) ∈ NJ
4: Output: b

Once the atoms that are present in the molecule have been predicted, a graph neural de-
coder GND is used to predict the bond probability between each pair of atoms. A dense
graph is considered and all edge features are initialized to the same vector based on z via

e0ij = Wz (11.2.12)

where W ∈ Rd×k is a learnable matrix. The node feature of each atom is initialized with
according to an embedding a based on atom type and an embedding b that depends on the
position feature of the atom. Since for each atom type there might be multiple atoms in the
molecule, position features are introduced to break the symmetry. To each atom of type j
a position feature is associated which can range from 1 to Nmax.

h0
i = aZi + bpos(i) (11.2.13)

After L convolutional layers, we have edge features eLij ∈ Rd. These are used as input for a
neural network ENN : Rd → R(E+1)×N×N such that ENN(eLij) = Â ∈ R(E+1)×N×N where
Âtij gives the probability that there is a bond of type t between atoms i and j. Here t = 0
denotes no bond.
After the probability of the bonds has been calculated, the next task is to reconstruct the
molecule. In order to try to build a valid molecule a beam search is perfomed. The beam
search works by selecting a random bond that does not violate valency. Then one selects
as the next bond the bond that has the highest probability (or by Bernouilli sampling),
is connected to the current bonds, and does not violate valency. This is repeated for a
number of candidate molecules c. Then the molecule that maximizes the product of the
bond probabilities or the chemical property to be optimized is selected.
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Loss function

The loss function considers the regularization term and the reconstruction loss. The regular-
ization term is formed by the Kullback Leibler divergence from the prior p(z) to the obtained
pφ(z||x), weighted by λV ∈ R+. The reconstruction loss considers the cross-entropy of the
probability distribution given by the matrix M ∈ RJ×(Nmax+1) of the number of atoms per
atom-type to the actual number of atoms given by q ∈ RJ , weighted by λa ∈ R+, and the
cross-entropy of the probability distribution of the bonds given by Â with respect to the
real adjacency matrix A, weighted by λb ∈ R+.

L = λVDKL(pφ(z||x)||p(z)) + λaH(q,M) + λbH(A, Â) (11.2.14)

=
λV
2

k∑
k′=1

(µ2k′ + σ2k′ − 1− logσ2k′)− λa
J∑
j=1

Nmax∑
n=0

1{qj=n} log(Mjn) (11.2.15)

− λb
∑
v,w∈V

E∑
t=0

A(t, v, w)log(Â(t, v, w)) (11.2.16)

During training for bond prediction one uses the atoms of the real molecule, for inference
one uses the atoms predicted by b = MLP (µ). Furthermore, one can use a weighted
cross-entropy loss function for the bonds and number of atoms predictions to deal with the
unbalance in the number of training examples per bond type and number of atoms per
element. Decoding the representation and building the molecule has been challenging and
more hyperparameter optimization needs to be done. The model should learn the pattern
in which the position of the atoms of the same element are assigned and for the beam search
more hyperparameters shall be optimized to yield a good reconstruction rate.



Chapter 12

Conclusion

We explored in this thesis spectral-based graph convolutional networks, with a focus on the
LanczosNet for the task of molecular property prediction. We provided a detailed treatment
of the way in which spectral-based graph convolutional networks operate building upon the
definition of graph convolution from Graph Signal Processing and the structure of regular
convolutional networks. For the sake of comparison, we also presented 3 existing spatial-
based graph convolutional networks and their advantages over spectral-based methods. For
the prediction of molecular properties working in the atom domain allows for the insertion of
physical knowledge and distance information into the models. For these tasks spatial-based
methods which define convolution as the aggregation of node features of neighboring nodes
routinely outperform spectral-based methods. Since for many real datasets the distances
are not known accurately it remained an interesting alternative to investigate the use of
spectral-based models which do not required the distances as input for the prediction of
molecular properties.
Using the LanczosNet we reach 1.33 kcal/mol mean average error on the QM9 dataset for
the prediction of atomization energy at 0K. Modifying the model to compute the adjacency
matrix via a Gaussian Radial Basis Function, and using this adjacency matrix itself as part
of the model (and to obtain the similarity matrix S) we reach 0.92 kcal/mol which lies below
chemical accuracy for atomization energy. [Gil+17] obtains with the use of a spatial-based
model and without distance information an error of 0.72 kcal/mol. In the Alchemy dataset
we obtain an error of 4.21 kcal/mol and with distance information the model performance
improves to yield an error of 2.21 kcal/mol at the task of predicting internal energy at 0K.
We also used a model which did not use the spectral filters nor distance information that
reached an error of 1.61 kcal/mol at QM9 and 4.93 kcal/mol at Alchemy in the mentioned
properties.
Although the models that use spectral filters obtained a lower error, they might not be
scalable to larger molecules as they require the computation of an approximate eigendecom-
position. We also studied the robustness of the model with respect to random noise on the
eigenvalues and eigenvectors. In the analysis of the kernels we observed in various kernels
big slopes at both ends of the spectrum. This could explain why the error explodes with
increasing noise.
As we saw on Chapter 8, the way in which the LanczosNet operates exhibits a more natural
interpretation and a stronger mathemcatical background for tasks such as node classific-
ation. For such tasks the LanczosNet compares well to other state-of-the-art models. In
particular when the number of labeled nodes decreases the multi-scale approach and the
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spectral filters learned via a multilayer perceptron help the model attain a better perform-
ance. Using more approximate eigenvectors can also improve results since calculating more
eigenvectors gives the model the possibility to detect useful patterns and structures for the
classification and will make the approximation of the previous eigenvectors improve and
overall the approximation of S might become better.
Finally, we experimented using the LanczosNet as an encoder in the framework of graph
variational autoencoders. For molecules, encoding and decoding the molecular formula is
relatively easy, however to decode the bonds in the molecule the model should learn to
appropiately break the symmetry between atoms of the same type (element) with the use
of the positional features and discover the pattern of position of assignment in its canonical
smiles representation. This probably requires more training and the selection of suitable
weights in the cross-entropy loss and the penalties of the variational loss and reconstruction
loss of the bag of atoms and the bonds. Moreover, there are further hyperparametes that
need to be optimized for the construction of the molecule during the beam search. Tuning
all the hyperparameters and the computation time involved make the development of the
model complicated and we are still working on it. For the task of link prediction on citation
networks, we perform a grid search over various hyperparameters and we obtained better
results without the use of the spectral filters and long-scale diffusion, so that the best model
was a version of the 1st order ChebNet.

Outlook

It is the opinion of the author that reasearch for molecular property prediction should focus
on spatial-based methods which are more flexible and allow for the incorporation of prior
knowledge and distance information. For many other applications they also facilitate the
design of application-specific models. For node classification spectral-based methods do
have a more solid mathematical background than for other tasks and have also shown good
performances. So that further research in this direction could focus in that setting. In
the context of spectral-based methods an interesting possibility would be to explore the
incorporation of a neural network to approximate the spectrum of the graph and then use
this approximation for the rest of the network.
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Appendix C: Citation Networks

In this section we present several experiments to compare how well the LanczosNet perform
at node classification, in the context of citation networks. All methods are implemented
using PyTorch [Pas+17]. We make an implementation of the models based on the code
released on https://github.com/lrjconan/LanczosNetwork [Lia+19].
For this experiment three citation networks are used: Cora, CiteSeer and Pubmed. In each
network the nodes correspond to the documents and there is an edge whenever one document
cites another. Each node is represented by a bag-of-words feature vector. Moreover, we treat
all citation networks as undirected graphs.
Task: Given a proportion Si of training documents from the citation network, the task is
to predict the label of the other documents in the citation network. The performance of the
models is measured by considering the accuracy on a test set of 1000 documents. A fixed
validation data set with 500 documents is available. We use semi-supervised learning and a
transductive setting is followed. All the documents (training, validation, test and rest) are
used during training, however only the label of the training set is used for learning. The
validation data set is used for early stopping.
Splitting of the data: All experiments are repeated 10 times with different random seeds.
During each run, all methods share the same training/validation/test split. For all the splits
the public validation set is used. For the public split, the 10 experiments use the same public
training and test sets. To increase the difficulty of the task and evaluate the robustness of
the models the amount of training examples is reduced to different levels. For these splits,
the 10 experiments use a random training and test set.

Split Training Set Validation Set (500) Test Set (1000) Runs
S0 (Public) Public Public Public 10
S1 Random Public Random 10
S2 Random Public Random 10
S3 Random Public Random 10

Table 12.1: Setting

Dataset S0 S1 S2 S3
Cora 20 12 4 2
Citeseer 20 6 3 2
Pubmed 20 7 3 2

Table 12.2: Training Examples per Class
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Datasets Description

The Cora dataset consists of 2708 machine learning papers and 5429 citation edges. Each
paper is classified into one of seven classes. Each publication is described by a 0/1-valued
vector indicating the absence/presence of the corresponding word from the dictionary. The
dictionary consists of 1433 unique words.
The CiteSeer dataset consists of 3327 scientific publications and 4732 citation edges. Each
publication is classified into one of six classes. Each publication is described by a 0/1-valued
vector indicating the absence/presence of the corresponding word from the dictionary. The
dictionary consists of 3703 unique words.
The Pubmed Diabetes dataset consists of 19717 scientific papers from the Pubmed database
on the subject of diabetes and 44338 citation edges. Each publication is classified into one
of three classes. Each publication in the dataset is described by a TF/IDF weighted word
vector from a dictionary which consists of 500 unique words.

Dataset Nodes Edges Classes Features S0(%) S1(%) S2(%) S3(%)

Cora 2708 5429 7 1433 5.2 3.1 1.0 0.5
Citeseer 3327 4372 6 3703 3.6 1.1 0.5 0.3
Pubmed 19717 44338 3 500 0.3 0.1 0.05 0.03

Table 12.3: Dataset Statistics

Models and Experiment Configuration

We perform hyperparameter optimization and the graph convolutional networks share the
following hyperparameters: 0ptimizer: Adam, Learning rate: 0.01, Weight decay: 0.005,
Loss function: Cross Entropy Loss, Maximum number of epochs: 200, Window size for
Early Stopping: 10, Batch Size: Full-Batch, Number of layers (without input layer): 2, Input
dimension: Number of features of the dataset, Hidden dimension: 64, Output dimension:
Number of classes of the dataset, Activation function for hidden layer: ReLu, Dropout: no.
The model-specific hyperparameters for the LanczosNet20 are the same as in [Lia+19]:

Results

In the following tables we report for each experiment the average test accuracy over 10 runs
and its standard deviation.

Si% Log. Reg GCN LNet20
5.2 57.6± 0.4 81.4± 0.6 81.1± 0.6
3.1 50.3± 3.0 77.8± 1.8 79.3± 1.2
1.0 37.9± 3.7 68.4± 4.3 73.0± 3.4
0.5 30.4± 3.2 58.4± 6.4 64.7± 8.4

Table 12.4: Test accuracy Cora 10 runs

Si % Log. Reg GCN LNet20
3.6 60.5± 0.2 70.0± 0.1 69.1± 1.5
1.1 45.6± 3.7 61.3± 3.1 62.5± 3.9
0.5 36.4± 3.0 52.0± 3.3 57.1± 5.6
0.3 32.2± 5.6 43.4± 4.4 44.2± 8.5

Table 12.5: Test accuracy Citeseer 10 runs
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Train % Log. Reg GCN LNet20
0.3 73.1± 0.5 79.4± 0.1 79.7± 0.4
0.1 61.8± 2.9 70.0± 2.3 72.3± 2.3
0.05 52.3± 6.5 60.8± 6.2 68.0± 7.9
0.03 49.7± 3.1 56.7± 4.8 60.4± 7.3

Table 12.6: Test accuracy Pubmed 10 runs

The models are run using a NVIDIA GeForce RTX 2080 Super GPU.

Model Cora Citeseer Pubmed
Log.Reg 1.60 1.64 1.62
GCN 1.84 2.01 2.11
LNet20 11.62 23.96 113.23

Table 12.7: Training Time (s) on S0 average
over 10 runs (early stopping window: 10)

Model Cora Citeseer Pubmed
Log.Reg 0.0082 0.0083 0.0084
GCN 0.0092 0.010 0.011
LNet20 0.0581 0.120 0.57

Table 12.8: Training Time per epoch(s) on S0
averaged over 10 runs

Example of the classification of a test document on Setting 3 of Citeseer with
real class DB

Figure 12.1: Prediction GCN Figure 12.2: Prediction LanczosNet20

Experiments on K: Number of Ritz Values and Vectors

Train% K = 0 K = 20 K = 40 K = 60 K = 80 K = 100

5.2 81.4± 0.8 81.1± 0.6 81.2± 1.3 81.7± 0.8 81.3± 0.6 80.8± 1.1
3.1 79.5± 1.6 79.3± 1.2 79.0± 1.2 79.0± 1.5 78.7± 1.0 79.3± 1.5
1.0 73.6± 3.7 73.0± 3.4 73.9± 3.5 73.8± 3.4 74.6± 3.0 74.3± 4.9
0.5 64.5± 7.5 64.7± 8.4 65.6± 8.9 65.9± 6.9 66.5± 6.5 65.8± 6.1

Table 12.9: Test accuracy on Cora of the LanczosNet with K Ritz vectors over 10 runs
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Train% K = 0 K = 20 K = 40 K = 60 K = 80 K = 100

3.6 69.2± 1.2 69.1± 0.5 69.3± 1.6 69.1± 1.3 69.0± 1.4 69.2± 1.1
1.1 61.2± 5.8 62.5± 3.9 62.1± 3.3 61.6± 2.7 61.8± 3.7 61.0± 3.2
0.5 55.7± 5.0 57.1± 5.6 56.4± 6.3 55.6± 5.5 54.6± 6.3 54.8± 5.2
0.3 40.2± 6.1 44.2± 8.5 48.3± 7.3 46.5± 8.4 46.9± 7.7 47.3± 7.9

Table 12.10: Test accuracy on CiteSeer of the LanczosNet with K Ritz vectors over 10 runs

Train% K = 0 K = 20 K = 100

0.3 80.3± 0.3 79.7± 0.4 79.9± 0.7
0.1 72.1± 2.6 72.3± 2.3 73.3± 3.4
0.05 66.4± 6.4 68.0± 7.9 70.0± 8.4
0.03 59.2± 7.0 60.4± 7.3 62.0± 9.7

Table 12.11: Test accuracy on Pubmed of the LanczosNet with K Ritz vectors over 10 runs

Link Prediction

Following [KW16] the models are trained on a incomplete version of the citation networks.
Part of the citation links (edges) are removed and all document features are mantained. The
validation and test sets are formed from the removed edges and the same number of ran-
domly sampled pairs of unconnected edges (non-edges). The validation and test set contain
5% and 10% of the citation links, respectively. We use Cora to optimize hyperparameters.
The validation set is used for optimization of hyperparameters. We use 200 iterations, Adam
with a learning rate of 0.001 and a weight decay of 0.0005. The loss function L is composed
of two terms, the weighted binary cross-entropy loss and the Kullback-Leibler divergence
for the VAE Gaussian Distribution as in [KW16].

Algorithm 13 LanczosAE
1: Input: (Gin, X)
2: Z = LanczosNet(Gin, X) ∈ RN×F
3: A = φ(Z>Z)
4: Output: Gout(A)

Algorithm 14 LanczosVAE
1: Input: Gin
2: µ, σ = LanczosNet(Gin, X) ∈ RN×F
3: Z = µ+ σ � ε
4: A = φ(Z>Z)
5: Output: Gout(A)

The area under the ROC curve (AUC) and average precision (AP) are reported:

Method AUC(%) AP(%)
SC [TL11] 84.6± 0.01 88.5± 0.00
DW [PAS14] 83.1± 0.01 85.0± 0.00

LanczosAE0 94.0± 0.00 94.2± 0.00
LanczosVAE0 93.6± 0.00 93.6± 0.00

Table 12.12: Link Prediction Cora 10 runs

Method AUC(%) AP(%)
SC [TL11] 80.5± 0.01 85.0± 0.01
DW [PAS14] 80.5± 0.02 83.6± 0.01

LanczosAE0 93.8± 0.00 94.4± 0.01
LanczosVAE0 92.7± 0.00 93.4± 0.00

Table 12.13: Link Prediction Citeseer 10 runs



97

Figure 12.3: Validation AUC for LanczosNetAE0 and LanczosNetVAE0 on Citeseer

Experiments on K: Number of Ritz Values and Vectors

Mode K = 0 K = 20 K = 100

AE 94.0± 0.00 92.0± 0.00 89.4± 0.00
VAE 93.6± 0.00 91.1± 0.01 89.4± 0.01

Table 12.14: AUC on Cora of the LanczosNet with K Ritz vectors over 10 runs

Mode K = 0 K = 20 K = 100

AE 93.8± 0.00 88.8± 0.01 86.8± 0.01
VAE 92.7± 0.00 88.4± 0.01 86.7± 0.01

Table 12.15: AUC on Citeseer of the LanczosNet with K Ritz vectors over 10 runs




