
Time Series Forecasting using Sparse Grids

Jochen Garcke1, Thomas Gerstner2 and Michael Griebel1

1Institut für Numerische Simulation
Universität Bonn

Wegelerstr. 6
D–53115 Bonn

{garcke,griebel}@ins.uni-bonn.de

2Institut für Mathematik
Johann Wolfgang Goethe-Universität

D–60054 Frankfurt am Main
gerstner@math.uni-frankfurt.de

Abstract

We present a machine learning approach for the forecasting of time series using the sparse grid
combination technique. In this approach, the problem of analyzing a time series is first transformed
into a higher-dimensional regression problem based on a delay embedding of the empirical data.
Then, a grid-based approach is used to discretize the resulting high-dimensional feature space.
In order to cope with the curse of dimensionality, we employ sparse grids in the form of the
combination technique. Here, the regression problem is discretized and solved for a sequence of
conventional grids with varying mesh widths. The sparse grid solution is then obtained by a linear
combination of the solutions on these grids. We present the results of this approach for forecasting
a benchmark time series and intraday foreign exchange rates using historical exchange data of
several currencies.

Keywords: time series analysis, forecasting, machine learning, sparse grids, regression

1 Introduction

The forecasting of time series is an important mathematical problem with many applications. Examples
include desaster prediction in natural sciences, trading in economics or health monitoring in medicine.
The main approaches to tackle forecasting problems are either based on the physical or economical
modelling and simulation of the underlying process or on the statistical evaluation of historical time
series data from which an empirical model is derived.

In this paper we take the latter approach by transforming the forecasting problem into a machine
learning regression problem [6, 9, 11, 15, 21, 26]. The idea behind this approach is that the underlying
process generating the time series will behave similarly in similar situations. The machine learning
algorithm now attempts to learn the behaviour of the time series just from empirical observations. The
learned model can then be used to forecast in future comparable situations. To this end, the time series
data is cast into a number of data points in a D-dimensional feature space together with a label. The
label represents the difference between the value of the time series at the current time and a fixed time
into the future. The D-dimensional data points and their corresponding labels are then used as input
for a suitable regression algorithm. In our approach, the features are based on a delay embedding of
the data [19, 22, 25]. In particular, we use approximations of first or second derivatives at each time

1

step of the series under consideration. Furthermore, we allow for the concurrent treatment of the data
from several related time series to improve the quality of the prediction for one of these series.

Delay embedding is a powerful tool to analyze dynamical systems. Taken’s theorem [22] gives
the conditions under which a chaotic dynamical system can be reconstructed from a sequence of
observations. In essence, it states that if the state space of the dynamical system is a k-dimensional
manifold, then it can be embedded in (2k + 1)-dimensional Euclidean space using the 2k + 1 delay
values f(t), f(t − τ), f(t − 2τ), . . . , f(t − 2kτ), where τ denotes a fixed time step. Heuristic
computational methods, such as the Grassberger-Procaccia algorithm [12], can be used to estimate the
embedding dimension k.

In this work we apply our recent approach for data mining problems [8, 9] to discretize and solve
the resulting regression problem. Our approach is based on the regularization network formulation [11]
and uses a grid, independent of the data positions, with associated local ansatz functions to discretize
the feature space. This approach is similar to the numerical treatment of partial differential equations
with finite elements. To avoid the curse of dimensionality, at least to some extent, a so-called sparse
grid [2, 27] is used in the form of the combination technique [13].

The sparse grid approach is based on a hierarchical subspace splitting and a sparse tensor product
decomposition of the underlying function space. To this end, the regularized regression problem is
discretized and solved on a certain sequence of conventional grids. The sparse grid solution is then
obtained by a linear combination of the solutions from the different grids. It turns out that this method
scales only linearly with the number of data points to be treated [9]. Thus, this approach is well suited
for machine learning applications where the dimension D of the feature space is moderately high, but
the amount of data is very large. This is in contrast to support vector machines and related kernel-based
techniques whose cost scale quadratically or even cubically with the number of data points, but on the
other hand allow to deal with very high-dimensional feature spaces.

In this article we show that sparse grid regression can indeed be a useful tool for the forecasting of
time series. We illustrate the performance of our approach for a model problem, the Mackey-Glass
series, and for real financial data, which are intraday foreign exchange rates collected over time. For
the forecasting of the Mackey-Glass data we achieve results on par with existing techniques. For the
forecasting of financial data we achieve prediction accuracies of almost 60%, profits of up to 25% of
the maximum attainable profit and we measure average revenues per transaction larger than typical
transaction costs.

The remainder of this article is organized as follows: In Section 2 we describe how to transform the
problem of forecasting a time series into a data mining problem based on delay embedding and discuss
the resulting regularized regression problem. Section 3 gives the basics of the sparse grid combination
technique, which is our employed numerical algorithm. Then, in Section 4, we give the results for our
new approach for both, the Mackey-Glass model data and real historical foreign exchange data. Here,
we consider the Euro, the US dollar, the Japanese Yen, the Swiss Franc and the British Pound from the
years 2001 to 2005. Finally, Section 5 gives some concluding remarks.

2 Time series forecasting as a data mining problem

We consider time series data which are given on equidistant points in time with a fixed distance τ ,
which we will call ticks. If the raw time series data is not given on an equidistant grid, it has to be
pre-processed accordingly. A standard approach is to employ piecewise constant upwind interpolation,

2

tj − 6τ tj − 5τ tj − 4τ tj − 3τ tj − 2τ tj − 1τ tj tj + 1τ tj + 2τ tj + 3τtj + 3τ

Figure 1: The transformation of an equidistant time series involves a time horizon [tj − (K − 1)τ, tj]
backward in time, here K = 7, from which the features to describe the behaviour of the time series
at and up to time tj are derived, and a prediction time frame, here K̂ = 3, which defines the time
tj + K̂τ at which the response is predicted. This time horizon is then moved over the whole time
series to convert the raw data into input data for the machine learning procedure.

which in particular avoids using data from the future. As an extension to the forecasting of one time
series on its own, we also consider information from related time series for the prediction. In the
following we assume that the different times series are all given on the same grid, again after suitable
pre-processing if necessary.

This way, given J time steps and data from R related time series, the available input data which
can be used in the forecasting process has the general form

{tj , fr(tj)} for j = 1, . . . , J and r = 1, . . . , R.

Here, tj denotes the j-th point in time, fr denotes the data of the r-th time series and tj+1 = tj + τ .
In the following we describe how the available data is transformed into input data for the actual
forecasting procedure.

2.1 Delay embedding into a feature space

Based on the interpolated historical input data consisting of J ·R data points we now want to predict
the value or trend of, say, the first time series f1. Given a point in time tj we want to forecast the
trend for f1 at some point in time tj + K̂τ in the future, where K̂ denotes a fixed number of ticks
into the future. To this end, we convert the given time series up to a specific time tj into data in a
D-dimensional feature space, also called attribute space, which is supposed to describe the situation
at the specific time tj . The D-dimensional vector in feature space, where D will be made precise in
the following, is put together by delay embedding the given tick data (see, for example, [4, 18, 19]),
using the same selection of D features for all time positions to be treated. Thus, we use a time horizon
[tj − (K − 1)τ, tj] of size K backward in time at tj , see also Fig. 1, and consider for each time series
fr a fixed number K of delayed values

fr(tj), fr(tj − τ), fr(tj − 2τ), . . . , fr(tj − (K − 1)τ), (1)

as the raw data describing the situation at time tj . In principle the resulting R · K delayed values
could all directly be used to obtain a D(= R ·K)-dimensional feature space with f1(tj) being the first
coordinate, f1(tj − τ) the second, and so on up to fR(tj − (K − 1)τ) being the (R ·K)-th coordinate.

But this is not the only way of delay embedding the data for a given point in time tj . Instead of
directly employing the values fr(·) of the time series, discrete first derivatives in tj

f ′r,k(tj) =
fr(tj)− fr(tj − kτ)

kτ
(2)

3

with k = 1, . . . ,K − 1 can be used in the backward time horizon [19], yielding K − 1 coordinates for
each time series and R(K − 1) coordinates in total. Normalized first derivatives

f̃ ′r,k(tj) =
fr(tj)− fr(tj − kτ)

kτfr(tj − kτ)
(3)

can be considered as well, which take into account relative changes instead of absolute ones. Alterna-
tively, a combination of time series values, first derivatives, higher order derivatives or even statistically
derived values such as variances or frequencies can be employed as attributes.

Note that, in principle, one can choose such an attribute at all possible time positions of our
backward time horizon [tj − (K − 1)τ, tj] for time tj for the selected D dimensional feature space,
e.g. use all K values of the time series fr(tj − iτ) for i = 0, . . . ,K − 1 or all K − 1 values of the
normalized first derivative (3), but that is usually not necessary. A suitable selection from the possible
time positions of a given attribute in the time horizon [tj − (K − 1)τ, tj], or even only one, could be
sufficient for a given situation.

In any case, the number of features obtained by the delay embedding can easily grow large.
Therefore, the number K of delay values, that is the size of our backward time horizon, and the
total number of derived attributes D have to be chosen properly from the large number of possible
embedding strategies. A good choice of such derived attributes and their parameters is non-trivial
and has to be determined by careful experiments and suitable assumptions on the behaviour of the
considered time series.

Overall, the transformation into feature space, i.e. the space of the embedding, based on the
backward time horizon of a given point in time tj can be formally denoted by an operator T : RR·K →
RD

x(tj) = T
(
f1(tj), . . . , f1(tj−(K−1)τ), f2(tj), . . . , f2(tj−(K−1)τ), . . . , fR(tj), . . . , fR(tj−(K−1)τ)

)
with the feature vector x(tj) = (x1, . . . , xD) ∈ RD describing the situation at tj , where the single
features xd, d = 1, . . . , D, are any of the derived quantities mentioned.

As the response variable in the machine learning process we employ the normalized difference
between the time series f1 at the current time tj and at some time tj + K̂τ in the future, with K̂τ
denoting the time horizon of prediction, i.e.

y(tj) =
f1(tj + K̂τ)− f1(tj)

f1(tj)
. (4)

This will give a regression problem later on. If one is only interested in the trend, the sign of y(tj)
can be used as the response variable which will result in a classification problem. The employed time
window for a time point tj is illustrated in Fig. 1.

This transformation of the time series data into a D-dimensional feature vector x by T and the
associated response variable y can be applied at J − (K − 1)− K̂ different time points tj over the
whole given data series, since at the beginning and end of the given time series data one has to allow
for the time frames of the delay embedding and the prediction, respectively. Altogether, the application
of such an embedding transformation and the evaluation of the associated forecast values (4) over the
whole time series results in a data set of the form

S =
{

(xm, ym) ∈ RD × R
}J−(K−1)−K̂
m=1

, (5)

4

with xm = x(tm+K−1) and ym = y(tm+K−1).
This dataset can now be used by any machine learning algorithm [15], such as neural networks,

multivariate adaptive regression splines or support vector machines, to construct a function u : Ω ⊂
RD → R which describes the relationship between the features x and the response y in an approximate
way.

A practical goal of time series analysis is forecasting from a “new” current situation into its
immediate future, therefore the function u, learned on existing historical data, can then be evaluated at
any “new” time point te to predict the response ye. To this end, the same operator T is now used to
transform the newly collected time series data from te − (K − 1)τ up to the “new” current time point
te into a D-dimensional feature vector xe which describes the behaviour of the time series at, and up
to, time point te. The evaluation of the reconstructed continuous function u in such a new situation xe
is supposed to yield a good prediction u(xe). This is due to our assumption that the underlying process
behaves similarly in similar situations.

2.2 Regularized least squares regression

In the following we formulate the scattered data approximation problem in D-dimensional space by
means of a regularization network approach [5, 11]. As stated above, we assume that the relation
between x and y in the data set (5) can be described by an unknown function u : Ω ⊂ RD → R which
belongs to some space V of functions defined over RD. The aim is now to recover the function u
from the given data S of some size M , with e.g. M = J − (K − 1) − K̂, as good as possible. A
simple least squares fit of the data would surely result in an ill-posed problem. To obtain a well-posed,
uniquely solvable problem, we use regularization theory and impose additional smoothness constraints
on the solution of the approximation problem. In our approach this results in the variational problem

min
u∈V

R(u) with R(u) =
1

M

M∑
m=1

(u(xm)− ym)2 + λ‖Gu‖2L2
. (6)

Here, the mean square error enforces closeness of u to the data, the regularization term defined by the
operator G enforces the smoothness of u, and the regularization parameter λ balances these two terms.
Different error and smoothness measurements may also be suitable. Further details can be found in
[5, 9, 23]. Note that there is a close relation to reproducing kernel Hilbert spaces and kernel methods
where a kernel is associated to the regularization operator G, see also [21, 26].

3 Sparse grid discretization

In order to compute a numerical solution of (6), we restrict the problem to a finite dimensional subspace
VN ⊂ V of dimension dimVN = N . Common data mining methods such as radial basis approaches
or support vector machines work with global ansatz functions associated to data points which leads
to N = M . These methods allow to deal with very high-dimensional feature spaces, but typically
scale at least quadratically or even cubically with the number M of data points. Thus, they cannot
be applied to the huge data sets prevalent in time series prediction. Instead, we use grid based local
basis functions, i.e. finite elements, in the feature space, similarly to the numerical treatment of partial
differential equations. With such a basis {ϕn}Nn=1 of the function space VN we can approximately

5

represent the regressor u as

u(x) ≈ uN (x) =

N∑
n=1

αnϕn(x). (7)

If the basis functions ϕn(·) are chosen independent from the data and the data locations the resulting
regression algorithm scales linearly in regard to the number of data [9]. This allows the treatment of
large data sets while still representing a non-linear function. Note that the restriction to a suitably chosen
finite-dimensional subspace involves some additional regularization (regularization by discretization
[17]) which depends on the choice of VN . In the following, we simply chooseG = ∇ as the smoothing
operator. Although this does not result in a well-posed problem in an infinite-dimensional function
space, its use is reasonable in a discrete function space VN with N <∞, see [9, 10].

Now we plug (7) into (6). After differentiation with respect to the coefficients αn, the necessary
condition for a minimum of R(uN) yields the linear system of equations [9]

(λC + B · BT)α = By. (8)

Here C is a square N ×N matrix with entries Cn,n′ = M · (∇ϕn,∇ϕn′)L2 for n, n′ = 1, . . . , N , and
B is a rectangular N ×M matrix with entries Bn,m = ϕn(xm),m = 1, . . . ,M, n = 1, . . . , N . The
vector y contains the response labels ym, m = 1, . . . ,M . The unknown vector α contains the degrees
of freedom αn and has length N . A solution of this linear system then gives the vector α which spans
the approximation uN (x) with (7).

3.1 Sparse grid combination technique

Up to now we have not yet been specific what finite-dimensional subspace VN and what type of
basis functions {ϕn}Nn=1 we want to choose. If uniform grids were used here, we would immediately
encounter the curse of dimensionality and could not treat higher dimensional problems, i.e. values of
D greater than 3. Instead we employ sparse grid subspaces as introduced in [2, 27] to discretize and
solve the regularization problem (6), see also [9]. This discretization approach is based on a sparse
tensor product decomposition of the underlying function space. In the following we describe the
relevant basic ideas, for details see [2, 6, 8, 9, 27].

To be precise, we apply sparse grids in form of the combination technique [13]. Thereby, we
discretize and solve the problem on a suitable sequence of small and in general anisotropic grids
Ωl of level l = (l1, . . . , lD), which have uniform but different mesh sizes hd = 2−ld , d = 1, . . . , D,
in each coordinate direction. The points of a given grid Ωl are numbered using the multi-index
i = (i1, . . . , iD) with id ∈ {0, . . . , 2ld} for d = 1, . . . , D. For ease of presentation, we assume a unit
domain Ω = [0, 1]D here and in the following.

A finite element approach with piecewise multilinear functions

φl,i(x) =

D∏
d=1

φld,id(xd), id = 0, . . . , 2ld , (9)

on each grid Ωl, where the one-dimensional basis functions φld,id(xd) are the so-called hat functions

φld,id(xd) =

{
1− | xd

hld
− id|, xd ∈ [(id − 1)hld , (id + 1)hld] ∩ [0, 1]

0, otherwise,

6

p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p

Ω4,1

⊕ p p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p p

Ω3,2

⊕ pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

Ω2,3

⊕ pppppppp
pppppppp
p

pppppppp
pppppppp
p

pppppppp
pppppppp
p

Ω1,4

	 p p p p p p p p p
p p p p p p p p p
p p p p p p p p p

Ω3,1

	 pp
pp
p

pp
pp
p

pp
pp
p

pp
pp
p

pp
pp
p

Ω2,2

	 pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

Ω1,3

=

p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p
pppppppp
pppppppp
p

pppppppp
pppppppp
p

pppppppp
pppppppp
p

p p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p p
pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

pppp
pppp
p

Ωs
4,4

ucL =
∑

l1+l2=L+1

ul1,l2 −
∑

l1+l2=L

ul1,l2

Figure 2: Grids employed by the combination technique of level L = 4 in two dimensions.

results in the discrete function space Vl = span{φl,i, id = 0, ..., 2ld , d = 1, ..., D} on grid Ωl. A
function ul ∈ Vl is then represented as

ul(x) =
2l1∑
i1=0

...
2lD∑
iD=0

αl,iφl,i(x).

To obtain a solution in the sparse grid space V s
L of level L, see [2, 9], the combination technique

considers a certain sequence of grids Ωl. One gets an associated system of linear equations (8) for each
of the involved grids Ωl, which we solve by a diagonally preconditioned conjugate gradient algorithm.
To be precise, the combination technique [13] linearly combines the resulting discrete solutions ul(x)
of (6) from the involved grids Ωl according to the formula

ucL(x) =

D−1∑
q=0

(−1)q
(
D − 1

q

) ∑
|l|1=L+(D−1)−q

ul(x), (10)

see also Figure 2 for an example in two dimensions. Let us stress for clarity that each partial solution of
(6) used in (10) is computed with the same regularization parameter λ, which in practise is determined
in an outer loop using k-fold cross-validation, see [9, 15] for details. The resulting function ucL
lives in the sparse grid space V s

L which has dimension N = dimV s
L = O(h−1L (log(h−1L))D−1),

see [2]. It therefore depends on the dimension D to a much smaller degree than a function on
the corresponding uniform grid Ω(L,...,L) whose number of degrees of freedom is O(h−DL). Note
that for the approximation of a function u by a sparse grid function ucL ∈ V s

L the error relation
||u− ucL||Lp = O(h2L log(h−1L)D−1) holds, provided that u fulfills certain smoothness requirements
which involve bounded second mixed derivatives [2]. The combination technique can be further
generalized [6, 16] to allow problem-dependent coefficients.

Note that we never explicitly assemble the function ucL but instead keep the solutions ul which
arise in the combination technique (10). If we now want to evaluate the solution at a newly given data

7

point x̃ by ỹ = ucL(x̃) we just form the combination of the associated point values ul(x̃) according
to (10). The cost of such an evaluation is of the order O(LD−1). Overall, both the computation of
a sparse grid based regression model and its evaluation scale linearly in the number of data, which
allows the treatment of large data sets [8, 9].

4 Numerical results

In the following, we present results of the sparse grid forecasting approach described in the previous
sections for a benchmark time series and for a collection of financial time series representing intraday
foreign exchange rates.

The discretization level L of the sparse grid combination technique and the regularization parameter
λ in (6) are the hyperparameters of our approach. In our experiments we perform r-fold cross-validation
on the training data to determine a good choice for L and λ. To this end, we divide the training data
into r equally sized disjoint subsets. For i = 1 to r, we pick the i-th of these subsets as further testing
set and learn with the data from the remaining r − 1 subsets. We then evaluate the correctness rates of
the current training and testing set. This way we obtain r different training and testing correctness
rates. The r-fold cross validation result is then just the average of the r correctness rates. The pair of
values of L and λ which performs best in the average of all r splittings over a suitable range of L, λ is
used for the forecast and final evaluation on the actual test data. For further details see e.g. [9, 15].

4.1 Mackey-Glass time series

The Mackey-Glass time series [20] is a well-known model example, we use it here to compare the
results of our approach with existing results of other methods. This time series is based on the
Mackey–Glass differential equation defined as

df(t)

dt
= α

f(t− κ)

1 + (f(t− κ))10
− βf(t),

where we use α = 0.2, β = 0.1, and κ = 17 as in previous works, see e.g. [3, 14]. The Mackey-Glass
differential equation describes a feedback system, in which a time lag between the sensing of a
change in the control variable and the mounting of an appropriate response is present. It is primarily
used to model the complex dynamics of physiological control systems, like for example blood cell
regulation [20].

For the sake of comparison we follow exactly the setup of earlier studies [3, 14]. The time series is
generated using the fourth-order Runge–Kutta method with a time step of 10−1 and an initial condition
of f(0) = 1.2. Values at time points corresponding to a natural number are taken as data points for
the raw time series, i.e. only every tenth value computed by the Runge-Kutta method, therefore we
have τ = 1 in the notation from Section 2.1. In the benchmark one employs the 1000 data points from
t = 124 to 1123, where the first 500 data are used as training data and the last 500 data for testing.

The feature values for the regression come from a standard delay embedding with time step size 6
and three values from the past [3, 14]. In our notation from Section 2.1 we have r = 1 since only one
time series is present. For the time horizon in (1) this setup uses [tj − 18, tj], i.e. we have the values
τ = 1 and K = 19. The operator T goes from R19 to R4 and selects in the transformation every sixth
raw value f(·) to obtain x. Therefore one uses

x(tj) = [f(tj), f(tj − 6), f(tj − 12), f(tj − 18)] (11)

8

to predict, following [3, 14], the value f(tj + 6), i.e. K̂ = 6.
Having processed the time series data as described, we then perform 10-fold cross-validation on the

training data for a suitable range of L, λ to select the level L of the sparse grid combination technique
and the regularization parameter λ in equation (6). With these parameters we learn the regression
model ucL on the full training data and obtain a root mean square error (RMSE) on the actual test data
of 0.001335. This error is on par with the, to our knowledge, best recent results of 0.00132 and 0.0015
achieved with the approaches from [14] and [3], respectively, see these articles for further results by
other approaches.

Let us remark that a discretization by the fourth order Runge-Kutta method with time step 10−1

results at t = 500 already in an error which is of the order 10−2 worse compared to that of the fourth
order Runge-Kutta method with time step 10−4. One observes a discrepancy when comparing the
accuracy of the prediction of the discrete time series data, which is of order 10−3, with the accuracy of
the employed benchmark data stemming from an approximation of the underlying differential equation,
which is of order 10−1. However this is not a topic here.

4.2 Intraday FX forecasting

We now present results for the prediction of intraday foreign exchange rates with our sparse grid
combination technique. Our aim is to forecast the EUR/USD exchange rate. First, we use just the
EUR/USD exchange rate time series as input and employ a delay embedding of this single time series.
We then additionally take other exchange rates into account and show the corresponding results, where
we also consider trading on strong signals only in order to cope with transaction costs.

4.2.1 Data

The data we use were obtained from Olsen Data, a commercial data provider. In the following, we
employ the exchange rates from 01.08.2001 to 28.07.2005 between EUR/USD (denoted by e =: f1),
GBP/USD (£ =: f2), USD/JPY (U =: f3) and USD/CHF (Fr =: f4). To represent a specific currency
pair we will use its above symbol instead of fr in the following. For this data set the data provider
mapped the recorded raw intraday tick data to values fr(tj) at equidistant points in time which are
τ = 3 minutes apart in the following way: If in the time interval [tj − τ, tj] a raw tick is present the
time series data is mapped by piecewise constant interpolation to the value for fr(tj); if no raw tick is
present in [tj − τ, tj] no value is recorded for that tj . Due to this, the data set contains a multitude of
gaps, i.e. where no values exist, which can be large when only sparse trading takes place, for example
over weekends and holidays. The properties of this input data concerning these gaps are shown in
Table 1. Here, the total number of ticks in the time frame would be 701,280 for each currency pair, but
between 168,000 and 186,000 ticks are missing due to the above mentioned reasons. The number of
gaps varies between about 4,000 and 6,000 while the gap length varies between one and about 900
with an average of about 30. These characteristics are similar for the four currency pairs.

For the following experiments with the sparse grid regression approach the associated input data
set S is obtained from the given tick data following the procedure from Section 2.1, specific details will
be given later. Note that the embedding operator T at a time point tj depends on a certain number of
delayed data positions in [tj − (K − 1)τ, tj]. Typically not all K time positions in the backward time
horizon are employed for a given T . Therefore we can allow some missing data, as described above,
in any given time window [tj − (K − 1)τ, tj] for the transformation of the equidistant time series data,

9

exchange rate total ticks missing ticks number of gaps max. gap length avg. gap length
EUR/USD 701,280 168,952 6,403 879 26
USD/CHF 701,280 171,015 6,192 920 27
USD/JPY 701,280 184,264 4,144 911 44
GBP/USD 701,280 185,442 5,278 912 35

Table 1: Total and missing number of ticks, number of gaps, and maximum and average gap length of
the input data.

as long as the data fr(·) at the positions necessary for the actual computation of T at that time tj are
present. Vice versa, if for one of the time positions employed by T at a tj no value is recorded we
cannot obtain the corresponding feature vector xj and consequently do not use the, partly missing,
information from the time window of that tj as input for the computation of the regression model.
Furthermore, we employ the common practice of restricting the values of large outliers in the attributes
to a suitably chosen maximum value to avoid a too strong influence of those at all. Afterwards we
linearly map the derived delay embedded features into [0, 1]D.

In all our experiments we attempt to forecast the change in the EUR/USD exchange rate. The aim of
our regression approach is to predict the relative rate difference y(tj) = (e(tj + K̂τ)−e(tj))/e(tj)
at K̂ steps into the future in comparison to the current time. Such a forecast is often also called a
trading signal.

For the experiments we separate the available data into training data (90%) and test data (10%), this
split is done on the time axis. On the training data we perform 3-fold cross-validation (again splitting
in time) to find good values for the level parameter L from (10) and the regularization parameter λ
from (2) of our regression approach.

4.2.2 Quality assessment in foreign exchange rate prediction

To judge the quality of the predictions of the exchange rate by our sparse grid combination technique
on any given set of M̃ data points (derived from time series data according to Section 2.1) we employ
several domain specific quality measures. Note that the following measurements do not directly take
the cost of trading into account, they only consider the foreign exchange rate.

We use the so-called realized potential

rp = cp/mcp

as the main measurement. Here cp is the cumulative profit

cp =

M̃∑
j=1

sign(ucL(xj)) · (f1(tj + K̂τ)− f1(tj))
f1(tj)

,

i.e. the sum of the actual gain or loss in the exchange rate realized by trading at the employed M̃ time
steps tj , with corresponding xj , according to the forecast of the method, while mcp is the maximum
possible cumulative profit

mcp =

M̃∑
j=1

|f1(tj + K̂τ)− f1(tj)|
f1(tj)

,

10

1 feature λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

ẽ
′
9 cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

Level 2 1.89 1.72 50.7 2.10 1.91 50.6 2.40 2.18 50.6 2.40 2.18 50.6
Level 3 3.02 2.76 51.5 2.44 2.22 51.0 2.26 2.05 50.8 2.40 2.18 50.6
Level 4 3.37 3.07 51.9 3.08 2.81 51.6 2.33 2.12 51.0 2.40 2.18 50.6
2 features λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

ẽ
′
9, ẽ

′
4 cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

Level 2 3.81 3.48 51.9 3.53 3.22 51.6 2.42 2.2 50.6 2.41 2.19 50.6
Level 3 4.69 4.29 52.6 4.57 4.17 52.4 3.56 3.25 51.8 2.25 2.05 50.8
Level 4 4.58 4.18 52.5 4.61 4.21 52.5 4.29 3.91 52.4 2.39 2.17 51.0

Table 2: Training: 3-fold cross-validation results for the forecast of EUR/USD using K̂ = 15 and the
features ẽ

′
9 and ẽ

′
4 for varying refinement level L and regularization parameter λ.

i.e. the gain when the exchange rate would have been predicted correctly for each trade. Note that
these measurements also take the amplitude of the potential gain or loss into account. Since in practice
one has to consider transaction costs, a forecasting tool which achieves a realized potential rp of 20%
starts to become useful according to practitioners.

Furthermore, we give the prediction accuracy pa, often also called hit rate or correctness rate,

pa =
#{ucL(xj) · (f1(tj + K̂τ)− f1(tj)) > 0}M̃j=1

#{ucL(xj) · (f1(tj + K̂τ)− f1(tj)) 6= 0}M̃j=1

which denotes the percentage of correctly predicted forecasts. Prediction accuracies of more than 55 %
are often reported as worthwhile results for investors [1, 24].

4.2.3 Forecasting using a single currency pair

In a first set of experiments we aim to forecast the EUR/USD exchange rate from the EUR/USD exchange
data. We begin with using two features which use the normalized discrete first derivative (3)

ẽ
′
k(tj) =

e(tj)− e(tj − kτ)

kτe(tj − kτ)
,

with two different k. Here, the values of k are parameters to be determined as is K̂, the time horizon
for the forecast into the future. We chose k = 9, k = 4 and K̂ = 15, based on numerical experiments,
details are given in [7].

This combination can be interpreted as an approximation to the normalized second derivative

ẽ
′′
k(tj) =

e(tj)− 2e(tj − kτ) + e(tj − 2kτ)

(kτ)2e(tj − kτ)

with k = 4. However, the use of two first derivatives ẽ
′
9 and ẽ

′
4 captures more information in the data

than just the second derivative would.

11

features data points L λ trades pa% cp mcp rp%

all ticks
1 feature ẽ

′
9 510,553 4 0.0001 51,056 51.5 0.741 32.37 2.29

2 features ẽ
′
9, ẽ

′
4 508,616 3 0.0001 50,862 52.1 1.084 32.28 3.36

signal > 10−4

1 feature ẽ
′
9 510,553 4 0.0001 460 56.7 0.070 0.650 10.8

2 features ẽ
′
9, ẽ

′
4 508,616 3 0.0001 916 58.6 0.291 1.206 24.2

Table 3: Testing: Forecast of the EUR/USD for K̂ = 15 on the 10% remaining test data using first
derivatives of the EUR/USD exchange rate.

The results from the 3-fold cross-validation on the training data are shown in Table 2. The best
parameters are λ = 0.0001 and L = 3 for two features, which we accordingly use for the prediction
on the 10% remaining test data, see Table 3 (second row) for the results using one and two features.
We achieve cp = 1.084, rp = 3.36%, and pa = 52.1% on 50862 trades using both ẽ

′
9 and ẽ

′
4 and see

that employing two attributes results in a significant improvement of the performance in comparison
to ẽ

′
9 as the only attribute. In particular we notice that the rp grows by about 50%. Furthermore, we

observe that most of the profit corresponds to the strongest signals. If we only take predictions into
account which indicate an absolute change1 larger than 10−4, we trade on just 916 signals and still
achieve cp = 0.291, rp = 24.2% and pa = 58.6%. Thus, trading on 1.8% of the signals generates
26.8% of the overall profit. This indicates that trading only on the stronger signals may result in a
profitable strategy.

4.2.4 Forecasting using multiple currency pairs

Now we are interested in the improvement of the prediction of the EUR/USD exchange rate if we also
take the other currency pairs £, U, and Fr into account. This results in a higher-dimensional regression
problem. We employ first derivatives using the same k’s as before for the different currency pairs.2

Note that the number of input data points decreases slightly when we add further exchange rate pairs
since some features cannot be computed any longer due to overlapping gaps in the input data.

First we only consider the first derivatives for k = 9 to observe the effect of the use of additional
currency pairs. According to the best rp we select which of the three candidates F̃r

′
9, £̃
′
9, Ũ

′
9 is

successively added. For example F̃r
′
9 in addition to ẽ

′
9 gave the best result using two currency pairs to

predict EUR/USD. We then add £̃
′
9 before using Ũ

′
9. As before, we select the best parameters L and λ

for each number of features according to the rp achieved with 3-fold cross-validation on the training
data, see Table 4.

Using the combination with the best performance in the 3-fold cross-validation we then learn ucL
on all training data and evaluate on the before unseen test data. The results on the training data are
given in Table 5, both for the case of all data and again for the case of absolute values of the signals

1Observe that a change of 10−4 in our target attribute is roughly the size of a pip (the smallest unit of the quoted price)
for EUR/USD.

2Different k for different currency pairs might result in a better performance, but we restricted our experiments to equal k
for reasons of simplicity.

12

2 features λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

ẽ
′
9, F̃r

′
9 cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

Level 2 4.96 4.56 52.2 4.63 4.25 51.9 2.76 2.53 50.7 2.47 2.27 50.7
Level 3 4.98 4.58 52.3 4.76 4.38 52.2 3.40 3.12 51.2 2.47 2.27 50.7
Level 4 4.57 4.21 52.0 4.89 4.49 52.1 4.02 3.69 51.6 2.51 2.30 50.7
3 features λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

ẽ
′
9, F̃r

′
9, £̃
′
9 cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

Level 2 4.84 4.49 52.2 4.63 4.29 52.0 3.23 2.98 50.9 2.56 2.36 50.7
Level 3 4.71 4.38 52.3 4.90 4.56 52.3 4.21 3.91 51.8 2.68 2.47 50.7
Level 4 4.28 3.97 52.2 4.84 4.49 52.1 4.60 4.27 51.9 2.74 2.52 50.9
4 features λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

ẽ
′
9, F̃r

′
9, £̃
′
9, Ũ

′
9 cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

Level 2 4.26 3.96 52.1 4.40 4.08 51.9 3.24 3.01 51.1 2.61 2.41 50.6
Level 3 4.42 4.11 52.2 4.61 4.29 52.2 4.21 3.92 51.9 2.50 2.32 50.9
Level 4 3.69 3.43 51.9 4.30 4.00 52.1 4.50 4.18 52.0 3.18 2.95 51.3

Table 4: Training: 3-fold cross-validation results for the forecast of EUR/USD using K̂ = 15 and
features derived from different exchange rates for varying refinement level L and regularization
parameter λ.

currencies data points L λ trades pa% cp mcp rp%

all ticks
1 feature ẽ

′
9 510,553 4 0.0001 51,056 51.5 0.741 32.37 2.29

2 features ẽ
′
9, F̃r

′
9 503,939 3 0.0001 50,394 51.8 1.380 32.08 4.30

3 features ẽ
′
9, F̃r

′
9, £̃
′
9 495,654 3 0.001 49,566 51.6 1.469 31.76 4.62

4 features ẽ
′
9, F̃r

′
9, £̃
′
9, Ũ

′
9 494,238 3 0.001 49,424 51.7 1.478 31.70 4.66

signal > 10−4

1 feature ẽ
′
9 510,553 4 0.0001 460 56.7 0.070 0.650 10.8

2 features ẽ
′
9, F̃r

′
9 503,939 3 0.0001 2,318 54.0 0.469 2.504 18.8

3 features ẽ
′
9, F̃r

′
9, £̃
′
9 495,654 3 0.001 2,379 54.3 0.516 2.566 20.1

4 features ẽ
′
9, F̃r

′
9, £̃
′
9, Ũ

′
9 494,238 3 0.001 3,559 53.8 0.614 3.484 17.6

Table 5: Testing: Forecast of EUR/USD for K̂ = 15 on the 10% remaining test data using one first
derivative from multiple currency pairs. Results are for trading on all signals and on signals > 10−4.

13

currencies data points L λ trades pa% cp mcp rp%

all ticks
1 feature ẽ

′
9 510,553 4 0.0001 51,056 51.5 0.741 32.37 2.29

2 features ẽ
′
9, ẽ

′
4 508,616 3 0.0001 50,862 52.1 1.084 32.28 3.36

3 features ẽ
′
9, ẽ

′
4, F̃r

′
9 503,017 2 0.0001 50,300 52.1 1.315 32.03 4.10

4 features ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4 502,243 2 0.001 50,220 52.4 1.536 31.98 4.80

5 features ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4, £̃
′
9 494,975 2 0.001 49,497 52.1 1.556 31.73 4.90

6 features ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4, £̃
′
9, £̃
′
4 492,965 2 0.001 49,296 52.1 1.538 31.60 4.87

signal > 10−4

1 feature ẽ
′
9 510,553 4 0.0001 460 56.7 0.070 0.650 10.8

2 features ẽ
′
9, ẽ

′
4 508,616 3 0.0001 916 58.6 0.291 1.206 24.2

3 features ẽ
′
9, ẽ

′
4, F̃r

′
9 503,017 2 0.0001 1,811 58.9 0.467 2.048 22.8

4 features ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4 502,243 2 0.001 1,557 59.6 0.447 1.785 25.0

5 features ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4, £̃
′
9 494,975 2 0.001 2,178 58.7 0.523 2.392 21.9

6 features ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4, £̃
′
9, £̃
′
4 492,965 2 0.001 2,711 56.8 0.508 2.796 18.2

Table 6: Testing: Forecast of EUR/USD 15 ticks into the future using multiple currency pairs and
derivatives on the 10% remaining test data. Results are for trading on all signals and on signals > 10−4.

larger than 10−4. Note that the performance on the training data in Table 4 suggests to employ the
first two or three attributes. In any case, the use of information from multiple currencies results in a
significant improvement of the performance in comparison to just using the attributes derived from the
to be predicted exchange rate EUR/USD. The results on the test data given in Table 5 confirm that the
fourth attribute Ũ

′
9 does not achieve much of an improvement, whereas the additional features F̃r

′
9, £̃
′
9

significantly improve both cp and rp. Trading on signals larger than 10−4 now obtains a pa of up to
56.7% and, more importantly, rp = 20.1% using 3 attributes. This clearly shows the potential of our
approach. Altogether, we see the gain in performance which can be attained by a delay embedding
of tick data of several currencies into a higher dimensional regression problem while using a first
derivative for each exchange rate.

In a second round of experiments we now use two first derivatives with k = 9 and k = 4 for each
exchange rate. We add step-by-step the different currencies in the same order as in Table 5. To be
precise, we use F̃r

′
9 before F̃r

′
4, but both before £̃

′
9, £̃
′
4, etc.3 Again we look for good values for λ and L

via 3-fold cross-validation on the training data and use them in our prediction model. In Table 6 we
give the results which we achieved on the test data. Note that the numbers obtained on the training
data suggest to use the four features ẽ

′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4 only; nevertheless we show the test results with

the two additional features £̃
′
9, £̃
′
4 as well. Again, the use of information from multiple currencies gives

an improvement of the performance in comparison to the use of just the attributes which were derived
from the EUR/USD exchange rate. In particular cp grows while going from one to several currencies.
With four features based on two first derivatives for each currency pair we now achieve a somewhat
better performance for all trading signals than before using several first derivatives, compare Table 5

3Note that a different order might result in a different performance.

14

currencies strategy cp trades cp per trade
ẽ
′
9 all ticks 0.741 51,056 1.4−5

ẽ
′
9, ẽ

′
4 all ticks 1.084 50,862 2.1−5

ẽ
′
9, ẽ

′
4, F̃r

′
9 all ticks 1.315 50,300 2.6−5

ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4 all ticks 1.536 50,220 3.1−5

ẽ
′
9 signal > 10−4 0.070 460 1.5−4

ẽ
′
9, ẽ

′
4 signal > 10−4 0.291 916 3.0−4

ẽ
′
9, ẽ

′
4, F̃r

′
9 signal > 10−4 0.467 1,811 2.6−4

ẽ
′
9, ẽ

′
4, F̃r

′
9, F̃r

′
4 signal > 10−4 0.447 1,557 2.9−4

Table 7: Testing: cp per trade for the forecast of EUR/USD for K̂ = 15, based on Table 6, using
different attribute selections on the 10% remaining test data.

and Table 6. We obtain rp = 4.80 for four attributes in comparison to rp = 4.62 with three attributes.
The results on the stronger signals are also improved, we now achieve rp = 25.0% in comparison to
rp = 20.1%, although the cp is reduced from 0.516 to 0.447 due to less trades.

For this last setting we also show the average profit per trade in Table 7, this value needs to be
above the average spread to result in a profitable strategy. The spread for EUR/USD can nowadays
go down to one pip during high trading with some brokers, in our case one pip is roughly equivalent
to a change of 8.5−5 of our normalized target attribute. We see that trading on all signals results in
values which are below this threshold. However, trading on the strongest signals results in a profitable
strategy. Note that in the companion paper [7] we developed a practical trading strategy using an
opening and closing threshold which obtained an average profit per trade larger than three pips. If the
spread is on average below three pips this results indeed in profitable trading.

5 Conclusions

In this paper, we presented a machine learning approach based on delay embedding and regression
with the sparse grid combination technique for time series forecasting. We applied the approach
to the model Mackey-Glass time series and to intraday foreign exchange rates. On the benchmark
Mackey-Glass series we attained results which are on par with current alternative approaches. For the
financial time series a realized potential of more than 20% of the maximum possible cumulative profit
was achieved. Here the results were improved if not only attributes derived from one rate but from
further exchange rates were taken into account. Overall, our approach was able to learn forecasting
models for FX data series which show a predictive performance larger than current average transaction
costs. It also indicates that FX rates have an underlying process which is not purely Markovian, but
seems to have additional structure and memory which we believe is caused by technical trading in the
intraday market.

To be able to handle the large amount of data of the FX example, and to learn the empirical
behavior from the market data, it is essential to have a regression approach which scales linearly in the
number of data, but still gives a non-linear regression function. The approach based on the sparse grid
combination technique provides both.

15

Acknowledgements

We thank Bastian Bohn and Alexander Hullmann for their assistance with the numerical experiments.

References

[1] D. J. E. Baestaens, W. M. van den Bergh, and H. Vaudrey. Market inefficiencies, technical trading
and neural networks. In C. Dunis, editor, Forecasting Financial Markets, pages 245–260. Wiley,
1996.

[2] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[3] H. Du and N. Zhang. Time series prediction using evolving radial basis function networks with
new encoding scheme. Neurocomputing, 71(7-9):1388–1400, Mar. 2008.

[4] M. Engel. Time series analysis. Part III Essay, University of Cambridge, 1991.

[5] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.

[6] J. Garcke. Regression with the optimised combination technique. In W. Cohen and A. Moore,
editors, Proceedings of the 23rd ICML ’06, pages 321–328, 2006.

[7] J. Garcke, T. Gerstner, and M. Griebel. Intraday foreign exchange rate forecasting using sparse
grids. In J. Garcke and M. Griebel, editors, Sparse grids and applications, volume 88 of Lecture
Notes in Computational Science and Engineering, pages 81–105. Springer, 2013.

[8] J. Garcke and M. Griebel. Classification with sparse grids using simplicial basis functions.
Intelligent Data Analysis, 6(6):483–502, 2002. (shorter version appeared in KDD 2001, Proc. of
the Seventh ACM SIGKDD, F. Provost and R. Srikant (eds.), pages 87-96, ACM, 2001).

[9] J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Computing, 67(3):225–253,
2001.

[10] J. Garcke and M. Hegland. Fitting multidimensional data using gradient penalties and the sparse
grid combination technique. Computing, 84(1-2):1–25, April 2009.

[11] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures.
Neural Computation, 7:219–265, 1995.

[12] P. Grassberger and I. Procaccia. Characterization of strange attractors. Phys. Rev. Lett, 50:346–
349, 1983.

[13] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse
grid problems. In P. de Groen and R. Beauwens, editors, Iterative Methods in Linear Algebra,
pages 263–281. IMACS, Elsevier, North Holland, 1992.

[14] C. Harpham and C. Dawson. The effect of different basis functions on a radial basis function
network for time series prediction: A comparative study. Neurocomputing, 69(16-18):2161–2170,
2006.

16

[15] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

[16] M. Hegland, J. Garcke, and V. Challis. The combination technique and some generalisations.
Linear Algebra and its Applications, 420(2–3):249–275, 2007.

[17] M. Hegland, O. M. Nielsen, and Z. Shen. Multidimensional smoothing using hyperbolic interpo-
latory wavelets. Electronic Transactions on Numerical Analysis, 17:168–180, 2004.

[18] I. Horenko. Finite element approach to clustering of multidimensional time series. SIAM Journal
on Scientific Computing, 32:62–83, 2010.

[19] H. Kantz and T. Schreiber. Nonlinear time series analysis. Cambridge University Press, 1997.

[20] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science,
197(4300):287–289, 1977.

[21] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

[22] F. Takens. Detecting strange attractors in turbulence. In D. Rand and L.-S. Young, editors,
Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 366–
381. Springer, 1981.

[23] A. N. Tikhonov and V. A. Arsenin. Solutions of ill-posed problems. W. H. Winston, Washington
D.C., 1977.

[24] G. Tsibouris and M. Zeidenberg. Testing the efficient markets hypothesis with gradient descent
algorithms. In A.-P. Refenes, editor, Neural Networks in the Capital Markets, chapter 8, pages
127–136. Wiley, 1995.

[25] M. Verleysen, E. de Bodt, and A. Lendasse. Forecasting financial time series through intrinsic
dimension estimation and non-linear data projection. In J. Mira and J. V. Sánchez-Andrés, editors,
Engineering Applications of Bio-Inspired Artificial Neural Networks, Volume II, volume 1607 of
Lecture Notes in Computer Science, pages 596–605. Springer, 1999.

[26] G. Wahba. Spline models for observational data, volume 59 of Series in Applied Mathematics.
SIAM, Philadelphia, 1990.

[27] C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential
Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990, volume 31 of Notes on Num.
Fluid Mech. Vieweg-Verlag, 1991.

17

