
Wegelerstraße • Bonn • Germany
phone + - • fax + -

www.ins.uni-bonn.de

B. Bohn, M. Griebel

An adaptive sparse grid approach for time series
prediction

INS Preprint No. 1201

January 2012

AN ADAPTIVE SPARSE GRID APPROACH

FOR TIME SERIES PREDICTION

Bastian Bohn and Michael Griebel

Institute for Numerical Simulation, University of Bonn, 53115 Bonn, Germany
{bohn},{griebel}@ins.uni-bonn.de

Summary. A real valued, deterministic and stationary time series can be embedded
in a — sometimes high-dimensional — real vector space. This leads to a one-to-one
relationship between the embedded, time dependent vectors in R

d and the states
of the underlying, unknown dynamical system that determines the time series. The
embedded data points are located on an m-dimensional manifold (or even fractal)
called attractor of the time series. Takens’ theorem then states that an upper bound
for the embedding dimension d can be given by d ≤ 2m+ 1.
The task of predicting future values thus becomes, together with an estimate on
the manifold dimension m, a scattered data regression problem in d dimensions. In
contrast to most of the common regression algorithms like support vector machines
(SVMs) or neural networks, which follow a data-based approach, we employ in this
paper a sparse grid-based discretization technique. This allows us to efficiently han-
dle huge amounts of training data in moderate dimensions. Extensions of the basic
method lead to space- and dimension-adaptive sparse grid algorithms. They become
useful if the attractor is only located in a small part of the embedding space or if
its dimension was chosen too large.
We discuss the basic features of our sparse grid prediction method and give the
results of numerical experiments for time series with both, synthetic data and real
life data.

Introduction and problem formulation

One of the most important tasks in the field of data analysis is the prediction of
future values from a given time series of data. In our setting, a time series (sj)

∞
j=1

is an ordered set of real values. The task of forecasting can now be formulated as:

Given the values s1, . . . , sN , predict sN+1!

To tackle the forecasting problem, we assume that the values sj stem from an un-
derlying stationary process which evolves in time. The aim is then to reconstruct the
domain of this process as good as possible from the data s1, . . . , sN and to use this
reconstruction for the prediction of the value sN+1. To this end, letM0 represent the
phase space of the underlying system, let φ : M0 → M0 denote the corresponding

2 Bastian Bohn and Michael Griebel

equations of motion and let o :M0 → R be an observable which defines a time series
by

(sj)
∞
j=1 =

(
o
(
φj (x0)

))∞
j=1

, (1)

where x0 ∈M0 is an arbitrary initial condition of the process and

φj = φ ◦ φ ◦ . . . ◦ φ︸ ︷︷ ︸
j times

.

In practice M0, φ and o are of course not known, but only the values sj of the time
series are given. To establish a situation in which we are able to tackle the forecast-
ing problem, we need to find a connection between the past values of the time series
and the next one.
Takens’ theorem [2, 23] provides the theoretical background to construct algorithms
for this purpose. Assuming that a given equidistant time series is a measurement o
of an m-dimensional process which follows some deterministic equation of motion
φ, there is the possibility to find a regular m-dimensional submanifold U of R2m+1

which is diffeomorphic to the phase space M0 of the underlying system. The most
common construction of such a submanifold works via delay embedding. In this case
the time-dependent observations sj are themselves used as coordinates to represent
U ⊂ R

2m+1. Here, since an element x ∈ U corresponds to one specific point in phase
space, the dynamics of the process and thus the evolution of the time series itself are
completely determined by x and the forecasting problem translates into an ordinary
regression-like task in R

2m+1.
In this paper we use a regularized least squares approach to find an adequate approx-
imation to the solution of the prediction problem. In combination with a FEM-like
grid discretization this leads to a non-data-based approach whose computational
costs grow only linearly in the number of elements of the given time series. Then,
in contrast to most data-based techniques like support vector machines or standard
neural networks using radial basis functions, a discretization-based approach is able
to handle huge time series. But, if d = 2m+1 denotes the dimension of the ambient
space and 2t is the number of grid points in one direction, the number of points in a
conventionally discretized ambient space would grow like O

(
2td
)
. Thus, this naive

approach suffers from the curse of dimensionality which restricts the application of a
conventional discretization to low-dimensional, i.e. to one-, two- or three-dimensional
spaces.
To circumvent this problem the sparse grid discretization [1] is used in this paper.
For regular sparse grids, the number of grid points increases only like O(2t ·td−1), i.e.
the curse of dimensionality is now just present with respect to the term t. This way,
we are able to efficiently deal with huge amounts of data in moderate dimensions
up to about d = 10. Moreover, for most time series the high-dimensional data does
not fill the whole space. The process obtained by using the delay embedding method
then visits only a small fraction of the whole discretized area. This observation jus-
tifies a space-adaptive sparse grid [11] discretization which resolves the trajectory of
the process. Finally, an ANOVA-like approach leads to dimension-adaptive sparse

grids [8, 15] that are useful if our a priori choice of d is too large.
Thus, we will introduce two different adaptive algorithms in this paper: The space-
adaptive algorithm locally adapts to features of the prediction function whereas the
dimension-adaptive algorithm refines by employing subspaces which are relevant for

SPARSE GRIDS FOR TIME SERIES PREDICTION 3

an efficient representation of the prediction function in its ANOVA-decomposition.
In summary, each of our algorithms processes the following steps:

1. Estimation of the dimension m of the underlying process
2. Rewriting the forecasting problem as a regression problem in R

d with d = 2m+1
3. Approximating the solution of the regression problem in a discretized (regular,

space-adaptive or dimension-adaptive) sparse grid space
4. Predicting the value sN+1 by point evaluation of the computed sparse grid func-

tion at (sN−2m, . . . , sN)T

Altogether, we obtain a new class of algorithms for the prediction of time series data
which scale only linearly with the length of the given time series, i.e. the amount
of data points, but still allow us to use reasonably large window sizes for the delay
embedding due to our sparse grid approach. The new methods give excellent pre-
diction results with manageable computational costs.
The remainder of this paper is organized as follows: In section 1, we describe the
delay embedding scheme and review some crucial issues concerning the applica-
tion of Takens’ theorem. In section 2, we show how the forecasting problem can
be rewritten as a regression problem. We also derive the regularized least squares
functional which determines our predictor function. In section 3, we deal with the
regular sparse grid approximation. We deduce the associated linear system and solve
it using a preconditioned CG-algorithm. Then, we introduce and discuss space- and
dimension-adaptive sparse grid algorithms. In section 4, we give the results of nu-
merical experiments which illustrate the favorable properties of our new methods.

1 Takens’ theorem and the delay embedding scheme

We now provide the essential theory concerning Takens’ theorem [23] and give a
hint to some modifications from [2].
For an arbitrary d ∈ N we can create vectors

tj := (sj−d+1, sj−d+2, . . . , sj−1, sj)
T ∈ R

d, j ≥ d

following the so-called delay embedding scheme. Each vector consists of d consecutive
past time series values. A connection between these delay vectors and the unknown
evolution of the process in the phase space is established by the following theorem:

Theorem 1. Let M0 be a compact m-dimensional C2-manifold, let φ : M0 → M0

denote a C2-diffeomorphism and let o ∈ C2 (M0,R). Then, ρ(φ,o) : M0 →֒ R
2m+1

defined by

ρ(φ,o) (x) :=
(
o (x) , o (φ (x)) , o

(
φ2 (x)

)
, . . . , o

(
φ2m (x)

))
(2)

is generically1 an embedding.

1Here, “generically” means the following:
If Xl :=

{
x ∈M0 | φ

l (x) = x
}
fulfills |Xl| < ∞ for all l ≤ 2m and if the Jacobian

matrix
(
Dφl

)
x
of φl at x has pairwise distinct eigenvalues for all l ≤ 2m,x ∈ Xl,

then the set of all o ∈ C2 (M0,R) for which the embedding property of Theorem 1
does not hold is a null set. As C2 (M0,R) is an infinite dimensional vector space,
the term “null set” may not be straightforward. It should be understood in the way
that every set Y ⊃

{
o ∈ C2 (M0,R) | ρ(φ,o) is an embedding

}
is prevalent.

4 Bastian Bohn and Michael Griebel

This is Takens’ theorem for discrete time series, see [17, 23]. The embedding ρ(φ,o)

establishes a one-to-one connection between a state in the phase space M0 and a
(2m + 1)-dimensional delay vector constructed by (2). It can formally be inverted
and we obtain

φj−2m (x0) = ρ
−1
(φ,o)

((
o
(
φj−2m (x0)

)
, o
(
φj−2m+1 (x0)

)
, . . . , o

(
φj (x0)

)))

= ρ
−1
(φ,o) ((sj−2m, sj−2m+1, . . . , sj))

= ρ
−1
(φ,o) (tj)

for all j ≥ d with tj ∈ R
2m+1 and thus d = 2m + 1. Applying o ◦ φ2m+1 on both

sides we obtain
o
(
φj+1 (x0)

)
= o

(
φ2m+1

(
ρ
−1
(φ,o) (tj)

))
. (3)

This means that the value sj+1 = o
(
φj+1 (x0)

)
is completely determined by the

previous 2m+1 values sj−2m, . . . , sj .
2 Note that not necessarily all of the preceding

2m + 1 values are essential to specify the current one, but Theorem 1 states that
2m+1 values are always sufficient to do so. Note furthermore that not only the next
but all following values are determined by 2m + 1 consecutive time series values.
To see this one can just recursively follow the scheme in (3). Thus, if we have for
example an equidistant time series with a one minute gap between successive values
but are interested in a fifteen minute forecast, we can still use 2m + 1 consecutive
values as input in our regression algorithm later on.3

Often, the equations of motion are described by a system of time-continuous differ-
ential equations instead of a time-discrete mapping φ as in Theorem 1. To this end,
let V denote a vector field in C2 (M0, TM0), let o ∈ C

2 (M0,R) and let z : R+ →M0

fulfill the differential equation

dz

dt
= V(z), z(0) = z0 (4)

for given z0 ∈ M0. We define φt (z0) := z(t) as the flow of the vector field V. Now
φτ can be used in Theorem 1 instead of φ for an arbitrary τ ∈ R

+ and the time-
continuous setting is covered as well. For a thorough treatment of this case we refer
to [2, 23].
A main requirement for Takens’ theorem is the compactness of the manifold M0, i.e.
the domain of the process which contains all possible states. Sometimes the dynamics
tends to form a so-called “strange attractor”, which means that the trajectories of
the system do not form a manifold anymore but just a point set A of non-integer
dimension. In [2] it was shown that it is possible to generalize Theorem 1 also to
this case:

2All functions on the right hand side of (3) are at least twice differentiable. As
M0 is compact, the concatenation of these functions lies in the standard Sobolev
space H2(ρ(φ,o)(M0)), where ρ(φ,o)(M0) ⊂ R

2m+1 denotes the image of M0 under
ρ(φ,o).

3An alternative would be to simulate a time series with fifteen minute gaps by
omitting intermediate values which would lead to a considerable reduction of the
number of points. This is however not advantageous, as more points usually lead to
better prediction results for the numerical algorithm.

SPARSE GRIDS FOR TIME SERIES PREDICTION 5

Theorem 2. Let A ⊂ M0 ⊂ R
k where M0 is an open subset of R

k and A is a

compact subset of M0 which possesses box-counting dimension d̂im (A) = m. Fur-

thermore, let φ : M0 → M0 be a C2-diffeomorphism and let o ∈ C2 (M0,R). Then,
for ρ(φ,o) :M0 →֒ R

⌊2m+1⌋ defined as in (2), the properties

1. ρ(φ,o) is one-to-one on A and

2. ρ(φ,o) is an immersion on each compact subset C of a smooth manifold contained

in A

generically4 hold.

In real world applications, the set A is not a priori known. But for the delay em-
bedding scheme to work we only need to know the box-counting dimension d̂im (A)
of the set A. Its estimation is an elaborate task by its own. To this end, vari-
ous approaches exist in the literature [20, 21, 24]. Here, we recommend using the
Grassberger-Procaccia algorithm [10] to estimate the correlation dimension m̃ as
an approximation of the box-counting dimension m since this worked best in our
experiments. The delay length is then set to d = ⌊2m̃+ 1⌋.
In summary we have a theory which provides us with a justification to use delayed
vectors like in (2) as input for a learning tool.

2 The regression problem and the regularized least

squares approach

In this section, we describe how the task of predicting a time series can be recast into
a higher-dimensional regression problem by means of delay embedding. Furthermore,
we motivate a specific regularized least squares approach.
We assume that we have an infinite time series (sj)

∞
j=1 which is just an observation of

a deterministic process on an m-dimensional attractor, compare Sect. 1. From now
on, let d := ⌊2m + 1⌋ denote the embedding dimension used for the delay scheme.
We define

tj := (sj−d+1, sj−d+2, . . . , sj−1, sj)
T ∈ R

d, j ≥ d , (5)

to be the j-th delay vector. Due to Takens’ theorem, there exists a ĝ : Rd → R, with
ĝ := o ◦ φd ◦ ρ−1

(φ,o), cf. (3), such that

ĝ (tj) = sj+1 for all j ≥ d . (6)

If we assume that (sj)
N

j=1 is known a priori then our goal is to find a good approxi-
mation g to ĝ with the help of N − d+ 1 training patterns

(tj , sj+1) ∈ R
d × R, j = d, . . . , N − 1 . (7)

Thus, we now have to deal with a regression problem instead of the forecasting
problem. Our approach is to choose g ∈ X ⊂

{
f : Rd → R

}
as

4Here “generically” means the following:

If X̃l :=
{
x ∈ A | φl (x) = x

}
fulfills d̂im

(
X̃l

)
≤ l

2
for all l ≤ ⌊2m + 1⌋ and if

(
Dφl

)
x
has pairwise distinct eigenvalues for all l ≤ ⌊2m+1⌋, x ∈ X̃l, then the set of

all o ∈ C2 (M0,R) for which the properties in Theorem 2 do not hold is a null set.

6 Bastian Bohn and Michael Griebel

g = argminf∈XF (f)

where F : X → R
+ ∪ {∞} is a functional that expresses how good functions from

X approximate ĝ. The function space X still has to be specified.
To this end, as we do not know any embedded points on which we want to evaluate g
afterwards, it is common to minimize the expectation of some Lebesgue measurable
cost function c : R× R→ R

+ ∪ {∞} with respect to the density p : Rd × R→ [0, 1]
of all possible input patterns. This leads to

F(f) = Ep [c (y, f(x))]

and thus gives

g = argminf∈XEp [c (y, f(x))] = argminf∈X

∫

Rd×R

c (y, f(x)) p(x, y) (dx⊗ dy) .

Note here that we have to restrict X to contain only Lebesgue measurable functions
to make this term well-defined.
Since we have to cope with training patterns and do not know the exact density p,
we use the empirical density

p̂ (x, y) =
1

N − d

N−1∑

j=d

δtj (x)δsj+1(y)

instead of p. This results in the problem of finding the argument of the minimum of

F(f) =

∫

Rd×R

c (y, f(x)) p̂ (x, y) (dx⊗ dy) =
1

N − d

N−1∑

j=d

c (sj+1, f(tj)) . (8)

Note that if we want to calculate the point evaluations f (tj), then the set of ad-
missible functions X has here to be restricted further to contain only functions for
which point evaluations are well defined.
We decided to use c (a, b) := (a− b)2. One can easily show that for this specific cost
function a minimizer of F maximizes the likelihood of the given input data under
the assumption of a Gaussian noise term being added to each exact time series value,
see section 3.3 in [22].5

The minimization of (8) for f ∈ X still leads to an ill-posed problem and a fur-
ther restriction of the space of admissible functions is therefore needed. To this end,
Tikhonov proposed to add a constraint of the form Ψ(f) ≤ c with an arbitrary pos-
itive constant c and a nonnegative functional Ψ : X → R

+ which is strictly convex
on a certain subspace depending on the problem itself, see [25]. Using the method
of Lagrange multipliers we then obtain the new minimization problem

g = argminf∈XF(f) := argminf∈X

 1

N − d

N−1∑

j=d

c (sj+1, f(tj)) + λΨ(f)

 (9)

which is well-posed if λ is positive. We will employ the Sobolev semi-norm

5Other cost functions can be used as well but these might lead to non-quadratic
or even non-convex minimization problems.

SPARSE GRIDS FOR TIME SERIES PREDICTION 7

Ψ(f) := |f |
H1

mix
=

∑

|a|∞=1

∣∣∣∣
∣∣∣∣
da1

dxa1
1

. . .
dad

dxad

d

f

∣∣∣∣
∣∣∣∣
2

L2(Rd)
(10)

since this perfectly fits after discretization to our basis functions as we will see later.
Here a = (a1, . . . , ad) denotes a multi index and |a|∞ := maxi=1,...,d |ai|. We will
use the function g ∈ X defined in (9) as continuous approximation to ĝ from now
on.
Instead of our H1

mix-semi-norm, a method using gradient penalties — which corre-
sponds to the H1 semi-norm — was presented in [7] and error bounds were provided
for a discrete solution achieved by the so-called combination technique. Note that
some of these results rely on the assumption of independent and uniformly dis-
tributed samples. Nevertheless, similar results can be given for our case under the
assumption of independently drawn samples according to the probability distribu-
tion on the reconstructed attractor. The resulting errors then refer to the attractor
measure instead of the Lebesgue measure.

2.1 Minimization for an arbitrary basis

Now let {γi}
∞
i=1 be a basis of Γ := {f ∈ X | Ψ(f) ≤ c}. Our task is to find a

w := (w1, w2, . . .)

with wi ∈ R for each i ∈ N \ {0}, which minimizes

1

N − d

N−1∑

j=d

(
sj+1 −

∞∑

i=1

wiγi (tj)

)2

+ λ

∞∑

i=1

∞∑

k=1

wiwk

∑

|a|∞=1

〈Daγi,D
aγk〉L2(Rd)

(11)
where Da = da1

dx
a1
1

. . . dad

dx
ad
d

denotes a multivariate derivative. The corresponding func-

tion

g(x) =
∞∑

i=1

wiγi(x)

then would give us the approximate prediction sN+1 ≈ g (tN) by point evaluation at
tN . As (11) is a sum of strictly convex functions, the argument g of the minimum can
be found by identifying the zeroes of d

dwl
F(f) for all l ∈ N\{0}. For η := (N−d)λ

this leads to the infinite system

N−1∑

j=d

sj+1γl (tj) =
∞∑

i=1

wi

N−1∑

j=d

γl (tj) γi (tj) + ηh (γi, γl)

 (12)

for all l ∈ N \ {0}, where h : Γ × Γ → R denotes the semi-definite bilinear form

h (s, t) =
∑

|a|∞=1

〈Das,Dat〉
L2(Rd) .

8 Bastian Bohn and Michael Griebel

2.2 Minimization for a kernel basis in a reproducing kernel
Hilbert space

To derive a finite solution procedure, the following approach is standard in the
mathematical learning community. For the case Ψ(f) = ||f ||2H, with H being a re-
producing kernel Hilbert space, we can write g from (9) as a finite linear combination
of evaluations of the reproducing kernel k : Rd×R

d → R in the points corresponding
to the training patterns

g(x) =
N−1∑

j=d

gjk (tj ,x)

with some real-valued weights gj . This is known as the representer theorem for
reproducing kernel Hilbert spaces, see e.g. [22]. Analogous observations as above
result with the property 〈k (ti, ·) , k (tj , ·)〉H = k (ti, tj) in the finite system

N−1∑

j=d

sj+1k (tj , tl) =
N−1∑

j=d

gj

(
N−1∑

i=d

k (ti, tj) k (ti, tl) + ηk (tj , tl)

)

for all l ∈ {d, . . . , N − 1}. If the (k (tj ,x))
N−1
j=d

are linearly independent6 this leads
to the linear system

s = (K+ ηI)g (13)

where K ∈ R
(N−d)×(N−d) is the kernel matrix with entries Ki,j = k (ti, tj),

I ∈ R
(N−d)×(N−d) is the identity matrix and g = (gd, . . . , gN−1)

T ∈ R
N−d,

s = (sd+1, . . . , sN)T ∈ R
N−d.

Note that for the case (10) we only regularized with a semi-norm of a reproducing
kernel Hilbert space but still get the representation

g(x) =

N−1∑

j=d

gjk (tj ,x) + g0(x)

with a g0 : Rd → R from the null space of Ψ and a certain kernel function k, see
[22].
One could now try to solve the linear system (13). The major problem of this
approach — besides the knowledge of an explicit formulation of the reproducing
kernel7 — is the complexity with respect to the number of input patterns. The
direct solution of (13) would involve a number of operations of the order O

(
N3
)

since we have to deal with a full system matrix here. But even if one does not
compute the inverse of K + ηI directly and uses an appropriate iterative scheme
instead, the complexity for solving this system is at least O

(
N2
)
because of the

dense kernel matrix K. Therefore, in the next section, we will consider the infinite
system (12) in the first place and resort to a further approximation of our prediction
problem by discretization.

6If this is not the case we can choose a linearly independent subsystem and
continue analogously.

7See [26] for several reproducing kernels and their corresponding Hilbert spaces.

SPARSE GRIDS FOR TIME SERIES PREDICTION 9

3 Discretization via sparse grids

To find an approximate solution to (12) we restrict ourselves to a finite dimensional
subspace ΓM := span {γi}

M

i=1 ⊂ Γ := {f ∈ X | Ψ(f) ≤ c} for some M ∈ N. For the
naive full grid approach the curse of dimensionality then shows up in the number of
necessary grid points which grows exponentially with d. To deal with this issue, we
will employ the sparse grid discretization technique and its adaptive enhancements
here. To this end, we will assume that the domain of ĝ (and thus g) is the d-
dimensional hypercube

Hd := [0, 1]d .

Note that this is not a restriction since the domain of the underlying original pro-
cess is compact (cf. Theorems 1, 2). By rescaling the resulting domain of the recon-
structed process we always can obtain the domain [0, 1]d.

3.1 Multilevel hierarchical bases and regular sparse grids

First, we recall the construction of a full grid space using a piecewise linear hierar-
chical basis and discuss its relation to a sparse grid space. Let the one-dimensional
hat function φ : R→ [0, 1] be defined by

φ(x) :=

{
1− |x|, if x ∈ [−1, 1]

0 else

and let
φl,i(x) := φ(2l · x− i)|[0,1]

for any l, i ∈ N be a dilated and rescaled version of φ restricted to the interval [0, 1].
One can easily see that supp (φl,i) =

(
(i− 1)2−l, (i+ 1)2−l

)
∩[0, 1]. The construction

of a d-dimensional hat function is straightforward via the tensor product

φl,i(x) :=

d∏

j=1

φlj ,ij (xj) ,

where l = (l1, . . . , ld) ∈ N
d is the multivariate level and i = (i1, . . . , id) ∈ N

d denotes
the multivariate position index. Furthermore, we define xl,i := i · 2−l, where the
multiplication has to be understood componentwise, i.e. xl,i = (xl1,i1 , . . . , xld,id)

T

with xlj ,ij := ij · 2
−lj . For a fixed l ∈ N

d, we then have with

Ωl :=
{
xl,i | 0 ≤ i ≤ 2l

}

the full grid of level l. Here, the inequalities are to be understood componentwise
and 0 = (0, . . . , 0) is the null index. The space of piecewise d-linear functions on
the grid Ωl is

Vl := span {Bl} with Bl =
{
φl,i | 0 ≤ i ≤ 2l

}
.

Bl is called nodal basis since the value of a function fl(x) =
∑

0≤i≤2l fl,i ·φl,i(x) ∈ Vl

on one of the gridpoints xl,j of Ωl is given by the coefficient fl,j ∈ R that corre-
sponds to φl,j.

10 Bastian Bohn and Michael Griebel

Now, let

Il :=

{
i ∈ N

d

∣∣∣∣
0 ≤ ij ≤ 1, if lj = 0

1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0
for all 1 ≤ j ≤ d

}
. (14)

Then, Wl := span {φl,i | i ∈ Il} is a hierarchical increment space (or detail space)
because of the property

Wl = span

{
Bl \

d⋃

j=1

Bl−ej

}

where ej denotes the j-th unit vector and Bk := ∅ for each k = (k1, . . . , kd) with
kj < 0 for some j = 1, . . . , d. Thus we get

Vl =
⊕

k≤l

Wk = span
{
B̃l

}

with the hierarchical basis

B̃l := {φk,i | i ∈ Ik,k ≤ l} .

Now, we can define the space of piecewise d-linear functions on the regular (isotropic)
full grid

Ωt := Ω(t,...,t) = {xk,i | |k|∞ ≤ t, i ∈ Ik}

of level t ∈ N by

Vt := V(t,...,t) =
⊕

|k|∞≤t

Wk .

If
ft =

∑

|k|∞≤t

∑

i∈Ik

fk,iφk,i

is the interpolant of f ∈ H2 (Hd) in Vt it holds that

||f − ft||L2(Hd)
= O

(
2−2t

)
. (15)

Next, we define the regular sparse grid of level t by

Ωs
t := {xk,i | nd(k) ≤ t, i ∈ Ik} (16)

and the corresponding function space by

V s
t :=

⊕

k∈N
d

nd(k)≤t

Wk ,

where nd(0) := 0 and

nd(k) := |k|1 − d+ |{m | km = 0}|+ 1

for every other k ∈ N
d. Here, |k|1 :=

∑d

j=1 |kj | denotes the ℓ
1 norm.

If
fs
t (x) =

∑

k∈N
d

nd(k)≤t

∑

i∈Ik

αk,iφk,i(x) ∈ V
s
t

SPARSE GRIDS FOR TIME SERIES PREDICTION 11

is the interpolant of f ∈ H2
mix(Hd) in V

s
t , it holds that

||f − fs
t ||L2(Hd)

= O
(
2−2ttd−1

)
.

Thus, compared to (15), the accuracy is only slightly worse by a factor td−1. However,
the number of points in the full grid is |Ωt| = O

(
2td
)
and suffers from the curse of

dimensionality for large d whereas, in the sparse grid case,M := |Ωs
t | = O

(
2t · td−1

)

holds and the exponential dependence of d now only affects the level t instead of
2t. For a thorough treatment of sparse grids, approximation results and complexity
issues we refer to [1] and the references therein.
By solving (9) in the discrete space V s

t ⊂ Γ we get (analogously to (12))

N−1∑

j=d

sj+1φl,i (tj) =
∑

k∈N
d:nd(k)≤t,
m∈Ik

αk,m

N−1∑

j=d

φl,i (tj)φk,m (tj) + ηh (φl,i, φk,m)

(17)
for all l ∈ N

d : nd(l) ≤ t and i ∈ Il.
A preconditioned multilevel conjugate gradient (pCG) algorithm is used to solve
the linear system (17) iteratively. Here, for reasons of simplicity, we employ as pre-
conditioner the inverse of the diagonal of the system matrix of (17) after its trans-
formation to a prewavelet representation, see [13]. As we only need to implement
matrix-vector-multiplications for the pCG algorithm, the system matrices are not
assembled explicitly. The hierarchical structure and the compact support of our ba-
sis functions allow a fast application8 of the first term in the brackets on the right
hand side of (17) in O

(
N · td

)
operations. Because of the product structure of H1

mix

an efficient implementation of the unidirectional principle can be employed for the
on-the-fly multiplication of the term corresponding to the bilinear form h, see e.g.
[4]. This needs O(M) operations. Thus, the costs of a single iteration of the pCG al-
gorithm are only O

(
N · td +M

)
= O

((
N · t+ 2t

)
· td−1

)
operations. For a detailed

review of computational issues on the implementation of sparse grid methods, grid
traversal strategies and linear system solvers, we refer to [4].

3.2 Space-adaptive sparse grids

Since most attractors only fill a sparse pattern of Hd, it is obvious that a regular grid
is not necessarily the best structure to approximate a function on such an attractor.
On the one hand, there might not be enough grid points in relevant regions to fit
the function which leads to bad approximations. On the other hand, there might
be too many grid points in irrelevant areas which causes overfitting and results in
an unnecessary high cost complexity, see 3.3 in [7] for a thorough treatment of this
issue. One would prefer a grid which rather matches the shape of the trajectory
than the ambient space Hd. Such a grid (and of course the corresponding function
space) can be derived using an iterative algorithm which adaptively creates finer grid
resolutions where needed. The main component of such a procedure is an appropriate

8Note that the use of the combination technique [14] even allows here for a slight
improvement to O

(
N · td−1

)
. In both cases, however, the constant in the O-notation

grows exponentially with d.

12 Bastian Bohn and Michael Griebel

error indicator which decides if the grid has to be locally refined in a certain region.
We here simply use

ǫl,i := ||αl,iφl,i||L∞(Hd)
= |αl,i|

as such an indicator. For more elaborate techniques and details on how to choose a
reliable and efficient indicator ǫl,i for the case of specific norms of the error, we refer
to [11].
Our overall algorithm proceeds as follows: First, it starts with a regular sparse grid
for some low level Ωs

adp = Ω̃s
adp := Ωs

t and solves (17) on this grid. Then, it checks

for each
{
(l, i) | xl,i ∈ Ω̃

s
adp

}
if ǫl,i > ε, where ε ∈ R

+ is some fix threshold. If this

is the case for the pair (l, i) with odd ij or ij = 0 for each j ∈ {1, . . . , d}, all of its
child nodes are inserted into the grid Ωs

adp if they are not already contained.9 In the
one-dimensional case the child nodes are defined as

child (xl,i) :=

{xl+1,2i±1} if l > 0 ,
{x1,1} if l = 0, i = 1 ,
{x0,1} if l = 0, i = 0 .

(18)

In the multivariate case we define child(xl,i) as

{
xk,m ∈ Ωk

∣∣∣∣
There exists j ∈ {1, . . . , d}, s.t. xkj,mj

∈ child
(
xlj ,ij

)

and kh = lh,mh = ih for all h ∈ {1, . . . , d} \ {j}

}
. (19)

After the insertion it has to be guaranteed — by e.g. inserting further nodes where
needed — that all hierarchical ancestors of every inserted point are contained in
the resulting grid. Otherwise, an incorrect hierarchical basis representation for the
corresponding function space would result and common grid traversal algorithms
would run into problems. To achieve this we simply insert each missing direct an-
cestor and proceed recursively with the inserted points until each direct ancestor to

Fig. 1. Different sparse grid examples in two dimensions
(a) Regular sparse grid of level 5 (b) Space-adaptive sparse grid

9Note here that it is not enough to check the surplus of points which have been
inserted in the last iteration. The hierarchical surplus of all other points can change
as well when calculating the solution on the refined grid.

SPARSE GRIDS FOR TIME SERIES PREDICTION 13

every gridpoint has been inserted into Ωs
adp. The direct ancestors of points xl,i with

odd ij or ij = 0 for each j = {1, . . . , d} are defined by

directAnc (xl,i) := {xk,m ∈ Ωl | xl,i ∈ child (xk,m)} . (20)

When every relevant grid point of Ω̃s
adp has been visited and treated accordingly, we

set Ω̃s
adp = Ωs

adp and start anew. This iteration runs until either no point needs to
be refined or the number of iterations reaches some fixed limit L ∈ N. A summary
of the procedure can be found in Algorithm 1. For details on runtime and technical
issues we refer to [4].

Algorithm 1 The space-adaptive sparse grid algorithm

Input: starting level t, threshold ε, #iterations L, error indicators ǫl,i, time series
(sj)

N

j=1, embedding dimension d, regularization parameter λ
Output: space-adaptive sparse grid Ωs

adp

initialize: Ωs
adp ← Ωs

t , Ω̃
s
adp ← Ωs

t , It ← 0
while It < L do

solve (17) on Ω̃s
adp

for all (k,m) with odd mj or mj = 0 for each j ∈ {1, . . . , d} and xk,m ∈ Ω̃
s
adp

do

if ǫk,m > ε then

Ωs
adp ← Ωs

adp ∪ child (xk,m)
end if

end for

if Ω̃s
adp = Ωs

adp then

return Ωs
adp

end if

Ω̃s
adp ← Ωs

adp

for all xk,m with odd mj or mj = 0 for each j ∈ {1, . . . , d} and xk,m ∈ Ω̃
s
adp

do

Ωs
adp ← Ωs

adp ∪ AllAncestors(k, m, d)
end for

Ω̃s
adp ← Ωs

adp

It ← It+1
end while

return Ωs
adp

Algorithm 2 AllAncestors(l, i, d)

Input: multivariate level l, multivariate index i, embedding dimension d
Output: set X of all ancestors of xl,i

initialize: X ← ∅
X ← X ∪ directAnc(xl,i)
for all xk,m ∈ directAnc(xl,i) with odd mj or mj = 0 for each j ∈ {1, . . . , d} do
X ← X ∪ AllAncestors(k, m, d)

end for

return X

14 Bastian Bohn and Michael Griebel

3.3 Dimension-adaptive sparse grids

In the case of attractors which fill a highly anisotropic part of the ambient space
Hd or in case the ambient space dimension was overestimated, it is desirable to
employ dimension-adaptive refinement instead of pure space-adaptive refinement.
There, refinement takes place globally but only in directions which are relevant for
the construction of a good forecasting function. Dimension-adaptivity for sparse
grids has been introduced in [15]. The application of dimension-adaptive algorithms
has been studied for integration in [8] and for approximation in [6]. The approach
which we use in the following is a little bit different though, it can be found in [4].
To motivate the idea of dimension-adaptive grids we will shortly review the concept
of the ANOVA (Analysis of Variance) decomposition. We introduce a splitting

V = 1⊕ C (21)

of a space V of univariate functions with domain [0, 1] into the space of constant
functions 1 and the remainder C. This is done using the identity

f = P (f) + (f − P (f))

for some projector P : V → 1 with P |1 = id.
For multivariate tensor product function spaces V we apply the splitting in every
direction, i.e.

V =

d⊗

i=1

Vi =

d⊗

i=1

(1i ⊕ Ci)

= 11 ⊗ . . .⊗ 1d (22)

⊕
d⊕

i=1

(11 ⊗ . . .⊗ 1i−1 ⊗ Ci ⊗ 1i+1 ⊗ . . .⊗ 1d)

⊕
d⊕

i=1

d⊕

j=i+1

(11 ⊗ . . .⊗ 1i−1 ⊗ Ci ⊗ 1i+1 ⊗ . . .⊗ 1j−1 ⊗ Cj ⊗ 1j+1 ⊗ . . .⊗ 1d)

...

⊕ C1 ⊗ . . .⊗ Cd ,

and receive a unique splitting of a function f ∈ V into the sum of a constant function,
d univariate functions, d(d−1)

2
bivariate functions, and so on, i.e.

f(x1, . . . , xd) = f0+
d∑

i=1

fi(xi)+
d∑

i=1

d∑

j=i+1

fij(xi, xj)+. . .+f1,...,d(x1, . . . , xd) . (23)

We call f0 the ANOVA component of order 0, the fi are ANOVA components of
order 1, and so on.
The most common choice for P is

P (f) :=

∫

[0,1]

f(x)dx

SPARSE GRIDS FOR TIME SERIES PREDICTION 15

for V ⊂ L2([0, 1]), which just gives the classical L2-ANOVA decomposition. Another
choice is

P (f) := f(a)

which leads to a well-defined decomposition if the point evaluation in a is well-defined
for all functions in V . This results in the so-called anchored ANOVA decomposition
with anchor a. It is well suited to our piecewise linear basis functions.
Here, to transfer the concept of the multivariate anchored ANOVA decomposition
to the piecewise linear hierarchical basis discretization, we have to change the index
set introduced in (14). We define

Ĩl :=

i ∈ N

d

∣∣∣∣∣∣

ij = 0, if lj = −1
ij = 1, if lj = 0

1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0
for all 1 ≤ j ≤ d

 (24)

and allow the negative level −1. Furthermore, we define the one-dimensional basis
function φ−1,0 := χ[0,1] to be the indicator function of the interval [0, 1]. With this
and the definition

W̃l := span{φl,i | i ∈ Ĩl}

we see10 that

Ṽl :=
⊕

−1≤k≤l

W̃k =
⊕

−1≤k≤l

span{φk,m |m ∈ Ĩk}

=
⊕

0≤k≤l

span{φk,m |m ∈ Ik} =
⊕

0≤k≤l

Wk = Vl

for all l with lj ≥ 0 for all j = 1, . . . , d. This way, we just have split the space of linear
functions on [0, 1], which was previously spanned by the two linear basis functions as-
sociated to the two boundary points, further into the sum of one constant (level −1)
and one linear function (level 0). If we define the norm of a multivariate level index
with possibly negative coordinates as

|l| := |(max(l1, 0), . . . ,max(ld, 0))|

we can maintain our previous definition for sparse grids (16) using

ñd(k) :=

{
0 if kj ≤ 0 for all 1 ≤ j ≤ d
|k|1 − d+ |{m | km ≤ 0}|+ 1 else

instead of nd(k). But we now are able to identify functions which are constant in
direction j as they are elements of Ṽ(l1,...,lj−1,−1,lj+1,...,ld). This approach fits to a
discretized anchored ANOVA decomposition with a = 0. To this end, we now define
an infinite-dimensional univariate function space

V = Ṽ−1 ⊕
∞⊕

i=0

W̃i (25)

and, with the choice 1i =
(
Ṽ−1

)
i
and Ci =

(⊕∞
j=0 W̃j

)
i
in (21), we again obtain

the splitting (22) which is now conform to the infinite-dimensional tensor product-
hierarchical basis. In other words, if we use the alternative basis that is defined by

10Note that Wl and W̃l are the same for a multilevel index l with lj ≥ 1 for all
j = 1, . . . , d.

16 Bastian Bohn and Michael Griebel

the index set Ĩl, the only univariate basis function ψ for which P (ψ) 6= 0 is ψ = φ−1,0

for P (f) := f(0) and the anchored ANOVA decomposition completely fits to the
hierarchical tensor product basis.
So far, the subspaces of the ANOVA decomposition are (up to the very first one)
still infinite-dimensional and need to be further discretized. To this end, for a regular
sparse grid of level t, we truncate each term of the ANOVA-decomposition as follows:

V s
t = 11 ⊗ . . .⊗ 1d

⊕
d⊕

i=1

⊕

ñ1(ki)≤t

ki∈N

(
11 ⊗ . . .⊗ 1i−1 ⊗

(
W̃ki

)
i
⊗ 1i+1 ⊗ . . .⊗ 1d

)

⊕
d⊕

i=1

d⊕

j=i+1

⊕

ñ2(ki,kj)≤t

ki,kj∈N

(
11 ⊗ . . .⊗

(
W̃ki

)
i
⊗ . . .⊗

(
W̃kj

)
j
⊗ . . .⊗ 1d

)

...

⊕
⊕

ñd(k1,...,kd)≤t

k1,...,kd∈N

(
W̃k1

)
1
⊗ . . .⊗

(
W̃kd

)
d
.

Thus, we discretize every k-variate component function of the ANOVA decomposi-
tion (23) with a regular k-dimensional sparse grid, where k ∈ {1, . . . , d}.
A dimension-adaptive procedure can now be defined analogously to the space-
adaptive algorithm. To this end, we employ the error indicator

ǫl := max
i∈Ĩl

ǫl,i

which is just defined on the detail spaces W̃l and does not rely on a single point
anymore. For refinement we now simply insert all the points belonging to the basis
functions of W̃l+ej for each direction j with lj 6= −1. Thus, we only insert grid nodes

that lie in the same ANOVA component as nodes in W̃l. By doing this, refinement
of the grid affects relevant ANOVA terms of the function but neglects higher-order
terms. As in the case of spatial adaptivity, ancestors of new points have to be
inserted into the grid.11 The whole refinement procedure is iterated in the same way
as previously.
Additionally, we compress the grid in an initial preprocessing step before starting
the dimension-wise refinement procedure. To this end, for a given ε, starting with
a regular sparse grid of level t, every detail space W̃k ⊂ V s

t for which ǫk ≤ ε holds,
is marked first. Then, if the points in a marked subspace W̃k are not needed as
an ancestor to a point in a non-marked subspace, all points belonging to W̃k are
removed from the grid. This compression is done, since a regular sparse grid of level 0
contains already part of each ANOVA component. Thus, it is not possible to identify
relevant ANOVA components of a function just by looking at a current adaptive grid.
One would rather want to completely neglect components which do not contribute
to the representation of a function and then start the adaptive procedure on a

11For the one-dimensional case one simply defines x0,1 to be the single child node
of x−1,0. The generalization to the multi-dimensional case is straightforward.

SPARSE GRIDS FOR TIME SERIES PREDICTION 17

dimensionally reduced grid. The overall dimension-adaptive process is given in detail
in Algorithm 3.

Algorithm 3 The dimension-adaptive sparse grid algorithm using the basis
defined by (24)

Input: starting level t, threshold ε, #iterations L, error indicators ǫl, time series
(sj)

N

j=1, embedding dimension d, regularization parameter λ
Output: dimension-adaptive sparse grid Ωs

adp

initialize for compression: Y ← ∅
for all W̃k ⊂ V

s
t do

if ǫk > ε then

Y ← Y ∪
{
xk,m |m ∈ Ĩk

}

end if

end for

Z ← Y
for all xk,m ∈ Y do

Z ← Z ∪ AllAncestors(k, m, d)
end for

initialize for adaption: Ωs
adp ← Z, Ω̃s

adp ← Z, It ← 0
while It < L do

solve (17) on Ω̃s
adp

for all W̃k with xk,m ∈ Ω̃
s
adp for each m ∈ Ĩk do

if ǫk > ε then

for all j ∈ {1, . . . , d} do
if kj > −1 then

Ωs
adp ← Ωs

adp ∪
{
xk+ej ,m |m ∈ Ĩk+ej

}

end if

end for

end if

end for

if Ω̃s
adp = Ωs

adp then

return Ωs
adp

end if

Ω̃s
adp ← Ωs

adp

for all xk,m with odd mj or mj = 0 for each j ∈ {1, . . . , d} and xk,m ∈ Ω̃
s
adp

do

Ωs
adp ← Ωs

adp ∪ AllAncestors(k, m, d)
end for

Ω̃s
adp ← Ωs

adp

It ← It+1
end while

return Ωs
adp

18 Bastian Bohn and Michael Griebel

4 Numerical results

We will now present numerical results for our sparse grid algorithms when applied
to both, synthetically constructed time series and series which stem from real world
applications. All data has been properly scaled, such that the embedded points are
situated in Hd. The preconditioned conjugate gradient algorithm, which is used to
solve the linear system (17), is always iterated until the quotient ||rk||D−1/||r0||D−1

is smaller than 10−13 where D is the diagonal preconditioning matrix we used12, rk
denotes the residual of (17) after the k-th iteration and ||rk||D−1 :=

√
rTkD

−1rk.

4.1 Hénon Map in 2d

First, we show results concerning the famous Hénon map

zn+1 := a− z2n + bzn−1 , (26)

see also [16]. Using the notation of Sect. 1 we have

φ

((
x1

x2

))
=

(
a− x2

1 + bx2

x1

)

and

o

((
x1

x2

))
= x2 ,

where φ and o are defined on R
2. It is easy to see that

detDφ = −b ,

where Dφ denotes the Jacobian matrix of φ. We will restrict ourselves to the most
popular case a = 1.4, b = 0.3 for which the trajectory of the process approaches an
attractor of non-integer box-counting dimension 1.26. As |detDφ| < 1, the process
is dissipative and the attractor is a compact subset of the ambient space. Therefore13

we can apply Theorem 2.
A direct application would lead to the embedding dimension d = ⌊ 2 · 1.26 + 1 ⌋ = 3.
Nevertheless, we know from equation (26) that two dimensions are sufficient and
will use d = 2 in our experiments instead of Takens’ upper bound d = 3. The first
N = 20 000 values of the Hénon map are taken into account to construct three
different scenarios:

1. The first T = 50 points (training data) are used to learn the target function, the
remaining N−T = 19 950 points (test data) are used to measure the forecasting
error.

2. The first T = 500 points (training data) are used to learn the target function, the
remaining N−T = 19 500 points (test data) are used to measure the forecasting
error.

12To this end, the system matrix from (17) is first transformed into the prewavelet
basis, see e.g. [4], then, the inverse of its diagonal is taken as preconditioner.

13One can easily see that X̃l is finite for l = 1, 2, 3. Nevertheless, there exist points
x ∈ R

2 for which
(
Dφl

)
x
has eigenvalues with algebraic multiplicity 2 for l = 2, 3.

SPARSE GRIDS FOR TIME SERIES PREDICTION 19

Table 1. Resulting parameters and errors after three-fold cross-validation for regular
sparse grids

T t log2 (λ) RMSEtrain RMSEtest

50 3 −17 5.42 · 10−3 1.41 · 10−2

500 6 −25 1.03 · 10−4 2.95 · 10−4

5 000 7 −22 9.25 · 10−5 1.01 · 10−4

Table 2. Resulting parameters and errors after three-fold cross-validation for the
support vector machine

T log2 (C) log2 (γ) log2 (ε) RMSEtrain RMSEtest

50 14 −5 −10 1.46 · 10−3 1.60 · 10−3

500 10 1 −15 2.51 · 10−4 2.57 · 10−4

5 000 8 3 −17 2.07 · 10−4 2.06 · 10−4

3. The first T = 5 000 points (training data) are used to learn the target function,
the remaining N − T = 15 000 points (test data) are used to measure the
forecasting error.

We compare our regular sparse grid approach to a standard support vector ma-
chine regression algorithm using radial basis functions (SVM = RBF ε-SVR). To
find appropriate parameters we use three-fold cross-validation. We investigated
t ∈ {2, . . . , 8} and λ ∈ {2−1, . . . , 2−25} for the sparse grid algorithm. For calcu-
lations concerning the SVM approach, we used libsvm, see [3] for implementations
and parameters. Here, we performed a three-fold cross-validation over the parame-
ters C ∈ {20, . . . , 215}, ε ∈ {2−20, . . . , 2−1} and the kernel width γ ∈ {2−10, . . . , 25}
of the RBF ε-SVR. To measure the forecasting error of any function f on the em-
bedded test data we used the root mean squared error (RMSE). Given the test data
(sj)

N
j=T+1, we can build the embedded vectors tj as in (5) for T + d ≤ j ≤ N − 1.

Then

RMSEtest :=

√√√√ 1

N − T − d

N−1∑

j=T+d

(sj+1 − f(tj))
2 .

For the training data we define RMSEtrain analogously. The results, i.e. the deter-
mined best parameter values and the corresponding errors on training and test data
for these parameters, are given in Table 1 for regular sparse grids and in Table 2 for
the support vector machine. We observe that the SVM algorithm performs some-
what better than the sparse grid algorithm for the moderate value T = 50. But as
we increase the size of the training data set, the results for the sparse grid algorithm
get successively better. For T = 5000, the sparse grid algorithm reaches a slightly
lower error than the RBF-SVM method while the involved computational costs are
substantially less anyway. The sparse grid method is able to use the newly added
training data points to discover more structure of the underlying process.
Note here that the number of possible parameter combinations is not the same for
the sparse grid method and the SVM. Thus, it is not representative to compare the
runtimes of their cross-validation processes. Nevertheless, this comparison gives a

20 Bastian Bohn and Michael Griebel

hint of the behavior of the overall runtime when changing T : The cross-validation
process for the SVM algorithm was about 20 times faster than that of the sparse
grid approach for T = 50. For T = 500 the runtimes were almost equal and for
T = 5000 the cross-validation process of the sparse grid algorithm was more than
three times faster than that of SVM.
In summary, while the SVM algorithm is favorable for few training points, the
benefits of the sparse grid algorithm with respect to both, achieved accuracy and
necessary computational cost, begin to prevail in situations with more and more
training points.

4.2 Jump Map in 5d

In this experiment we want to show the advantages of the space- and dimension-
adaptive sparse grid algorithms compared to the regular sparse grid approach.
Following the rule

zn+1 := (zn + zn−1) mod 1 , (27)

we get a time series by

φ

((
x1

x2

))
=

(
(x1 + x2) mod 1

x1

)

and

o

((
x1

x2

))
= x1 ,

where φ and o are defined on [0, 1)2. Due to the modulo operation, φ has a jump
at all points {(x1, x2)

T ∈ [0, 1)2 | x1 + x2 = 1}. For each other point of the domain
the process is conservative, i.e. |detDφ| = 1. Since φ is not diffeomorphic, Theorem
2 cannot be invoked. Nevertheless, we will apply the delay embedding scheme and
test if the sparse grid solutions are still able to give a suitable predictor for (27).
Again, we use the first N = 20 000 values of the time series and construct three
scenarios with the same values of T , i.e. T = 50, 500, 5 000, as for the Hénon map.
We now assume that we were just given the time series of length N and do not
know anything about the underlying process (27). Thus we have to estimate the
dimension m to be able to use the delay embedding scheme with d = ⌊2m + 1⌋
before applying our sparse grid algorithms. For the small training data set of size
T = 50 we get an estimate of m ≈ 2.24 with the Grassberger-Procaccia dimension
estimator. For the other two scenarios, the estimated dimension is even closer to 2.
Taking m = 2 determines our embedding dimension to be d = 5 and we therefore
build the embedded vectors tj in R

5.
We use λ = 10−4 in the following experiments. The results for a regular grid dis-
cretization and for both, a space- and a dimension-adaptive procedure with ǫ = 0.1
and starting level 1, are given in Table 3.
With substantially fewer grid points, both adaptive algorithms achieve the same
or even better RMSE values than the regular sparse grid method. The remarkably
smaller amount of grid points used in the dimension-adaptive variant is due to the
compression step before refinement starts.
Furthermore, note that the dimension-adaptive algorithm is able to reveal the lower-
dimensional structure of the embedded process. We can observe from the constructed
forecasting function how many grid points have been spent on its different ANOVA

SPARSE GRIDS FOR TIME SERIES PREDICTION 21

Table 3. RMSE for a regular, a space-, and a dimension-adaptive sparse grid dis-
cretization for the jump map in 5d

(a) Regular sparse grid (SG) of level t (b) Space-adp. SG after #It iterations

T t |Ωs
t | RMSEtrain RMSEtest

50 3 3 753 7.67 · 10−2 2.34 · 10−1

50 4 12 033 4.91 · 10−2 2.20 · 10−1

50 5 36 033 2.57 · 10−2 1.47 · 10−1

500 3 3 753 1.12 · 10−1 1.41 · 10−1

500 4 12 033 7.12 · 10−2 1.11 · 10−1

500 5 36 033 4.39 · 10−2 8.53 · 10−2

5 000 3 3 753 1.27 · 10−1 1.32 · 10−1

5 000 4 12 033 9.11 · 10−2 9.61 · 10−2

5 000 5 36 033 6.43 · 10−2 6.99 · 10−2

T #It |Ωs
adp| RMSEtrain RMSEtest

50 3 3 159 7.68 · 10−2 2.34 · 10−1

50 4 4 887 5.03 · 10−2 2.14 · 10−1

50 5 5 535 2.75 · 10−2 1.33 · 10−1

500 3 2 349 1.12 · 10−1 1.40 · 10−1

500 4 3 645 7.21 · 10−2 1.10 · 10−1

500 5 4 293 4.66 · 10−2 8.32 · 10−2

5 000 3 2 079 1.27 · 10−1 1.32 · 10−1

5 000 4 2 727 9.14 · 10−2 9.61 · 10−2

5 000 5 3 051 6.47 · 10−2 6.96 · 10−2

(c) Dim.-adp. SG after #It iterations

T #It |Ωs
adp| RMSEtrain RMSEtest

50 2 576 7.90 · 10−2 2.43 · 10−1

50 3 704 5.26 · 10−2 2.22 · 10−1

50 4 832 2.93 · 10−2 1.39 · 10−1

500 2 302 1.15 · 10−1 1.40 · 10−1

500 3 368 7.76 · 10−2 1.08 · 10−1

500 4 424 5.29 · 10−2 8.12 · 10−2

5 000 2 310 1.28 · 10−1 1.32 · 10−1

5 000 3 326 9.21 · 10−2 9.60 · 10−2

5 000 4 342 6.55 · 10−2 6.96 · 10−2

components. To this end, counting all grid points with exactly one non-zero coordi-
nate we get the number of points spent on the representation of univariate functions
in the ANOVA decomposition. We can continue analogously for bivariate functions
(two non-zero coordinates) and so on.
In Fig. 2 we see the distribution of grid points among the ANOVA components of
different order for the example of the 5d jump map. The dimension-adaptive algo-
rithm successfully detected that there is no term of fifth order and thus grid points
are only spent on the boundary of H5. Terms of third and fourth order are still
present, but one observes that most grid points have been used for terms of order
1 and 2. Altogether, the inherent structure of the process was well detected by the
algorithm.
As less points are spent by the space- and the dimension-adaptive algorithm there
is a significant saving in storage for these methods. In addition, also the absolute
runtime of the dimension-adaptive algorithm – especially for the case of few training
points and high levels – is better than for the regular sparse grid case, as we see
in Table 4. The runtimes of the space-adaptive method and the regular sparse grid
algorithm are of the same order for the listed scenarios.

22 Bastian Bohn and Michael Griebel

Fig. 2. Distribution of grid points among ANOVA components of different order
for the 5d jump map and the dimension-adaptive algorithm

0 1 2 3 4 5

1

96

392

255

88

01

84

202

122

15
01

52

133 126

30

0

order of ANOVA components

#
g
ri

d
p
o
in

ts

T = 50

T = 500

T = 5000

Table 4. Comparison of runtimes for the space- and the dimension-adaptive sparse

grid algorithm. Rdimadp(t,#It) is defined as
Rreg(t)

Rdimadp(#It)
, where Rreg(t) denotes the

runtime of the regular sparse grid algorithm with level t and Rdimadp(#It) denotes
the runtime of #It iterations of the dimension-adaptive algorithm; Rspadp(t,#It) is
defined analogously for the space-adaptive algorithm

T t #It Rspadp(t,#It) Rdimadp(t,#It)

50 4 3 0.73 5.05
50 5 4 1.57 13.09

500 4 3 0.70 3.67
500 5 4 1.40 9.51

5 000 4 3 0.61 1.29
5 000 5 4 0.94 1.78

4.3 Small Dataset of the ANN & CI Forecasting Competition
2006/2007

We now consider the performance of the regular and the space-adaptive sparse grid
algorithm in a practical application.14 The reduced dataset of the “Artificial Neu-

14Since we restricted ourselves to d ≤ 3 in this experiment, we did not apply the
dimension-adaptive algorithm to this problem.

SPARSE GRIDS FOR TIME SERIES PREDICTION 23

ral Network and Computational Intelligence Forecasting Competition 2006/2007”
consists of eleven empirical business time series.15 Each of the time series consists
of 144 real values where the first 126 values should be used as training data. The
goal of the competition is to forecast the last 18 consecutive values. The symmetric
mean absolute percent error

SMAPE :=
1

18

144∑

j=127

2|sj − ŝj |

|sj |+ |ŝj |

determines the quality of the forecast of one particular time series. Here ŝj denotes
the prediction of the j-th test data value. As consecutive values have to be pre-
dicted, we cannot simply compute ŝj = f(tj−1) for a general, computed forecasting
function f since the coordinates of the embedded vector tj−1 might not only stem
from training data but also from unknown test data. Therefore, we recursively define
ŝj = f(t̂j−1) with t̂j−1 = (sj−d, sj−d+1, . . . , ŝj−2, ŝj−1)

T where a coordinate is set
to sl if l ≤ 126 and to ŝl otherwise. Furthermore, we introduce the time step size k
which determines which future value is learned. So, by building the vectors tj from
training data, we are learning sj+k. In the examples introduced earlier we always
had set k = 1.
In our experiments with the regular sparse grid approach, the first 108 values of a
time series are used to learn a prediction model which is then evaluated on the last
18 values of the training data. This way, we determine the best combination of a
regularization parameter λ ∈ {2−15, . . . , 2−1}, a level t ∈ {2, . . . , 7}, an embedding
dimension d ∈ {1, 2, 3} and a future step size k ∈ {1, . . . , 18}. These parameters are
then employed to learn a model using the whole training data set. This model is
finally taken to predict the 18 values of the test data set. Proceeding in this fashion
for every time series we achieve the SMAPEs that can be found in Table 5(a).
Alternatively, we fixed d = 3 and t = 1, started the space-adaptive algorithm with
a maximum iteration count of 7. We chose the optimal k and λ in the same fashion
as for the regular sparse grid algorithm. The results are shown in table 5(b). Even
though the space-adaptive algorithm performs better than the non-adaptive method
for six of the eleven time series, the average SMAPE of the non-adaptive variant is
still smaller. This is mostly due to its bad performance for time series 3. Anyway,
with each of the two methods we perform better than 36 of the 44 participants of
the competition. Furthermore, we also outperform 8 of the 13 statistical and CI
methods that entered the competition as benchmarks.
By combining our two methods such that for every time series the SMAPE on the
last 18 values of the training data decides if the space-adaptive or the non-adaptive
variant is chosen, we achieve an average SMAPE of 15.3082%. With this result we
outscore one more participant and one more statistical benchmark.
Thus, even when dealing with rather short empirical time series where data-based
approaches like SVM seem to be a more natural and promising approach, our meth-
ods still achieve competitive results.

15Further information concerning the setting and the dataset can be found at
http://www.neural-forecasting-competition.com/NN3/index.htm.

24 Bastian Bohn and Michael Griebel

Table 5. SMAPE and average SMAPE for the eleven time series of the reduced
dataset of the ANN & CI Forecasting Competition 06/07

(a) Regular sparse grids (b) Space-adaptive sparse grids

Time Series

1
2
3
4
5
6
7
8
9
10
11

Av. SMAPE

t log2(λ) d k SMAPE in %

7 −13 1 12 2.8398
6 −10 2 11 25.6872
2 −12 2 11 30.6692

4 −9 2 12 6.3690

3 −1 1 1 3.3801

4 −10 2 10 4.9186

4 −13 1 1 6.7220
2 −8 2 14 30.3151
6 −12 1 4 11.2487
7 −6 3 10 30.3352

2 −15 2 11 18.5016

15.5442

log2(λadp) kadp SMAPEadp in %

−11 14 2.6309

−8 11 23.0448

−9 10 39.9194
−9 10 8.8058
−10 11 5.1977
−8 9 5.6765
−3 2 4.2933

−1 12 27.7111

−4 3 10.2458

−6 10 30.7120
−5 11 16.2794

15.8651

5 Concluding remarks

In this article we introduced a sparse grid-based discretization approach to solve
the forecasting problem for time series. We gave a short review of Takens’ the-
orem and showed how it can be applied to the field of time series forecasting if
the box-counting dimension of the attractor is a priori known or at least properly
estimated from the given data. We motivated the use of a regularized quadratic
loss-functional and emphasized the difference between kernel-based approaches and
arbitrary basis discretizations for the case of reproducing kernel Hilbert spaces. To
avoid the curse of dimensionality we introduced regular sparse grids based on piece-
wise linear B-splines. Space- and dimension-adaptive refinement proved to be useful
enhancements, which further reduce costs as e.g. most of the attractors are not uni-
formly spread across the embedding space. Finally, we have computed numerical
results which showed that our algorithms achieve the same or even better results
than common SVM-based regression algorithms. The experiments also proved that
dimension-adaptive refinement is useful if the embedding dimension of the attractor
has been overestimated.
The problem of finding reliable estimates for the box-counting dimension of an at-
tractor has not been discussed in this paper. This is a crucial step for the application
of Takens’ theorem to real world data. In our further experiments, the Grassberger-
Procaccia algorithm proved quite successful to this end.
Another main problem that leads to non-stationarity is noise. Almost all real world
data are non-deterministic because of the occurrence of noise as a stochastic com-
ponent. Several noise-reduction methods and dimension estimators can be found in
the literature, see [19] for an overview. These techniques will be incorporated into
the sparse grid approach in the future.
Note finally that there are similarities to other existing methods: In [5], a sparse grid
approach for manifold learning applications was suggested. There also are links to

SPARSE GRIDS FOR TIME SERIES PREDICTION 25

a density estimation method with grid-based discretizations, see [12]. An approach
that is closely related, but approximates the sparse grid solution by a combination
technique, can be found in [6]. A comparison of cost complexity and achieved error
between our approach and this technique has still to be done.
Finally, since the curse of dimensionality is still present with respect to the sparse
grid level, it is desirable to reduce the dimension of the problem beforehand as good
as possible by linear techniques like the well-known SVD [9] or the LT approach of
[18].

References

1. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.
2. M. Casdagli, T. Sauer, and J. Yorke. Embedology. Journal of Statistical Physics,

65:576–616, 1991.
3. C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

4. C. Feuersänger. Sparse Grid Methods for Higher Dimensional Approximation.
PhD thesis, Institute for Numerical Simulation, University of Bonn, 2010.

5. C. Feuersänger and M. Griebel. Principal manifold learning by sparse grids.
Computing, 85(4), 2009.

6. J. Garcke. Maschinelles Lernen durch Funktionsrekonstruktion mit verallge-

meinerten dünnen Gittern. PhD thesis, Institute for Numerical Simulation,
University of Bonn, 2004.

7. J. Garcke and M. Hegland. Fitting multidimensional data using gradient penal-
ties and the sparse grid combination technique. Computing, 84(1-2):1–25, 2009.

8. T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature.
Computing, 71(1):65–87, 2003.

9. G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of
a matrix. Journal of the Society for Industrial and Applied Mathematics, Series

B: Numerical Analysis, 2(2):205–224, 1965.
10. P. Grassberger and I. Procaccia. Measuring the strangeness of strange attrac-

tors. Physica, D9:189–208, 1983.
11. M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on

finite differences. Computing, 61(2):151–179, 1998.
12. M. Griebel and M. Hegland. A finite element method for density estimation

with Gaussian priors. SIAM Journal on Numerical Analysis, 47(6), 2010.
13. M. Griebel and P. Oswald. Tensor product type subspace splitting and multilevel

iterative methods for anisotropic problems. Adv. Comput. Math., 4:171–206,
1995.

14. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the
solution of sparse grid problems. In P. de Groen and R. Beauwens, editors,
Iterative Methods in Linear Algebra, pages 263–281. IMACS, Elsevier, North
Holland, 1992.

15. M. Hegland. Adaptive sparse grids. ANZIAM J., 44:C335–C353, 2003.
16. M. Hénon. A two-dimensional mapping with a strange attractor. Communica-

tions in Mathematical Physics, 50:69–77, 1976.

26 Bastian Bohn and Michael Griebel

17. J. Huke. Embedding nonlinear dynamical systems: A guide to Takens’ theorem,
2006. Manchester Institute for Mathematical Sciences EPrint: 2006.26.

18. J. Imai and K. Tan. Minimizing effective dimension using linear transformation.
In Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 275–292. Springer,
2004.

19. H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge Uni-
versity Press, 2004. 2nd edition.

20. A. Krueger. Implementation of a fast box-counting algorithm. Computer Physics

Communications, 98:224–234, 1996.
21. L. Liebovitch and T. Toth. A fast algorithm to determine fractal dimensions by

box counting. Physics Letters A, 141(8,9):386–390, 1989.
22. B. Schölkopf and A. Smola. Learning with Kernels – Support Vector Machines,

Regularization, Optimization, and Beyond. The MIT Press – Cambridge, Mas-
sachusetts, 2002.

23. F. Takens. Detecting strange attractors in turbulence. Dynamical Systems and

Turbulence, Lecture Notes in Mathematics, (898):366–381, 1981.
24. J. Theiler. Efficient algorithm for estimating the correlation dimension from a

set of discrete points. Physical Review A, 36(9):4456–4462, 1987.
25. A. Tikhonov. Solution of incorrectly formulated problems and the regularization

method. Soviet Math. Dokl., 4:1035–1038, 1963.
26. G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Re-

gional Conference Series In Applied Mathematics. SIAM: Society for Industrial
and Applied Mathematics, 1990.

