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Abstract
In this paper, we introduce the octagon metric as a useful distance metric for the interactive visualization of
large–scale terrain data. Based on recursive bisection triangle meshes, this metric automatically ensures valid
distance–dependent triangulations without cracks or T–junctions. We will show how the octagon metric can be
used for view–dependent refinement at little computational cost and with no additional storage requirements.
It can easily be combined with a suitable geometric error metric to extract and render adaptive view–dependent
terrain meshes in an output–sensitive way. We show the performance of the whole system, which is straightforward
to implement, and its advantages over previous approaches in several examples.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling: Curve, surface, solid, and object representations

1. Introduction

In the last years, many algorithms with different strengths
and weaknesses have been proposed for level–of–detail ren-
dering of large terrains. Soon after the first successful solu-
tions, the need for output–sensitive algorithms, that is meth-
ods which scale with the number of output triangles, became
apparent. Thereby, the rendered triangles should represent
the visible part of the terrain as closely as possible. It turned
out that the following three components are crucial in order
to achieve this goal:

• Geometric adaptivity: The terrain should be represented
by triangles of varying size. Portions of the terrain which
are smooth can be represented by larger triangles, while
smaller triangles should be used in rougher areas.

• Distance–dependent refinement:Parts of the terrain
close to the viewer should be more detailed as parts far
away. The detail variation typically depends on the pro-
jected screen size of the triangles which decreases with
increasing distance to the viewer.

• Visibility culling: Only the terrain which is visible should
be rendered and, even more importantly, traversed in
memory. Here, we consider only the view culling part
which disregards all triangles outside the current view-
port. Occlusion culling which removes those triangles
which are hidden by closer portions of the terrain is re-
quired only for very low flyovers.

In this paper, we address these three components by es-
sentially the same method. Based on recursive triangle bi-
section, a binary tree of triangles is constructed. In a top–
down traversal of the binary tree, triangles are refined locally
if a suitable metric is above a user–defined (fidelity) thresh-
old, otherwise they are drawn. If the metric fulfills a certain
monotonicity property (sometimes called the saturation con-
dition), the resulting triangle meshes are always valid and do
not contain so–called hanging nodes or T–junctions which
lead to cracks in the terrain surface.

The metric we use is a combination of three parts which
reflect the three above components geometric adaptivity,
distance–dependence and view culling. Each part is an own
metric which independently fulfills the saturation condition.
We will show that a proper combination of these single met-
rics will lead to a saturated overall metric.

The construction of monotonic metrics for adaptive ge-
ometric refinement is well–known, see e.g.8, 7, 18, 19. For
distance–dependent refinement and view culling we will in-
troduce a new metric, the octagon metric. The octagon met-
ric has similar properties as the nested sphere hierarchy
2, 14, 15, which basically achieves the same goal. But, of all
the distance metrics which fulfil the saturation condition, the
octagon metric is the tightest possible metric. Thus, the re-
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sulting triangle meshes consist of the smallest number of tri-
angles which are necessary to define a valid triangular mesh.

In addition, we will show how the metric can be effi-
ciently computed on–the–fly and, therefore, does not require
any valuable memory or costly preprocessing. Furthermore,
we will show that the different refinement criteria are easy
to control and to adjust to new situations. This system pro-
vides a uniform and elegant framework for the generation of
view–dependent terrain triangulations. Moreover, the whole
approach is modular and further important algorithmic ter-
rain visualization features like geomorphing or triangle strip
generation are independent of the employed metric and can
be applied just like in previous publications.

After the following short discussion of related work we
recapitulate the top–down construction of adaptive triangle
meshes based on the saturation condition in Section 3. In
Section 4 we take a look at a few variants of geometric error
metrics. We consider various distance metrics and the deriva-
tion of the octagon metric in Section 5. In Section 6, met-
rics for view–dependent refinement and view clipping are
defined. How the single metrics can be combined is shown
in Section 7. We illustrate the performance of the new algo-
rithm with some examples in Section 8. Concluding remarks
are made in Section 9.

2. Related Work

The vast literature on view–dependent visualization of large
terrains can be roughly grouped into those based on regu-
lar grids and those using irregular meshes. Among the reg-
ular grid algorithms, quadtrees9, 13, 23 and triangle bintrees
5, 12, 14, 15, 19 are most prominent. Irregular mesh methods are
usually based on progressive meshes10, hierarchical De-
launay triangulations3, 4, or relocated regular grids20. Oc-
clusion culling of hierarchical terrains has been considered
e.g. in 16, 24. An overview of the different concepts and a
comparison of the various algorithms can be read in the re-
cent book of Luebke et.al.17.

In the now following short review we consider only reg-
ular grid approaches. Thereby, we distinguish between the
different techniques for view–dependent refinement. We will
not look at further issues such as triangle stripping, geomor-
phing, data layout and out–of–core behaviour, which are also
addressed in many of the publications in detail.

One of the first algorithms which provide adaptive view–
dependent terrain triangulations is that of Lindstrom et.al.13.
Essentially, the algorithms works bottom–up, merging pairs
of triangles until a screen space error tolerance is met.
Cracks are avoided by an explicit storage of the vertex de-
pendencies. In order to alleviate the inherent complexity
of the bottom–up approach, the method uses a top–down
coarse–grained simplification of rectangular terrain blocks
beforehand. However, stitching these blocks together re-
quires special care.

The ROAM algorithm of Duchaineau et.al.5 avoids these
problems using a top–down approach. The authors propose
dual priority queue for triangle split and merge operations.
The algorithm is incremental and adds or removes triangles
from a given triangulation as the viewer moves on. They use
a screen–based error metric using a hierarchy of bounding
volumes.

Röttger et.al.23 use a restricted quadtree approach and deal
with cracks by skipping the center vertex of the higher–
resolution edge. They enforce the restriction in a bottom–up
traversal of the affected parts of the quadtree. They use an
error metric which takes the distance from the viewer and
the local roughness of the terrain into consideration.

The work of Pajarola19 was among the first which
use a monotonic geometric error indicator. However, for
view–dependent refinement still forced recursive splitting of
neighbouring triangles, like in the ROAM algorithm, is done.

Ohlberger and Rumpf18 also use a monotonic geometric
error, and they obtain a local top–down algorithm through an
almost nested distance metric. Cracks are avoided by a dis-
tance function which compensates for this deficiency. This
imposes some restrictions on the derivative of the distance
function, though.

A major improvement over the ROAM algorithm was pre-
sented by Blow2. He precomputes a hierarchy of spherical
isosurfaces which contain all vertices within a certain error
bound. This way, a top–down algorithm is provided in which
a triangle is split if the viewpoint intersects the sphere and
triangles are merged if the viewpoint moves outside.

The SOAR algorithm of Lindstrom and Pascucci14, 15

draws on virtually all previous works on terrain visualiza-
tion. In particular, they improve on Blow’s work with the
help of nested bounding spheres. This allows a dynamic er-
ror threshold, more general error metrics and avoids poten-
tial cracks in the terrain surface generated by Blow’s algo-
rithm. The approach adopted in this paper is in many ways
similar to this work. It significantly differs in the construc-
tion and application of error and distance metrics, though.

In the most recent work, Levenberg12 improves the graph-
ics I/O performance of the ROAM algorithm by aggregating
triangles into blocks. During block construction, however,
special care has to be taken in order to ensure that triangula-
tions match at block boundaries.

3. Top–Down Terrain Triangulation

In this section we will shortly illustrate the recursive trian-
gle bisection hierarchy, the basic rendering algorithm and
the saturation condition on the error metric. The facts in this
section are well–known but they are necessary to understand
the rest of the paper.
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Figure 1: The recursive bisection hierarchy. Refinement ver-
tices are black circles, their respective parents are white cir-
cles. The parent–child relationship is indicated by arrows.

3.1. Recursive Triangle Bisection

Let us assume that the terrain is given on a square regular
grid with n = 2k + 1 elevation valuesh(xi ,y j ), 0≤ i, j < n
in each direction. The initial triangulation consists of two
isosceles triangles∆(v1,v2,v3) with a right angle atv2
which cover the square. From the initial triangulation finer
triangulations are recursively constructed by splitting all tri-
angles in two. To this end, the midpoint of the longest edge
is chosen as a new vertexvre f (T), called the refinement
vertex, and the two new triangles are given byC1(T) =
∆(v2,vre f ,v1) andC2(T) = ∆(v3,vre f ,v2) (see Figure1).

By this refinement procedure a binary tree hierarchy is
inferred on the triangles. All refinement vertices are shared
by two triangles except on the boundary. The vertices itself
have no tree structure but form a directed acyclic graph. Each
refinement vertex (except on the boundary) has two parent
vertices which indicate the two vertices which have to be
present in the mesh before this vertex can be introduced. In
turn, each parent vertex except on the boundary has four chil-
dren. This parent–child relationship is depicted in Figure1.

Now, an adaptive triangulation is simply defined by the se-
lection of an appropriate subgraph of the whole graph. This
way, hanging nodes, which occur if two triangles sharing a
refinement vertex are not refined conformingly, are avoided.
Hanging nodes are undesirable because they will lead to
cracks in the terrain since the surface defined by the trian-
gulation is no longer continuous.

3.2. The Target Rendering Algorithm

Before we come to this selection in practice, we want to il-
lustrate the final structure of the triangulation algorithm. The
goal is a top–down, depth–first traversal of the binary tree of
triangles which can be stated in pseudo–code as follows:

visit(Coord v1, v2, v3; Level l; Thresh eps) {
Coord vref=(v1+v3)/2;
if (mu(T) < eps)

render_triangle(v1, v2, v3);
else {

visit(v2, vref, v1, l+1);
visit(v3, vref, v2, l+1);

}
}

For each triangle during the traversal, a yet–to–be spec-
ified metricµ(T) is compared against a given thresholdε.
If this metric exceeds the threshold then the triangle is re-
fined, else it is drawn. This way, the rendering algorithm is
completely local since at no point neighbouring triangles are
accessed. The remaining questions are now: how can this
metric be defined and how is the threshold selected?

3.3. The Saturation Condition

We will now consider a sufficient condition for the metricµ,
the so–called saturation condition, such that for any thresh-
old ε the resulting triangulation contains no hanging nodes.
To this end, the metricµ(T) for a triangleT is not assigned
to the triangle itself but to its refinement vertexvre f (T), i.e.

µ(T) = µ(vre f (T)).

This way, the two triangles sharing the refinement vertex
are assigned the same metric and are thus refined in unison.
However, it can still happen that a descendant of one of the
two triangles is refined at their common boundary while the
other is not. Therefore, the saturation condition18 states that
the metric of every triangle has to be at least as large as the
metric of all its children, i.e.

µ(T)≥max{µ(C1(T)),µ(C2(T))}.

In the next chapters we will see how metrics which satisfy
the saturation condition can be constructed in practice.

4. Geometric Refinement Metrics

The three components geometric adaptivity, distance–
dependent refinement and view culling of an interactive ter-
rain visualization system can be addressed by three different
metrics. In this section we will take a look at the computation
of geometric refinement metrics. There is a large variety of
methods for hierarchical geometric distance measurement.
For an overview and comparison, see e.g.8. We will shortly
illustrate a few useful variants which are needed later here.

4.1. Vertical Distance Metric

When a refinement vertex is added to a given triangula-
tion, the corresponding piecewise linear surface changes lo-
cally. The added (or subtracted) portion has the shape of a
four–sided pyramid. The height of this pyramid is the ver-
tical deviation between the original and the refined surfaces
and serves as a well–known geometric distance metric (often
called one–level lookahead error). This metric has been used
in many approaches such as in7, 14, 15, 18, 19.

The vertical distance metricµgeo(T) can be computed lo-
cally on the triangleT = ∆(v1,v2,v3) using the elevation
values on the refinement edge ofT by the formula

µgeo(T) =
∣∣∣∣h(vre f )−

1
2
(h(v1)+h(v3))

∣∣∣∣ .
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Figure 2: A few examples for the construction of saturated
geometric distance metrics on a5×5 elevation grid.

Note that in this definition both triangles sharing the refine-
ment vertexvre f are automatically assigned the same value.

The vertical distanceµgeo could be efficiently computed
on–the–fly, but it does, in general, not fulfil the saturation
condition. However, a minimally saturated metric ¯µgeo can
be constructed in a precomputation step in a level–wise
bottom–up traversal of the binary tree by the recursive for-
mula

µ̄geo(T) = max{ µgeo(T), µ̄geo(C1(T)), µ̄geo(C2(T)) } ,

with µ̄geo(T) = µgeo(T) on the finest level. Note that a
depth–first traversal would not be sufficient. The values of
the metricµ̄geo(T) = µ̄geo(vre f (T)) can be stored at the re-
finement vertex positions in a square array (only the four
corners of the square are not needed).

4.2. Relative Vertical Distance Metric with Bounds

The vertical distance metric ¯µgeoworks very well in practice
as an indicator of terrain roughness. However, it has a sig-
nificant drawback: it does not provide robust error bounds.
From the values ofµgeo(T) or µ̄geo(T) and the current trian-
gleT, it is not possible to derive upper and lower bounds on
the variation of the terrain insideT. Such bounds are nec-
essary for view–dependent refinement based on a screen–
based error and are useful for a variety of other uses such as
clipping, occlusion culling, line–of–sight and horizon com-
putation, collision detection, and the extraction of isolines.

We will therefore construct a metric ˜µgeo(T) which allows
upper and lower bounds on the variation of the terrain inside

a triangleT relative to the elevation value of the refinement
vertexh(vre f (T)). Note that this metric corresponds to+–
type error indicators in8 and to the vertical part of the nested
sphere bounds in14, 15.

On the finest level, four triangles share the vertexv2 which
is the common refinement vertex of their two parent triangles
(on the boundary, only two triangles are considered). The
metricµ̃geo is defined on the finest level as the maximum of

max{|h(v1)−h(v2)|, |h(v3)−h(v2)|}

for all triangles incident onv2. Now, again in a level–wise
bottom–up traversal a saturated metric can be computed by

µ̃geo= max{|h(vre f (T))−h(vre f (C1(T)))|+ µ̃geo(C1(T)),

|h(vre f (T))−h(vre f (C2(T)))|+ µ̃geo(C2(T))}.

This way, we know that for any triangleT in the hierarchical
triangulation, the terrain inside the triangle is bounded by
h(vre f (T))± µ̃geo(T).

4.3. Vertical Min/Max Bounds

Th relative vertical distance metric ˜µ gives bounds on the
terrain, but not very tight ones. A third way is to compute
the explicit min/max bounds on the terrain by recursively
setting

max(T) = max{h(vre f (T)),max(C1(T)),max(C2(T))},

min(T) = min{h(vre f (T)),min(C1(T)),min(C2(T))},

where max(T) = max{h(v1),h(v2),h(v3)} and min(T) =
min{h(v1),h(v2),h(v3)} on the finest level. Then,

µ̂geo(T) = max(T)−min(T)

can serve as a saturated geometric distance metric with tight
bounds.

4.4. Comparison

In Figure2 we give a small example of geometric metrics on
a 5×5 terrain grid. We compare the vertical distance metric
with saturation ¯µ to the relative vertical distance ˜µ and the
vertical min/max bounds. We see that the smallest values are
computed for the vertical distance metric ¯µ, but in this case
we have no robust error bounds. The relative metric ˜µ usu-
ally overestimates the real min/max bounds, which give the
optimum result.

However, in terms of memory requirements the min/max
bounds require two integer values while the other two met-
rics need only one integer. In case, memory is a premium and
bounds are required, the relative distance metric ˜µ perform
best.
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Figure 3: The set of hierarchical descendants of a given
point in the hierarchy has the shape of an octagon. Shown
are the octagons for odd (left) and even (right) levels. Only
those descendants with the largest distance from the center
are displayed.

5. Distance Metrics

While saturated geometric metrics are known for several
years now, saturated metrics for distance–dependent refine-
ment were found only recently (see2, 14). The main require-
ments are horizontal bounds on the triangulation, as opposed
to vertical bounds on the terrain which were considered in
the previous section. For simplicity, we consider in this sec-
tion only the two–dimensional case. The 3–D case is treated
in the following section. We will describe a few distance
metrics based on bounding shapes and introduce the octagon
distance.

5.1. Bounding Shapes

Let B(T) be a two–dimensional nested bounding shape for a
triangleT, i.e.

B(T)⊇ ∪{B(C1(T)),B(C2(T))}.

with T ⊆ B(T). Popular examples for such bounding shapes
are bounding rectangles and bounding circles2. Then, the
(Euclidean) distance from a certain pointp in the plane (con-
sider e.g. the projection of the viewpoint) to the bounding
shaped(p,B) is a distance metric which, per definition, sat-
isfies an inverse saturation condition, that is,

d(p,B(T))≥max{d(p,B(C1(T))),d(p,B(C2(T)))}.

Therefore, metrics such asµ(T) = 1/d(p,B(T)) or µ(T) =
dmax−d(p,B(T)) satisfy the (original) saturation condition
and can be used as a refinement criterion.

Bounding circles are especially useful here, sinced(p,B)
can be computed quickly byr−||p,c||, wherec is the center
andr the radius of the sphereB(T). The distance to a rectan-
gular bounding shape is more involved since a case table has
to be used which differentiates to which side or which corner
of the rectangle the distance has to be measured depending
on the location ofp relative toB(T).

In any case, for regular triangle meshes, the diameters of

=

=

Figure 4: The octagons have refinement relations as de-
picted above for even (top) and odd (bottom) levels. Each
octagon is the union of the octagons of its four children.

bounding circles or bounding rectangles do not have to be
stored for every triangle but follow easily computable rules.

5.2. The Set of Hierarchical Descendants

In a similar way that the relative vertical distance bounds
overestimate the vertical min/max bounds of the terrain, the
horizontal bounding circles or bounding rectangles overesti-
mate the horizontal extent. We will now try to find the mini-
mum shape which is required for horizontal bounds.

Let us therefore consider the set of hierarchical descen-
dants of a given refinement vertex, i.e. all vertices on larger
levels which have this refinement vertex as an ancestor ac-
cording to the parent–child relationship of Figure1. As al-
ready observed in1, the set of descendants has roughly the
shape of an octagon. The limit shape is indeed an isothetic
octagon (i.e. an octagon with sides parallel to the horizontal,
vertical and diagonal axes). In fact, two octagon types arise
with two different shapes whose sizes depend on the level of
the refinement vertex (actually, octagons corresponding to
vertices near the boundary are clipped at the boundary, but
for simplicity we ignore this fact for now).

Figure3 shows the shape of these octagons for even and
odd levels. In even levels, the set of descendants is generated
by starting in the middle and moving one square in diagonal
direction, then one square in horizontal or vertical direction,
then half a square diagonally, then half a square horizontally
or vertically and so on. For odd levels, the first diagonal step
is omitted. Let the length of the first step, which is the dis-
tance from the refinement vertex (in the middle) to one of
its four sons, be denoted bys. Then, in even levels the limit
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v l

p

T

Figure 5: The octagon distance from a pointp to a triangle
T is the distance ofp to its corresponding octagon ol (T).
Similarly, the octagon distance from a linel to the triangle
is the distance betweenl and its octagon ol (T).

octagon has side lengths 2s horizontally and vertically and
2
√

2sdiagonally. In odd levels the side lengths are reversed.

Since the octagon is the limit shape of all descendants of a
given vertex, which themselves have octagonal limit shapes,
the octagons must have refinement relations. In Figure4 we
show these refinement relations. Each octagon correspond-
ing to a refinement vertex is the overlapping union of the oc-
tagons of the four sons of this vertex. This is the important
nesting property which is required for the saturation condi-
tion.

5.3. The Octagon Distance

Before we are able to define a distance metric based on these
octagons, we need to define them more formally. Let us de-
fine the octagon around a refinement vertexv of level l as

ol (v) =


{x : ||v−x||∞ ≤ 3

2 ·2
−l and||v−x||1 ≤ 2 ·2−l}

if l is even,

{x : ||v−x||∞ ≤ 2 ·2−l and||v−x||1 ≤ 3 ·2−l}
if l is odd.

wherex = (x1,x2), ||x||∞ = max{x1,x2} and||x||1 = x1 +
x2. In other words, the octagonol (v) consists of all the points
which have a distance fromv in horizontal, vertical and diag-
onal direction which is smaller than certain level–dependent
constants. The extent is 3s in the four directions following
from the refinement vertex to its four sons and 2

√
2s in the

four rotated directions.

Now, like in the Section 5.1, the octagon distance of an
arbitrary pointp in the plane to a triangleT is defined as
the Euclidean distance to its corresponding octagonol (T) =
ol (vre f (T)), i.e.

doct(p,T) = d(p,ol (T))

(see Figure5). If p is in the interior ofol , we will set the oc-
tagon distance to zero. Alternatively, in the interior the dis-

p

p

p
v

Figure 6: The octagon distance has to be computed to differ-
ent sides or vertices of the octagon depending on the loca-
tion of the pointp. Using the eightfold symmetry of octagons,
three cases remain.

tance could be defined as the negative distance to the bound-
ary of the octagon.

The octagon distancedoct can be efficiently computed us-
ing the eightfold mirror symmetry of the octagons. By sym-
metry it is e.g. possible to mirror the vertexp until it lies to
the top right ofvre f (T) and thex1–coordinate ofp is larger
than itsx2–coordinate. Then, only three cases remain. In the
first case, the distance is measured to the left horizontal side
of the octagon, in the second case, it is measured to its top
left diagonal side and in the third case, it is measured to
the lower of its two top–left vertices (see Figure6). In prac-
tice, the octagon distance can be computed about as fast as
e.g. the distance of a point to a bounding circle.

An example for the computation of octagon distances on
a 5×5 grid is shown in Figure7. There, one can see that the
octagon distance from a pointp to a given vertex is always
smaller than the octagon distances to its descendants.

The octagon distance is optimal in the sense that it is the
smallest distance with bounds which satisfies the inverse sat-
uration condition. This can be proven rigorously by showing
that an octagon encompasses all triangles on the finest level
whose refinement vertices are descendants of the vertex as-
sociated with the octagon. Furthermore, it is easy to see that
all triangles on the finest level outside the octagon are no
descendants of this vertex and thus the metric is as tight as
possible.

Note that the nested circle hierarchy is much less tight.
The circle diameter is about 50% larger than the diameter of
the corresponding octagons (except on the finest levels the
diameters compare approximately like 2+

√
2 to

√
5).

5.4. Octagon Distance with Maximum Level

Since the octagons are the limit shapes for the set of hier-
archical descendants, they are independent of the maximum
level of the hierarchical triangulation. Thus, the octagons can
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Figure 7: In this example we show the squared octagon dis-
tances (in order to avoid square roots) from the pointp to
the refinement vertices of a5×5 grid. The distance between
the grid points is1. The corresponding octagons of the two
encircled vertices are shown dashed.

even be used if data sets at higher resolution are inserted dy-
namically in an out–of–core system (see7) or if fractal inter-
polation or subdivision is used to refine the terrain beyond
the resolution of the original data.

If the maximum level of the terrain is fixed, the size of
the octagons can be reduced further somewhat (although the
change is significant only on higher levels). The reduced oc-
tagon sizes in horizontal, vertical, and diagonal direction are
obtained by a multiplication with a factor of 1−2−(lmax−l)/2.

5.5. Octagon Distance for Lines

The octagon distance with respect to points can be used for
distance–dependent refinement, as we will see in the next
section. For view clipping, the octagon distance with respect
to clipping planes is required. This corresponds in two di-
mensions to a distance metric with respect to lines.

The octagon distance of a linel : ax1+bx2 = c to a triangle
T is simply defined as

doct(l,ol (T)) = min
x∈l

doct(x,ol (T)),

i.e. it is the distance of the line to the corresponding octagon
of T (see Figure5). Obviously, this distance metric also sat-
isfies an inverse saturation condition and can thus be used as
a refinement criterion.

The octagon distance with respect to lines can be com-
puted as efficiently as the octagon distance with respect to
points. The only difference is that the different cases depend
on the normal ofl and that only the vertices of the octagon
have to be considered.

Figure 8: The two types of octohedra have as base an oc-
tagon and as height the bounds of the corresponding geo-
metric distance.

6. View–Dependent Refinement

In the previous section we have only considered two–
dimensional distance metrics. For view–dependent refine-
ment we will now consider their natural extension to three
dimensions. We will define the octohedron and derive corre-
sponding distance and view culling metrics.

6.1. The Octohedron

We will now extend the octagons inx3 direction using upper
and lower bounds for the elevation values inside the triangles
described in Section 4. This leads to optimally tight bound-
ing shapes for terrain. We define the 3–D octohedronOl (T)
(not to be mistaken with octahedron) by

Ol (T) = {x : (x1,x2)∈ ol (T), |x3−h(vre f (T))| ≤ µgeo(T)},

whereµgeo is one of the geometric distance metrics with
bounds. The resulting octohedra are depicted in Figure8.

The octagon distancedoct of a point or a plane in three
dimensions to a triangleT are defined analogously to the 2–
D case as the distance to its corresponding octohedron. For
the computation of the octagon distance just one more case
has to be added which discriminates if the point is above
or below the octohedron. In this case, the octagon distance
is measured to the corresponding (top or bottom) face of
the octohedron. Let us remark here, that the octohedra give
much tighter bounds as bounding spheres14, 15. Especially if
the terrain is rough, the diameter of bounding spheres will
quickly become very large.

6.2. The Distance Metric

The main idea behind view–dependent visualization is to try
to achieve an equal distribution of the approximation error
after projection to the screen. Here, the octohedron can serve
as a footprint of the projection. Since projected triangle area
decreases quadratically with the distance to the viewer we
define a saturated distance metric by

µdist(T) =
1

doct(p,Ol (T))2 .

Let us remark here, that this metric can easily be replaced by
different distance metrics for other applications.
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6.3. The View Culling Metric

Hierarchical view culling is surprisingly the most time–
consuming algorithmic part of terrain visualization. Never-
theless, especially for large terrains it is the most important
part since it reduces the number of visited and drawn trian-
gles most immensely.

For view culling we have to consider the six clipping
planes, (respectively their normals). Now, a saturated culling
metric is simply given by the characteristic function of the
octagon distances of the clipping planesPi : ax1 + bx2 +
cx3 = c, 1≤ i ≤ 6,

µcull(T) =
{

1 if doct(Pi ,Ol (T))≤ 0 for all Pi ,
0 else.

In this way, refinement takes place as long as the correspond-
ing octagon intersects the viewing area. If the octagon is
completely outside the area, refinement is not necessary and
the current triangle can be drawn or entirely skipped. Note
that the number of triangles outside the viewing area is usu-
ally small compared to the number of finally drawn triangles
(because they get large quickly with increasing distance to
the viewing area). Drawing triangles outside the area can be
advantageous if triangle strips are used for rendering (see
7, 14, 15, 19). Outside triangles are then discarded by the graph-
ics engine after clipping.

Note that not every octohedron has to be checked against
all clipping planes. If a parent octohedron is completely on
the inside of a clipping plane, clipping against this plane is
not necessary for its children any more (see15).

7. Metric Combination

Now, we will show how the three metrics for geometric
adaptivity, distance–dependent refinement and view culling
can be combined into a single metric which also fulfills the
saturation condition. In the following, we will illustrate how
saturated metrics can be in principle combined, we select
a particular useful combination and address the question of
threshold selection.

7.1. A Little Metric Algebra

In principle, metrics could be combined at will, but often the
saturation condition will not be fulfilled any more for the
combined metric. We will now show a few possible valid
combinations. Letµ1 andµ2 be two saturated metrics, then
the following combined metricsµ are also saturated:

• Addition: µ= µ1 +µ2
• Multiplication: µ= µ1 ·µ2
• Maximum:µ= max{µ1,µ2}
• Minimum: µ= min{µ1,µ2}

Note, that the difference or the quotient of two metrics is
in general not saturated. However, iff (x) is a (not neces-
sarily strictly) monotonically increasing function inx, and

µ a saturated metric thenf (µ) is also saturated. Since the
constant metricµ = c is trivially saturated, multiplication or
addition of a constant to a metric also does not change the
saturation condition.

The proofs of these properties of saturated metrics are
simple adaptions from the theory of monotonic functions
(e.g. the sum of two monotonic functions is again a mono-
tonic function). The large variety of possible combinations
shows the great flexibility in the construction of saturated
metrics and allows easy adjustment to new situations.

7.2. The Combined Metric

Now we are finally able to define the overall view–dependent
metric. Let us first observe that the single metrics already
have the correct asymptotic behaviour. The geometric met-
ric increases linearly with the roughness of the terrain and
the distance–dependent metric decreases quadratically with
the distance. The culling metric is just an indicator function.
Therefore, we only have to multiply the three metrics in or-
der to get a combined metric with also has the correct asymp-
totic behaviour:

µ(T) = µgeo(T) ·µdist(T) ·µcull(T).

At this point, it is not necessary to weigh the three met-
rics differently, since any constants can be thrown over to
the right–hand side (the threshold). If only multiplication is
used, threshold selection can be performed totally indepen-
dent of way the metrics are combined.

Let us note here that this combined metric has in fact a
similar structure (although not at first sight) as the one used
by Lindstrom and Pascucci in14, 15. It is, however, much eas-
ier to modify. For example, parts of the terrain (e.g. airports)
can be highlighted through inclusion of a new saturated met-
ric which measures the distance to the highlighted part. Ter-
rain tiles of different resolution can be seamlessly merged by
a saturated metric which measures the distance to the higher
resolution part. Metrics could be turned on and off dynami-
cally.

7.3. The Threshold

Let us recall that the target rendering algorithm refines a tri-
angle if the overall metric is larger than a given threshold
ε, otherwise it is drawn. There are several ways how to se-
lect this threshold, depending on the goal of the visualization
system.

If a stable frame rate is paramount, the threshold has to be
adapted from frame to frame. If the number of drawn trian-
gles increases too strongly in between frames, the threshold
is increased as well. If the number decreases, the thresh-
old can be also decreased (yielding a higher image qual-
ity). Since typically the number of drawn triangles decreases
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quadratically with the threshold increment, a good adjust-
ment guess for the threshold is simply the square root of the
triangle count difference.

In other applications, image quality is most important. For
example, it might be desirable that the output image of a
view–dependent terrain renderer should be identical to the
full terrain. In this case, a screen–space error tolerance is
computed against which the error threshold is compared, see
e.g.13, 14, 15. Due to the multitude of approximations involved
in error measurement and projection, the screen–space error
is usually either not met exactly or has to be overestimated.
The octagon metric, however, allows tight screen–space er-
ror bounds.

8. Examples

We will now illustrate the different metrics and their inter-
play with a few examples. We use a 4096× 4096 terrain
grid which is part of the gtopo30 data set (courtesy by the
US Geological Survey) covering the northern part of central
Europe. In this data set, ocean areas are marked (by -9999).
Triangles are not drawn, if at least one of the height values of
its three vertices is in the ocean (this shows the coastlines).

Let us first show the behaviour of three single metrics
in two dimensions. In Figure9 we show triangulations us-
ing only the (normalized) geometric distance metric ¯µgeo for
thresholds of 1, 0.1, 0.01 and 0.001. For this example, we
modified the metric slightly by increasing the threshold at
coastlines artificially prior to saturation. This enhances the
coastlines significantly since height differences in coastal ar-
eas is usually quite small yielding small geometric errors.
We see that this way at coastlines and in mountainous areas
(in central Germany) triangles are smaller than in flat areas
(Denmark or the Netherlands).

In Figure 10 we illustrate the behaviour of the distance
metric µdist. Here, again, the metric is normalized and the
thresholds are 1, 0.1, 0.01 and 0.001 from left to right. It is
visible that the triangle size increases continuously with in-
creasing distance from the viewpoint. Note that for the left-
most image, the number of triangles is the minimal number
of triangles required to refine at the viewpoint up to the finest
level.

The culling metric is shown in Figure11 for three clip
lines. Here, the threshold is 0.5 in all images, but the maxi-
mum level increases by two from left to right from 8 to 14.
We see that the triangles outside the triangular clipping area
does not change with the maximum level but stays exactly
the same. This tells us the octagon metric used for culling is
tight and thus optimal.

In Figure12we show the combined view–dependent met-
ric again for thresholds of 1, 0.1, 0.01 and 0.001. The re-
sult is an overlay of the three metrics and shows exactly the
desired behaviour. Triangles are large in smooth areas, in-

crease slowly with the distance to the viewpoint and increase
sharply outside the viewing area.

In three dimensions (Figure14 and13) we compare the
vertical distance metric together with the nested sphere hi-
erarchy (like as they are used in the SOAR algorithm, left)
with the octagon distance together with relative vertical dis-
tance bounds (middle) and vertical min/max bounds (right).
Shown is a view from the south with the Upper Rhine Valley
(a great wine–growing area) in the foreground. The terrain
is textured with a simple elevation–dependent colormap.

Figure13 illustrates the view–dependent triangle meshes
generated by the three algorithms. In this example, the trian-
gle counts are 81.934, 77.029 and 74.323 from left to right.
For the same error threshold the octagon metric together
with the min/max bounds yield the best approximations.

In Figure 14 we show the view clipping performance.
Here the clip area is indicated by the square in the middle
of the images. From left to right, the number of rendered tri-
angles is 34.969, 22.707 and 21.035. We see that the nested
sphere hierarchy overestimates the vertical extent of the ter-
rain for clipping and many unnecessary triangles are gener-
ated especially above the clip area, but also to the other areas
outside the clip area. The min/max bounds yield the small-
est triangle count with the relative vertical distance bounds
performing only slightly worse.

9. Concluding Remarks

In this paper, we have illustrated the construction, combina-
tion and use of metrics which satisfy the saturation condi-
tion for view–dependent refinement of large terrain meshes.
We introduced the octagon metric as a universally applicable
and optimal distance metric and showed its application for
distance–dependent refinement and view culling. Finally, we
have shown how metrics can be combined in order to define
new metrics which have the same properties as the originals.

Let us note again, that the whole system is very general
and can easily modified and adapted to incorporate differ-
ent behavior. In addition, advanced features such as trian-
gle stripping, geomorphing, data compression and out–of–
core management can be implemented identically to previ-
ous publications (see of the following references, most of
them deal with some these features).

Finally, the octagon metric can be directly extended to en-
able view–dependent visualization of volume data based on
recursive bisection tetrahedral meshes. We will show the cor-
responding construction (e.g. for multiresolution isosurface
extraction) in a companion paper.
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Figure 9: The geometric distance metric µgeo for thresholds of1,0.1,0.01, and0.001.

Figure 10: The distance metric µdist based on the octagon distance for thresholds of1,0.1,0.01, and0.001.

Figure 11: The culling metric µcull based on the octagon distance for maximum levels of8,10,12, and14.

Figure 12: The combined metric µ= µgeo·µdist ·µcull for thresholds of1,0.1,0.01, and0.001.
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Figure 13: Shown is a view from the south over the Upper Rhine Valley in Germany. We compare view–dependent triangulations
for the vertical distance metric together with the nested sphere hierarchy (left), the octagon distance together with relative
vertical distance bounds (middle), and the octagon distance with vertical min/max bounds (right).

Figure 14: For the same metrics as above we show here the clipping behaviour of the three algorithms. The viewport has been
artificially reduced and is indicated by the square region in the middle of the images.
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