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Abstract

In this article, we develop a continuum mechanical model to simulate deformation and
phase transformation processes in shape memory alloys. The model is based on a detailed
description of the stored energy. Furthermore, the energy dissipation due to phase transfor-
mations is taken into account via the maximum-dissipation principle. The results from the
3D numerical simulations of stress induced transformations from the cubic to the tetrago-
nal phase and martensitic variant reorientations in NiMnGa are compared with laboratory
experiments on NiMnGa [001]-oriented single crystals.
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1 Introduction

The functional thermomechanical behavior of shape-memory alloys (SMAs)
has been investigated in the past decades from both the experimental and the theo-
retical viewpoints. SMAs undergo solid-to-solid phase transformations between the
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high symmetry austenite phase (typically cubic) and several martensite phases with
lower symmetries (i.e. tetragonal, trigonal, orthorhombic or monoclinic) which oc-
cur in various variants (mostly 3, 4, 6 or 12). Phase transformations can be induced
by temperature and mechanical stress and are typically dissipative. In spite of a
very good knowledge of the crystallography, physics and thermodynamics of phase
transformations and a vast amount of experimental data available in the literature
(see Frémond and Miyazaki (1996)), the prediction of the thermomechanical be-
havior of SMAs still remains a difficult problem.

Recently, magnetically actuated SMAs such as NiMnGa or CoNiAl have at-
tracted special attention. Experimental results suggest that selected materials, be-
sides their magnetic applications, can be used similarly as superelastic SMAs, see
for example Karaca et al. (2003) or Sozinov et al. (2004). They exhibit a narrow
stress hysteresis at slightly higher temperatures than superelastic SMAs, even in
the polycrystalline state. In this respect, modeling and numerical simulation is of
interest. This way, the behavior of fine martensite microstructures in single crystals
and the related energy dissipation can be predicted to some extent. The modeling
can be approached either on the atomistic level or on various continuum mechani-
cal levels (Pitteri and Zanzotto (2002), Roubı́ček (2000, 2004)). There are a lot of
models for SMAs. Let us name, without any ambitions for completeness, the mod-
els of Falk (1980, 1982), Falk and Konopka (1990), Frémond (1987), Frémond and
Miyazaki (1996), James (1996), Leclerq et al. (1995), Raniecki et al. (1992), Mielke
et al. (2002), Rajagopal and Srinivasa (1998), Kružı́k and Otto (2004), Mielke and
Roubı́ček (2003), Roubı́ček (2000) and others. In this article, we use the model
proposed in Roubı́ček (2000), which was further developed theoretically and nu-
merically in Arndt et al. (2003), Plecháč and Roubı́ček (2002) and Rajagopal and
Roubı́ček (2003).

In this paper, we compare the results of three-dimensional numerical simula-
tions of compression tests on NiMnGa single crystals with the results of laboratory
experiments. In Section 2, we discuss how SMAs store and dissipate energy and
formulate the mathematical model. Section 3 is devoted to the experiments. First,
we describe the laboratory experiments for the cubic to tetragonal martensitic trans-
formation and variant reorientation in a NiMnGa single crystal under compression.
Then, we explain the discretization and the numerical solution procedure for this
model. Furthermore, the results of both the laboratory experiments and the simula-
tions are discussed and compared to each other. Here, special attention is payed to
the stress-strain relation and to the hysteretic behavior. Some concluding remarks
are given in Section 4.

2 Mathematical model of phase transformations

In the past two decades, there has been an intensive effort among both, mathe-
maticians and physicists, to describe the multiwell character of the stored energy in
SMAs in detail. Often, this was motivated by the belief that the minimum-energy
principle governs the steady-state configurations as in conventional small-strain
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elasticity. Sometimes, even only the positions of the local minima of the free en-
ergy have been examined. Particular contributions to this topic are due to Ball and
James (1987, 1992), Bhattacharya (1992, 2004), Bhattacharya et al. (1994), Er-
icksen (1986, 1987), Müller (1999) and many others, see for instance James and
Hane (2000), Luskin (1996) and the references therein. Although the minimum-
energy principle is sometimes questionable (Rajagopal and Roubı́ček (2003)), it
qualitatively explains many phenomena which have been observed experimentally
in SMA, especially various types of microstructure. Therefore, the detailed descrip-
tion of the stored energy is important and serves as the departure point for the
derivation of most mathematical models.
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Fig. 1. Hard device loading of a 9×5×5 mm SMA specimen.

2.1 Stored energy

There is one natural state of the material, namely the parent austenite in the
stress-free configuration. We assume that the specimen is suitably fixed in a loading
device like in Figure 1. The domain in space it then occupies is called the reference
configuration Ω ⊂ R3. The function y : Ω → R3 denotes the deformation and u :
Ω → R3 the displacement, related by y(x) = x + u(x) for x ∈ Ω. Hence ∇y = I +
∇u, where I ∈ R3×3 denotes the identity matrix and ∇ is the Lagrangian gradient
operator. The stored energy density ϕ : R

3×3 → R in the bulk related to the elastic
response is assumed to depend on the deformation gradient F , i.e.

ϕ = ϕ(F), F = ∇y = I+∇u. (1)

The Piola-Kirchhoff stress σel : Ω → R
3×3 is then given by

σel(∇y) = ϕ′(∇y). (2)

Let us note that more general energy functions which additionally depend on higher
order derivatives have been studied in Arndt and Griebel (2005).

The requirement of frame indifference leads to ϕ(F) = ϕ(RF) for all R ∈
SO(3), where SO(3) denotes the special orthogonal group of orientation-preserving
rotations of R3. This requirement makes the specific stored energy ϕ in fact depend
only on the right Cauchy-Green tensor C = F>F . Besides, ϕ is subjected to the
symmetry relation ϕ(S>FS) = ϕ(F) for all matrices S from the symmetry group of
the parent austenite.
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Let us now explain how the stored energy density ϕ is constructed from exper-
imentally available data. SMA crystals can occur in various stress-free configura-
tions. In the case of a NiMnGa alloy which we are interested in here, there are a
cubic austenite phase and a lower-symmetrical phase, called martensite. The lat-
ter is tetragonal and has three variants by symmetry, see Ball and James (1992),
Bhattacharya (1992), Bhattacharya et al. (1994) and James and Hane (2000) for a
detailed explanation. These stress-free configurations are determined by four dis-
tortion matrices Fα, α = 0,1,2,3, where α = 0 corresponds to the cubic austenite
phase and α = 1,2,3 to the martensitic variants. As the stress-free parent austenite
is naturally considered as the reference configuration, we set in view of (1)

F0 = I =








1 0 0

0 1 0

0 0 1








. (3)

The other matrices F1, F2 and F3 refer to the particular variants of the tetragonal
martensite and are given by

F1 =








η2 0 0

0 η1 0

0 0 η1








, F2 =








η1 0 0

0 η2 0

0 0 η1








, F3 =








η1 0 0

0 η1 0

0 0 η2








. (4)

The lattice parameters of the Ni-29.1wt.%Mn-21.2wt.%Ga alloy considered here
are a0 = 0.5839nm for the cubic austenite at temperature T = 323 K and aM =
bM = 0.5945nm and cM = 0.5610nm for the martensite at temperature T = 293 K,
see Straka et al. (2004). Therefore we have η1 = aM/a0 ≈ 1.018 and η2 = cM/a0 ≈
0.961 in (4).

The free energy Ψ0 of the austenite has the form

Ψ0(F,T ) = ϕ̂0(ε)− cAT ln(T ), ε =
1
2(F>F − I), (5)

where T denotes the temperature and ε the Green strain tensor. The constant cA de-
notes the heat capacity of the austenite and ϕ̂0 the specific stored energy. Following
Ericksen (1986, 1987), the latter is given in the form of an anisotropic St. Venant-
Kirchhoff material, i.e. in the cubic case by

ϕ̂0(ε) =
C11

2 (ε2
11 + ε2

22 + ε2
33)+C12(ε11ε22 + ε11ε33 + ε22ε33)

+2C44(ε2
12 + ε2

13 + ε2
23).

(6)

For the elastic moduli C we use the standard Voigt notation. According to Mañosa
et al. (1997), the concrete values are given by C11 = 136 GPa, C12 = 92 GPa and
C44 = 102 GPa. Note however that values measured in laboratory experiments are
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considerably lower due to the softness of the testing machine, sample shape ef-
fects, and namely due to the uncertainty arising from precursor phenomena upon
stressing at temperatures near the transition temperature. Since these phenomena
in NiMnGa are not well understood yet, they cannot be considered in the model-
ing. To compensate for this, we scaled the elastic constants so that experimental
and theoretical moduli coincide. Note that the numerical experiments shown below
nevertheless correctly reproduce the elastic moduli as they are set up in the model.

Let us note that the quadratic form (6) gives the Cauchy stress σ = ϕ̂′
0(ε), i.e.

















σ11

σ22

σ33

σ23

σ13

σ12

















=

















C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 4C44 0 0

0 0 0 0 4C44 0

0 0 0 0 0 4C44

































ε11

ε22

ε33

ε23

ε13

ε12

















, (7)

when we take σi j = σ ji into account. Obviously we have ϕ̂0(ε) = 1
2 ∑3

i, j=1 σi jεi j.
For each particular martensitic variant, the strain must refer to the correspond-

ing stress-free configuration rather than to the cubic austenite. This means we re-
place the strain tensor by ε = 1

2(F−>
α F>FF−1

α − I). The free energy of the marten-
sitic variant is then given by

Ψα(F,T ) = ϕ̂α

(
F−>

α F>FF−1
α − I

2

)

− cMT ln(T )+ c0, α = 1,2,3, (8)

where cM is the heat capacity of the martensite and c0 is an offset. In general we
have cA > cM > 0 due to the shape memory effect which energetically prefers the
austenite phase for higher temperatures. For the quadratic form ϕ̂α we use the ex-
pression (6) from the austenite due to the lack of experimental data for the marten-
sitic moduli.

As usual in statistical physics, the overall specific free energy Ψ(F,T ) can be
taken as the thermal average

Ψ(F,T ) = −kBT ln
(

3
∑

α=0
e−

Ψα(F,T )
kBT

)

(9)

where kB is the Boltzmann constant per unit volume and T is the temperature.
However, we use two simplifications. First, the formula (9) is nearly identical to
the minimum

Ψ(F,T ) = min
α=0,...,3

(Ψα(F,T )) (10)

of the free energies Ψα, as the wells Fα are sufficiently distant from each other.
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Second, we linearize the overall offset of martensite against austenite by approxi-
mating

Ψ0(I,T)−Ψα(Fα,T ) ≈ C (T −Teq) =: ψα(T ), α = 1,2,3 (11)

around the so-called equilibrium temperature Teq. The equilibrium temperature
Teq is the temperature for which all wells have equal energy, i.e. Ψ0(I,Teq) =
Ψα(Fα,Teq). Thus Teq is determined by (cM − cA)Teq ln(Teq) = c0. Physical exper-
iments show that the martensite phase in an unloaded NiMnGa specimen starts
to appear upon cooling at the martensite start temperature Ms = 308 K and disap-
pears upon heating at the austenite finish temperature Af = 317 K, see Straka et al.
(2004). Thus we may assume that both phases are in equilibrium at the tempera-
ture Teq = 313K. The constant C is the Clausius-Clapeyron slope multiplied by the
transformation strain, here about 6%. From Straka et al. (2004) we also know that
the Clausius-Clapeyron slope is 3 MPa/K, which gives us C = 3 MPa/K · 6% =
180 kPa/K.

Setting ψ0 = 0, the linearization leads to

Ψ(F,T ) = min
α=0,...,3

(

ϕ̂α

(
F−>

α F>FF−1
α − I

2

)

+ψα(T )

)

− cAT ln(T ). (12)

The term cAT ln(T ) is neglected since an additive parameter is not relevant for the
potential here. We treat the temperature T as a fixed parameter and finally obtain
the stored energy

ϕ(F) = min
α=0,...,3

(

ϕ̂α

(
F−>

α F>FF−1
α − I

2

)

+ψα(T )

)

. (13)

Both options (9) and (13) exhibit the same multiwell character: the energies
have four local minima in the form of orbits. In (13), these orbits are precisely the
desired deformation gradients SO(3)Fα of the particular phase variants α = 0, . . . ,3.
Besides, (13) is much faster to evaluate numerically than (9). Therefore we use it in
our model. This accelerates the calculations considerably since ϕ and its derivatives
must be evaluated many times (typically around 1011 times) within the numerical
simulations presented below.

The overall elastic energy Vel is now given by

Vel(y) =

Z

Ω
ϕ(∇y)dx. (14)

Beside the above contribution to the stored energy from the deformation gradi-
ent, often higher-order terms are added to reflect the interfacial energies. Standard
interfacial energies are given by

Vif(y) =

Z

Ω
|∇2y|2 dx or Vif(y) =

Z

Ω
|∆y|2 dx, (15)
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see Abeyaratne and Knowles (1992). They contribute to the stress tensor by the
term −∇∆y or −∆∇y, respectively. This causes the interfaces to be diffuse rather
than sharp, which contradicts experimental evidence that interfaces observed in
SMA are often close to being atomically sharp, see Ren and Truskinovsky (2000).
As a remedy, a nonlocal energy of the form

Vif(y) =
1
4

Z

Ω

Z

Ω
K(x, x̃)|∇y(x)−∇y(x̃)|2F dxdx̃ (16)

with a suitable kernel K (see Rogers and Truskinovsky (1997)) can be used, where
|F|F = (∑i j F2

i j)
1/2 denotes the Frobenius norm of a matrix F . The interfacial energy

(16) contributes to the overall stress tensor by

σif(∇y) = ∇y(x)
Z

Ω
K(x, x̃)dx̃−

Z

Ω
K(x, x̃)∇y(x̃)dx̃. (17)

For kernels K(x, x̃) = |x− x̃|−3−2γ with 0 < γ < 1
2 , this approach allows for sharp

interfaces as shown in Arndt et al. (2003). Note furthermore that (16) is frame
indifferent in contrast to the interfacial energies (15).

2.2 Dissipation energy

The dynamics of martensitic phase transformations is a complicated and still not
fully understood process. There are intensive investigations based on the hypothe-
sis that the interface between various martensitic variants or between the austenitic
phase and particular martensitic variants moves as a whole two-dimensional inter-
face. It is assumed that its dynamics can basically be read off from the shape of the
stored energy, see Abeyaratne and Knowles (1992) or Truskinovsky (1994) and the
references cited therein. However, this does not seem to be relevant to phase trans-
formations in SMAs where the movement of one-dimensional singularities or dis-
locations can be activated by much lower energies than the whole two-dimensional
interface. On the continuum mechanical level, this process can only be modeled
phenomenologically up to now. One possibility was suggested by Abeyaratne and
Vedantam (1999), which results in a non-specified interface propagation speed.

Here we follow this approach to capture the energetics correctly to a good ex-
tent. We rely on the hypothesis that this determines the macroscopical response
of SMAs. To be more specific, the hypothesis for our model is that each partic-
ular phase transformation dissipates a specific amount of energy, independently
of the way and the speed of the transformation process. This reflects the experi-
mental observation that the hysteretic behavior of the stress-strain response is rate-
independent except for very fast loadings. Nevertheless this hypothesis is slightly
simplifying because a certain rate dependency inevitably comes from the intimate
coupling with the temperature field and possibly from other effects like the extra
dissipation in shock waves with supersonic speed (Abeyaratne and Knowles (1992),
Truskinovsky (1994)), inertial forces and viscous-like damping.

To incorporate the energy which corresponds to particular phase transforma-
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tions, we must distinguish the particular phases and phase variants. To this end, we
introduce a function

λ = λ(F) = (λ0(F), . . . ,λ3(F)) : R
3×3 → [0,1]4 (18)

which plays the role of a multidimensional order parameter. It is constructed to be
frame indifferent, i.e. λ(F) = λ(RF) for any R ∈ SO(3). Each λα equals one in a
neighborhood of the well SO(3)Fα and vanishes far away from it, in particular in
the neighborhood of the remaining wells SO(3)Fβ with β 6= α. The behavior of λ
in the spinodal region, i.e. away from all wells, does not seem to be important as
the deformation gradients mostly live in a rather close neighborhood of the wells.
Thus the overall energetics does not depend much on the modeling of the energy
in this region. Furthermore, we assume λ to be differentiable for technical reasons,
see Arndt et al. (2003) for more details. A similar construction which additionally
satisfies ∑3

α=0 λα = 1 has been proposed in Mielke and Theil (1999), Mielke et al.
(2002) and was further used in Govindjee et al. (2003) and Mielke and Roubı́ček
(2003).

Finally, we use Hill’s maximum-dissipation principle (see Hill (1948)) as given
in (25) below to make the dissipation of energy due to phase transformations rate-
independent like in conventional plasticity. The essential point is to postulate a
dissipation potential ξ : R4 → R which is convex, non-negative and positive homo-
geneous. Let us remark that its subdifferential

∂ξ : R
4 →→ R

4, ∂ξ(z) = {z∗∈R
4; ∀z̃∈R

4 : z∗ · (z− z̃)+ξ(z̃)≥ ξ(z)} (19)

is then so-called maximally responsive, see Eve et al. (1990). Here we use

ξ(z) =
3
∑

α=0
Eα|zα|, (20)

where the constants Eα ≥ 0 reflect the energy which is dissipated when the volume
fraction of the corresponding phase changes from 0% to 100% or vice versa. Be-
cause of the symmetry of the martensitic variants, we naturally have E1 = E2 = E3.
Hence we must set up the two parameters E0 and E1 which satisfy

E0 +E1 = specific energy dissipated during the A/M or M/A transformation,

2E1 = specific energy dissipated during the M/M transformation,
i.e. reorientation of martensite. (21)

The values for E0 and E1 will be determined from measurements in Section 3.1.
Let us remark that a nonsymmetric function ξ instead of (20) would allow us to
distinguish between the energy dissipated during the A/M and the M/A transfor-
mation. However, these values are not experimentally available, hence we stick to
the symmetric definition (20).

The quantity ξ
(

∂
∂t λ(∇y)

)

describes the specific dissipation rate. Thus the spe-
cific energy which is dissipated during all phase transformation processes over
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some time interval [0, t] is given by the total variation

ξ
(

Var
[0,t]

λ(∇y(x, ·))
)

=
3
∑

α=0
Eα Var

[0,t]
λα(∇y(x, ·)). (22)

Let us remind that the total variation Var[0,t] λα(∇y(x, ·)) for a differentiable func-
tion t 7→ λα(∇y(x, t)) is just equal to

R t
0
∣
∣ ∂

∂t λα(∇y(x,τ))
∣
∣dτ. The formula (22) counts,

roughly speaking, how many times a phase transformation happened at a current
point x ∈ Ω, independently of its speed.

The stress which is related to the dissipative mechanism (22) and which we
therefore call the (quasi)plastic stress is given by

σpl

(

∇y, ∂
∂t ∇y

)

= ω ·λ′(∇y) (23)

with

ω ∈ ∂ξ
(

∂
∂t λ(∇y)

)

= ∂ξ
(

λ′(∇y) : ∂
∂t ∇y

)

, (24)

where ∂ξ is defined by (19) and “:” denotes the scalar product of matrices. Par-
ticular components of the vector ω = ω(x, t) ∈ R4 represent specific energies (or
“pressures”) which drive the respective phase transformation, provided their mag-
nitudes achieve the activation thresholds Eα from (20). In particular, the inclusion
in (24) yields

∂
∂t λ(∇y) ·ω = max

z∈∂ξ(0)

∂
∂t λ(∇y) · z, (25)

see Eve et al. (1990) for detailed mathematical arguments. This resembles Hill’s
maximum-dissipation principle which says that the driving energies ω = (ω0, . . . ,ω3)
make the dissipation of the phase transformation maximal among all admissible
driving energies ∂ξ(0) = ∏3

α=0[−Eα,Eα] for the considered volume-fraction rate
∂
∂t λ(∇y). An alternative way to express the same principle like in plasticity the-
ory is that the rate of plastic deformation belongs to the cone of outward normals
of the elasticity domain. In our context, it means that the rate ∂

∂t λ(∇u) of phase
transformations belongs to the normal cone of the “elasticity domain” ∂ξ(0) at the
point ω. In particular, (25) says that ∂

∂t λ(∇y) = 0 if ω is inside ∂ξ(0), i.e. the vol-
ume fractions do not change if there is not enough driving stress to activate the
transformation.

Moreover, it is reasonable to augment the interfacial stored energy (16) by its
respective viscous mechanism Vif(

∂
∂t y), especially for the analysis. This reflects the

general experience that no physical mechanism can store energy with 100% effi-
ciency, i.e. without any dissipation. The viscous stress is then given by σif(

∂∇y
∂t ).

Let us note that a viscous mechanism of this form obeys the law of frame indiffer-
ence, in contrast to other standard viscous terms like |∆yt |2 or |∇2yt |2, see Antman
(1998) for a detailed discussion.
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2.3 Mathematical model and energy balance

We model the phase transformation on the basis of the stored energy and the
dissipative mechanisms described in Sections 2.1 and 2.2, respectively. This leads
to the evolution equation

ρ
∂2y
∂t2 −div

(

σel(∇y)+σpl

(

∇y, ∂∇y
∂t

)

+σif

(

µ∇y+ν
∂
∂t ∇y

))

= 0, (26)

where σel stems from (2), σpl from (23) and σif from (17). The constants µ ≥ 0 and
ν ≥ 0 denote the “capillarity” and “viscosity” coefficients. We neglect the gravity
body forces by setting the right hand side in (26) to zero, which is reasonable since
they are smaller by several orders of magnitude than the elastic and plastic forces.
Because of (24), the system (26) represents rather a differential inclusion than an
equation.

We prescribe the initial conditions for the deformation y(x,0) = y0(x) at the
starting time t = 0 as well as the velocity ∂y

∂t (x,0) = v0(x). The precise initial de-
formation depends on the respective experiment and will be given in Section 3.2.
The initial velocity v0(x) is set to zero to express that the specimen is originally in
a non-moving state. Moreover, (26) has to be completed by suitable boundary con-
ditions. In view of the typical arrangement of laboratory experiments, we consider
hard-device loading which acts on the part Γ0 of the boundary ∂Ω of the specimen
Ω as indicated in Figure 1. This type of loading can be incorporated by Dirichlet
boundary conditions y(x, t) = yD(x, t) for x ∈ Γ0. The remaining part Γ1 = ∂Ω\Γ0
of the boundary is stress free, i.e. the normal stress

(

σel
(
∇y
)
+σpl

(
∇y, ∂∇y

∂t
)
+σif

(
µ∇y+ν

∂∇y
∂t
)
)

~n (27)

vanishes. Here~n =~n(x) denotes the normal vector to Γ1.
An important justification of the model is the energy balance of the process over

some time interval [0, t]. It can be obtained by multiplying (26) with the velocity
∂y
∂t , using Green’s formula in space and integrating over the space Ω and the time
interval (0, t). This gives

E
(

y(t), ∂y
∂t (t)

)

︸ ︷︷ ︸

total energy
at time t

+

Z t

0
R
(

y(τ), ∂y
∂t (τ)

)

dτ
︸ ︷︷ ︸

dissipated
energy

= E(y0,v0)

︸ ︷︷ ︸

total energy
at time 0

+

Z t

0

Z

Γ0
σn ·

∂y
∂t dS

︸ ︷︷ ︸

work of
external forces

dτ (28)

where σn is the normal stress on the part Γ0 of the boundary ∂Ω with prescribed de-
formation, see Arndt et al. (2003) for more details concerning σn. The total energy
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E in (28) involves the kinetic energy and all stored energies:

E(y,v) = Vkin(v)+Vel(y)+µVif(∇y)

=
Z

Ω

(
ρ
2
|v|2 +ϕ(∇y)+

1
4

µ
Z

Ω
K(x, x̃)|∇y(x)−∇y(x̃)|2F dx̃

)

dx. (29)

R is the dissipation rate over the volume Ω. It is given implicitly by
Z t

0
R
(

y(τ), ∂y
∂t (τ)

)

dτ =
Z

Ω
ξ
(

Var
[0,t]

λ(∇y(x, ·))
)

dx+2ν
Z t

0
Vif

(
∂
∂t ∇y

)

dt. (30)

If the deformation function y is smooth, R can be written as

R(y,v) =
Z

Ω
ξ(λ(∇y) : ∇v)dx+2νVif(∇v). (31)

The important trick to obtain the term ξ
(
Var[0,t] λ(∇y(x, ·))

)
from (26) is the for-

mula

σpl

(

∇y, ∂∇y
∂t

)

: ∂∇y
∂t = ω ·λ′(∇y): ∂∇y

∂t = ω ·
∂
∂t λ(∇y) =

3
∑

α=0
Eα

∣
∣
∣
∣

∂
∂t λα(∇y)

∣
∣
∣
∣

(32)

which holds for any choice of ω satisfying (24). Of course, the energy dissipated
during the phase transformation is eventually transformed to heat because there are
no permanent structural changes in SMAs. We assume that the process is suffi-
ciently slow so that the created heat is lead off and the specimen is kept at constant
temperature.

In case of ν > 0, the energy balance (28) can be proved thanks to the presence
of the viscous-like term div

(
σif(ν∂∇y

∂t )
)

in (26), see Arndt et al. (2003) and Plecháč
and Roubı́ček (2002). This term regularizes and prevents the development of shock
waves which might dissipate additional energy. Otherwise (28) only holds as an
inequality, see Abeyaratne and Knowles (1992) or Truskinovsky (1994).

3 Compression experiments with NiMnGa single crystals

In this section, we discuss our experimental and numerical compression exper-
iments for a NiMnGa alloy and compare their results.

3.1 Laboratory experiments

The specimens consist of Ni-29.1wt.%Mn-21.2wt.%Ga single crystals grown
by a modified Bridgman method by AdaptaMat Ltd., Finland. They have been cut
in the martensite state as cuboids with dimensions 4×4×10 mm and edges parallel
to the [100], [010] and [001] directions. In the unstressed austenite state, they are
slightly irregular with dimensions 9×5×5mm. Since the transformation to the five-
layered modulated tetragonal 5M martensite occurs at Ms = 308 K and the reverse
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transformation to the cubic phase occurs at Af = 317K, the specimen exists at room
temperature in the martensite phase.

The specimen was deformed by compression at the temperatures 293 K and
323 K in a Tiratest 2300 testing machine which is equipped with a hot air temper-
ature chamber, see Figure 1 for a schematic diagram. At T = 323 K, the loading
started from the austenite state. In order to obtain a defined material state in the
reorientation experiments which start from the martensite state at T = 293 K, the
specimen was subsequently compressed up to 60 MPa along all three crystal direc-
tions [100], [010] and [001]. As a consequence, the specimen mostly consisted of
one martensitic variant with the c-axis ([001] martensite direction) oriented along
the last direction of stressing. The specimen was placed into the deformation ma-
chine with the c-axis perpendicular to the load axis and deformed by compression
at the selected temperature. More details for the experimental setup can be found
in Straka et al. (2004).
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Fig. 2. Stress-strain diagram of the laboratory experiments at T = 293 K (left) and
T = 323 K (right).

The stress-strain curves measured at T = 293 K and T = 323 K are shown in
Figure 2. The martensite reorientation at T = 293 K proceeds with a very small
stress of 2–4 MPa and yields almost 6% of strain unrecovered upon unloading. In
spite of the large strain, the stored elastic energy and the dissipated energy are
very small. At T = 323 K, the specimen shows the typical pseudoelastic response
with a stress-induced cubic-to-tetragonal transformation at a transformation stress
of 50–70 MPa. It yields approximately 2.5% of compression strain recovered upon
unloading and a larger hysteresis width of about 20 MPa. Clearly the amounts of
stored and dissipated energy are much larger in the latter case.

The changes of microstructure during the variant reorientation process at T =
293 K are shown in Figure 3 as a sequence of surface photographs taken during the
compression experiment. The reorientation proceeds by a lateral motion of planar
interfaces which appear as lines on the surface. One martensitic variant (bright) is
switched into another martensitic variant (dark). During the transition process, the
specimen exhibits a mixture of both phases in form of a laminated microstructure.

The laboratory measurements also allow us to determine the values for the
model parameters E0 and E1 in Section 2.2. The dissipation energy per unit volume
for the austenite-martensite transformation and the backward martensite-austenite
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Fig. 3. Evolving microstructure in the laboratory experiment at T = 293K. The photographs
show the (010) plane of the crystal. (The photographs are taken from Straka et al. (2004).)

transformation is the area enclosed by the hysteresis loop of the stress-strain dia-
gram in Figure 2 (right). By numerical integration we obtain the value 668 kPa for
the area of hysteresis. In view of (21) we conclude 2(E0 +E1) = 668kPa. Concern-
ing the martensite-martensite transformation (left graph), the measurements only
provide the transition from one martensitic phase to another martensitic phase,
whereas the backward transformation has not been performed. Consequently the
loop in the graph is not closed. But due to symmetry, we can assume that the back-
ward transformation proceeds similarly to the forward transformation, only with
negative sign of the stress values. Thus twice the M/M dissipation energy equals
twice the area between the stress curve and the horizontal axis. The latter is de-
termined to be 192 kPa. According to (21), we therefore have 4 E1 = 2 · 192 kPa.
Altogether, we conclude

E0 = 238 kPa and E1 = 96 kPa. (33)

3.2 Numerical simulations

Now we come to the numerical simulation. Let us mention that comparable
numerical simulations for a mesoscopical model of NiMnGa alloys which involves
Young measures are given in Kružı́k and Roubı́ček (2004) and Roubı́ček and Kružı́k
(2005). Then, three-dimensional simulations similar to ours also have been per-
formed by Klouček and Luskin (1994). They focus on the dynamics of the marten-
site/austenite interface, but do not take quasi-plastic terms into account. Here, we
employ the model described in Section 2. Since the kinetic energy does not play a
substantial role due to the relatively slow transformation process, we neglect it here
by setting the mass density ρ to zero.

The model is discretized in space with finite elements on a tetragonal grid. To
this end, the rectangular domain Ω is uniformly decomposed into 163 cuboids,
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each of which is subsequently subdivided into 6 tetrahedra. This results in an over-
all uniform mesh of 24576 tetrahedra. The ansatz space are the P1 Lagrange finite
elements, which consist of all functions which are piecewise linear on each tetra-
hedron, continuous on the whole domain Ω and fulfill the boundary conditions:

VT ,t =
{

y ∈C(Ω;R3) : y|T is linear ∀T ∈ T , y(x) = yD(x, t) ∀x ∈ Γ0
}

. (34)

Here T denotes the set of tetrahedra.
The time discretization is done by finite differences. The time interval under

consideration is subdivided into time steps t j, j = 0,1,2, . . . , jmax. The solution
function at the time step j is denoted by y( j). We then reformulate our problem as
an incremental energy minimization problem:

For all j = 1,2,3, . . . , jmax find y( j) ∈ VT ,t j which minimizes the energy

V (y( j)) = Vel(y( j))+µVif(y( j))+ξ
(

λ(∇y( j))−λ(∇y( j−1))
)

+ ν̄Vif(y( j)− y( j−1)).

(35)

Each minimizer is now a solution of the discretized version of (26). This results
in an implicit Euler scheme which involves a nonconvex minimization problem at
each time step.

Since it is practically impossible to find a global minimum within the highly
nonconvex energy landscape, we employ a local minimization algorithm to find at
least a good local minimum. At each time step j, we use the solution y( j−1) of the
previous time step as a starting value. After applying the new boundary conditions
(recall that they are time dependent) and after adding a small random perturbation,
we perform several one-dimensional minimization steps in the direction of steepest
descent. The solution is then assigned to y( j). This technique is known as the gradi-
ent method. The step size of this line search algorithm is determined by a modified
Armijo method. Let us note that more elaborate schemes like variants of the con-
jugate gradient method have not proven successful in this context due to the highly
oscillating second derivative of the energy functional, see Arndt et al. (2003).

Since the local minimum obtained in this way is usually not a global mini-
mum, the procedure induces a certain amount of numerical dissipation. Therefore
we additionally use the simulated annealing technique (see Salamon et al. (2002))
to improve the minimization algorithm. This significantly reduces the numerical
dissipation.

The simulated annealing technique works as follows. At each time step j, a new
deformation function ỹ is generated first by adding a small random displacement
to the deformation function y( j) given by the minimization routine above. Second,
the energy V (ỹ) is computed. If it is lower than the original energy V (y( j)), the new
deformation is accepted unconditionally, i.e. we redefine y( j) as ỹ. Otherwise, it is
accepted with probability exp

(
V (y( j))−V (ỹ)

k

)

. Here k is a fixed parameter which de-
notes the annealing temperature. Third, the local minimization routine as described
above is applied to the newly obtained state. The whole procedure is repeated sev-
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eral times.
Further details of the numerical techniques and the supporting analysis includ-

ing a convergence proof can be found in Arndt et al. (2003) and Plecháč and
Roubı́ček (2002).

We have performed two numerical experiments which resemble the laboratory
experiments described in Section 3.1. For the first experiment at T = 293 K, the
initial conditions as introduced in Section 2.3 are given by y0(x) = F2x, where the
deformation matrix F2 is defined by (4). The initial deformation corresponds to the
martensitic variant of which the specimen in the laboratory experiment consisted
at the starting time. For the second experiment at T = 323 K, we set y0(x) = x to
mimic the austenite state. In both experiments, we use the initial velocity v0(x) = 0.
The constants for the dissipative mechanism as described in Section 2.2 are given
by (33).

In contrast to the laboratory experiments, the specimen can now be loaded not
only by compression, but also by tension. In the two numerical experiments be-
low, the specimen has been loaded by compression, then unloaded, then loaded by
tension and finally unloaded again.
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Fig. 4. Numerical simulation of the compression experiments: stress-strain diagram for
T = 293 K (left) and T = 323 K (right).

The stress-strain diagrams for the compression part of our simulations are given
in Figure 4. For the experiment with T = 293 K (left graph of the figure), the di-
agram shows a range from 0% to 6% compression strain where the M/M reorien-
tation takes place and where the transformation stress in relatively low. The height
of the hysteresis loop is controlled by the parameters E0 and E1 of the dissipa-
tive mechanism, see (33). Outside this transformation zone, the crystal shows a
perfectly elastic response without any dissipation. This behavior is in good corre-
spondence with the laboratory experiment.

In the experiment with T = 323 K, the pure austenite phase is active in the
beginning. The elastic behavior without any dissipation results in a straight line
from 0% to 1.5% compression strain in the stress-strain diagram (right graph of
Figure 4). Then, the A/M phase transformations with the typical hysteresis loop sets
in at 1.5% and lasts to 5%. The stress-strain diagram shows a distinct increase of
the stress at the beginning of the phase transformation, before the stress falls down
to the roughly flat region. Note that this nucleation peak is not a finite size effect
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of the discretization or a consequence of some failure of the numerical algorithm,
but is intrinsic to the transformation itself, see Truskinovsky and Vainchtein (2004)
for a detailed analysis. In a less distinct way, this peak can be observed in the
laboratory experiments as well, see Figure 2. Altogether, the stress-strain behavior
in this numerical experiment is also in relatively good correspondence with the
laboratory experiment.
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Fig. 5. Numerical simulation of the tension experiments: stress-strain diagram for the tem-
peratures T = 293 K (left) and T = 323 K (right).

Figure 5 shows the stress-strain diagrams under tension. For the case T = 293K
(left graph of the figure), one can clearly observe the linear elastic behavior of the
single martensitic variant without any dissipation. For the case T = 323 K (right
graph of the figure), a transformation from the austenite to a mixture of two marten-
sitic variants occurs, which is accompanied by a certain hysteresis.

Fig. 6. Evolving microstructure in the simulation of the compression experiment at
T = 293 K. The different gray shades indicate the different martensitic variants.
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In Figure 6, some snapshots of the M/M phase transformation of the specimen
in the compression simulation at 293 K are displayed, analogously to Figure 3 of
the laboratory experiments. The front plane shows the [100] and [001] directions,
the compression is applied in the horizontal direction. The different gray shades in-
dicate the different martensitic variants. The austenitic phase does not occur in this
experiment. One can clearly observe the same pattern of the laminated microstruc-
ture as in the laboratory experiment.
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Fig. 7. Left: Stress-strain diagram for the numerical simulation without dissipation,
T = 323 K. Right: Relative error in the energy balance, T = 293 K and T = 323 K.

For comparison reasons, we performed another compression simulation at T =
323 K for E0 = E1 = 0, i.e. when we switched the dissipative mechanism off. The
resulting stress-strain diagram is given in the left part of Figure 7. The hysteresis
loop in the transformation zone is very narrow compared to Figure 4. This shows
that our algorithm does not produce any noteworthy numerical dissipation for the
transformation from the austenitic phase to a single martensitic variant. Hence al-
most all dissipation in Figure 4 comes from the activated dissipative mechanism.
Note however that the numerical algorithm produces a certain amount of numerical
dissipation for the M/M transformation at T = 293 K which involves a complex
fine-scale microstructure as in Figures 3 and 6.

Furthermore, we assured that the energy balance (28) derived in Section 2.3 is
satisfied for the numerical simulations. A failing energy balance would indicate a
high numerical dissipation or other undesired effects. The right graph of Figure 7
shows the relative error of the energy balance (28). Shortly after the beginning of
the experiment with T = 293 K, it decreases to less than 0.2%. Even for the case
T = 323 K, it stays well below 2%. This gives a-posteriori feedback information
that the numerical errors are under control and that the optimization routine did not
fail during the simulation process.

4 Conclusion

The stress-strain behavior of [001]-oriented NiMnGa single crystals in com-
pression experiments was simulated. To this end, a continuum mechanical model
was formulated which is based on a non-convex multiwell potential energy func-
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tion and a plasticity-like rate-independent dissipative potential to deal with the me-
chanical hysteresis phenomenon. Numerical techniques were developed which al-
low the calculation of both the stress-strain constitutive response and the three-
dimensional martensitic microstructure evolution with a reasonable accuracy. The
simulation results were compared with the results of experimental compression
tests at T = 293 K (twinning in martensite) and at T = 323 K (pseudoelasticity due
to stress-induced martensitic transformation).

The results of the laboratory experiment and the computer simulation agree to a
large extent, and the relevant physical phenomena of mechanical response and mi-
crostructure evolution are captured quite well. Furthermore our numerical methods
are well capable to deal with the model.

Let us finally point out that the model and the numerical techniques can be used
to simulate the mechanical response and the martensite microstructure evolution
also in more complex deformation modes (for instance biaxial loading or twist-
ing) where many other SMA models fail. Also, more complex geometries can be
handled due to the flexibility of our finite element implementation.
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P., Frémond, M., Nguyen, Q. (Eds.), IUTAM Symposium on Variations of Domains and
Free-Boundary Problems in Solid Mechanics. Kluwer, Dordrecht, pp. 77–84.

Antman, S. S., 1998. Physically unacceptable viscous stresses. Z. Angew. Math. Phys.
49 (6), 980–988.

Arndt, M., Griebel, M., 2005. Derivation of higher order gradient continuum models from
atomistic models for crystalline solids. Multiscale Model. Simul.Accepted.
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Frémond, M., 1987. Matériaux à mémoire de forme. C. R. Acad. Sci., Paris, Sér IIB 304,

239–244.
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Kružı́k, M., Roubı́ček, T., 2004. Mesoscopic model of microstructure evolution in shape
memory alloys with applications to NiMnGa. Preprint No. 2003, IMA, University of
Minnesota.

Leclerq, S., Bourbon, G., Lexcellent, C., 1995. Plasticity like model of martensite phase
transition in shape memory alloys. J. Phys. IV 5, 513–518.

Luskin, M., 1996. On the computation of crystalline microstructure. Acta Numer. 5, 191–
257.
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