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ON THE OPTIMAL CONVERGENCE RATE
OF UNIVERSAL AND NONUNIVERSAL ALGORITHMS

FOR MULTIVARIATE INTEGRATION AND APPROXIMATION

MICHAEL GRIEBEL AND HENRYK WOŹNIAKOWSKI

Abstract. We study the maximal rate of convergence (mrc) of algorithms
for (multivariate) integration and approximation of d-variate functions from
reproducing kernel Hilbert spaces H(Kd). Here Kd is an arbitrary kernel all

of whose partial derivatives up to order r satisfy a Hölder-type condition with
exponent 2β. Algorithms use n function values and we analyze their rate of
convergence as n tends to infinity. We focus on universal algorithms which
depend on d, r, and β but not on the specific kernel Kd, and nonuniversal
algorithms which may depend additionally on Kd.

For universal algorithms the mrc is (r + β)/d for both integration and ap-
proximation, and for nonuniversal algorithms it is 1/2+(r+β)/d for integration
and a+(r +β)/d with a ∈ [1/(4+4(r +β)/d), 1/2] for approximation. Hence,
the mrc for universal algorithms suffers from the curse of dimensionality if d
is large relative to r + β, whereas the mrc for nonuniversal algorithms does
not since it is always at least 1/2 for integration, and 1/4 for approximation.
This is the price we have to pay for using universal algorithms. On the other
hand, if r+β is large relative to d, then the mrc for universal and nonuniversal
algorithms is approximately the same.

We also consider the case when we have the additional knowledge that the

kernel Kd has product structure, Kd,r,β =
⊗d

j=1 Krj ,βj
. Here Krj ,βj

are

some univariate kernels whose all derivatives up to order rj satisfy a Hölder-
type condition with exponent 2βj . Then the mrc for universal algorithms
is q := minj=1,2,...,d(rj + βj) for both integration and approximation, and
for nonuniversal algorithms it is 1/2 + q for integration and a + q with a ∈
[1/(4 + 4q), 1/2] for approximation. If rj ≥ 1 or βj ≥ β > 0 for all j, then the
mrc is at least min(1, β), and the curse of dimensionality is not present. Hence,
the product form of reproducing kernels breaks the curse of dimensionality even
for universal algorithms.

1. Introduction

High-dimensional integration and approximation are important in many practical
applications ranging from statistical mechanics to financial engineering. Depending
on the particular problem, functions belong to a specific function class that captures
their a priori known properties. Then the question arises: which algorithm is
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optimal? We can often construct optimal algorithms for a known function class.
But a slight change of the underlying class usually results in a different optimal
algorithm. Furthermore, the class of functions from which a specific given function
stems is usually not known, and thus it is not clear which optimal algorithm should
be used. Therefore, from a practical point of view, algorithms that are optimal for
only one class of functions are of limited interest. Instead one is interested in a
universal algorithm, which works well or (better yet) is almost optimal for a wide
range of function classes.

The problem of universality for integration has been studied for many years. The
earliest papers we could find where universality for integration is considered were
[3, 9]. In the univariate case, this problem was also addressed in [5, 14]. In the
multivariate case, the periodic setting was studied in [20, 21]. The nonperiodic case
was considered in [11, 12]. Here, universality of quadrature was (up to logarithmic
terms) achieved for the classes Cr

d and F r
d , i.e., for Hölder spaces and spaces of

functions with bounded mixed derivatives. In more general cases, however, no
results on the convergence rate of universal quadratures are known. The reader
may also consult [2], where the problem of universality is discussed from a more
general point of view.

In this article we study the optimal rate of convergence of universal and nonuni-
versal algorithms for multivariate integration and approximation for d-variate func-
tions from Hilbert spaces. Since we consider algorithms that use finitely many func-
tion values, we assume that the computation of a function value is a continuous
linear functional. This is equivalent to the assumption that the Hilbert spaces have
reproducing kernels. The theory of reproducing kernel Hilbert spaces [1] allows
us to describe function spaces in a concise and elegant way by means of a kernel
function. In this article, we consider universal algorithms that work for all repro-
ducing kernel Hilbert spaces H(Kd) whose kernels Kd have all partial derivatives
up to order r satisfying a Hölder-type condition with exponent 2β. Here, r is a
nonnegative integer and β ∈ [0, 1]. We denote the class of such kernels by Kd,r,β .
This type of smoothness for reproducing kernels has been studied in many papers.
An extensive list of references up to the year 2000 can be found in [15]. We stress
that universal algorithms depend only on the smoothness properties of the kernels;
i.e., they depend only on the smoothness parameters r and β and are independent
of the specific form of the kernel, whereas nonuniversal algorithms may additionally
depend on the form of the kernel.

We show that without loss of generality we may use nested linear algorithms, i.e.,
linear algorithms that reuse the previously computed function values. To be precise,
the (n+1)st step of such an algorithm uses n function values computed in previous
steps and at most one new function value that needs to be computed at this step.
We present a nested linear algorithm that is universal, since its weights and sample
points are dependent only on d, r, and β but not on the specific kernel. We show
that the error of this algorithm is of the order O(n−(r+β)/d) for all spaces H(Kd)
with Kd from the class Kd,r,β . Hence, its rate of convergence is (r+β)/d. We prove
that the rate of convergence (r+β)/d is optimal; i.e., there is no universal algorithm
with a better rate of convergence. This holds for both multivariate integration and
approximation. Lower bounds on the optimal order follow from known results,
mostly from [10, 17]. Upper bounds are proved here by constructing a kernel (or
equivalently, a Hilbert space) that is difficult for a given universal algorithm.
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We also study the optimal rate of convergence for nonuniversal algorithms. That
is, we want to find the largest possible p such that for every Kd from the class Kd,r,β ,
there exists an algorithm depending on Kd whose error is of the order O(n−p)
for all functions from H(Kd). It turns out that for multivariate integration, the
optimal rate of convergence for nonuniversal algorithms is 1/2 + (r + β)/d. For
multivariate approximation, we are able to present a bound a + (r + β)/d, with
a ∈ [1/(4 + 4(r + β)/d), 1/2], on the optimal rate of convergence.

Let us now compare the optimal rates of convergence of universal and nonuni-
versal algorithms. We start with multivariate integration. Observe that for d large
relative to r + β, the optimal rate of convergence of universal algorithms is small
and goes linearly to zero with d−1. This bad property can be seen more clearly if
we want to guarantee that the error achieved by an algorithm is at most ε. Then we
need to perform n = Θ(ε−d/(r+β)) steps of the corresponding universal algorithm,
and we encounter the curse of dimensionality, since n depends exponentially on the
number d of variables. For nonuniversal algorithms, however, the curse of dimen-
sionality is broken, since their optimal rate of convergence is always at least 1/2;
hence, it is enough to perform n = Θ(ε−2/(1+2(r+β)/d)) steps of the corresponding
nonuniversal algorithm to guarantee an error of size ε. Note that the exponent of
n is now at most 2. However, the factor in the Θ-notation has an (as yet) unknown
dependence on d; this dependence may be exponential, if not worse.

For multivariate approximation, the situation is similar. We have the curse of
dimensionality for universal algorithms, but no curse for nonuniversal algorithms,
since their optimal rate of convergence is always at least 1/4 and the number of
steps of the corresponding nonuniversal algorithm is at most Θ(ε−4). As before,
the factor in the Θ-notation is an unknown function of d, which may grow at an
alarming rate.

In short, the improvements in the optimal rate of convergence for nonuniversal
algorithms are significant for both multivariate integration and approximation. This
shows the price we have to pay if we want to use universal algorithms when d is
large relative to r+β. On the other hand, if r+β is large relative to d, the optimal
rates of convergence of universal and nonuniversal algorithms are approximately the
same, so that there is no serious loss in the order of convergence if we use universal
algorithms in this case.

Next, we consider kernels with product structure. In this case, the Hilbert space
H(Kd) is a tensor product of Hilbert spaces H(Krj ,βj

) of univariate functions with
the reproducing kernel Krj ,βj

that is rj times continuously differentiable and sat-
isfies a Hölder-type condition with exponent 2βj for j = 1, 2, . . . , d. The corre-
sponding class of such kernels is denoted by Kprod,d,�r,�β . This class corresponds to
Hilbert spaces H(Kd) of functions with bounded mixed derivatives. We prove that
for the class Kprod,d,�r,�β , the optimal order of convergence for universal algorithms is
q := minj=1,2,...,d(rj +βj) for both multivariate integration and approximation. For
nonuniversal algorithms, the optimal rate of convergence is 1/2+ q for multivariate
integration, and a + q with a ∈ [1/(4 + 4q), 1/2] for multivariate approximation.
The number d of variables now plays a different role than before. Observe that
the optimal rate of convergence of universal algorithms depends on d only through
the minimum of the local regularities rj + βj . If we consider the class Kprod,d,�r,�β

for which minj=1,2,...,d{rj + βj} ≥ a > 0 with a independent of d, then the opti-
mal rate is at least a, and the curse of dimensionality is not present for product
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kernels. Indeed, it is enough to use the corresponding universal algorithm with
Θ(ε−1/a) function values to compute an ε-approximation. As before, the factor in
the Θ-notation may be exponential in d. For nonuniversal algorithms we have even
better bounds on the optimal orders of at least 1/2 for multivariate integration,
and of at least the number a for multivariate approximation. Hence, we break the
curse of dimensionality of universal algorithms for the class Kd,r,β if we switch to
the class Kprod,d,�r,�β of product kernels with minj=1,2,...,d{rj + βj} ≥ a > 0 and a

independent of d. This means that the product structure of reproducing kernels is
a powerful property.

The remainder of this paper is organized as follows. In §2 we give some basics
of the theory of reproducing kernel Hilbert spaces. In §3 we state the problem of
multivariate integration and multivariate approximation. Then in §4, we introduce
the class of kernels Kd,r,β with global smoothness properties measured by the two
parameters r and β. We also recall that the Hilbert spaces H(Kd) with Kd from the
class Kd,r,β are subsets of the space of smooth continuous functions Cr,β(D). In §5,
we consider linear algorithms for the spaces Cr,β(D) and H(Kd) for multivariate
integration and approximation. We present nested linear universal algorithms with
optimal rates of convergence in §6. In §7 we study nonuniversal algorithms and their
optimal rates of convergence. In §8, we consider kernels with product structure and
derive their optimal rates of convergence. We finish with some concluding remarks
and open problems in §9.

2. Reproducing kernel Hilbert spaces

In this article we study multivariate integration and approximation for real func-
tions defined on D = [0, 1]d. We assume that these functions belong to a Hilbert
space H with associated inner product 〈·, ·〉H and norm ‖f‖H = 〈f, f〉1/2

H . We
assume that H is continuously embedded into L2(D). Thus, we consider inte-
grable functions f with respect to the Lebesgue measure for which ‖f‖L2(D) :=(∫

D
f2(t)dt

)1/2
< ∞. Furthermore, there is a nonnegative number c(H) depending

on the space H such that

(2.1) ‖f‖L2(D) ≤ c(H) ‖f‖H for all f ∈ H.

We will study algorithms that use finitely many function values. Then we need
to assume that for any x ∈ D, the linear functional f ∈ H �→ f(x) is continuous.
This is equivalent to the requirement that H be a reproducing kernel Hilbert space;
see [1]. Hence, H has an associated kernel Kd : D×D → R that is uniquely defined
by the following three conditions:

• Kd(·, t) ∈ Hd for all t ∈ D,
• (Kd(xi, xj))

n
i,j=1 is a symmetric and nonnegative definite matrix for all n

and points xi from D,
• f(t) = 〈f, Kd(·, t)〉H for all f ∈ Hd and all t ∈ D (reproducing kernel

property).
The theory of reproducing kernel Hilbert spaces can be found in detail in [1];

further aspects are discussed in, e.g., [15, 24]. This theory allows us to describe
function spaces in a concise and elegant way by means of a reproducing kernel.
Therefore, we denote in the following the Hilbert space H by H(Kd) and the as-
sociated inner product and norm by 〈·, ·〉H(Kd) and ‖ · ‖H(Kd), respectively. We
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now review some known properties of reproducing kernel Hilbert spaces, which are
especially relevant to the proof technique presented in this paper.

From the three properties of reproducing kernels it easily follows that

Kd(t, x) = 〈Kd(·, x), Kd(·, t)〉H for all t, x ∈ D,√
Kd(t, t) = ‖Kd(·, t)‖H for all t ∈ D,

|f(t)| ≤ ‖f‖H

√
Kd(t, t) for all f ∈ H, t ∈ D.

If H = H(Kd) is separable, then for an arbitrary orthonormal basis {ηi}, we
have Kd(·, x) =

∑dim(H)
i=1 ciηi with ci = 〈ηi, Kd(·, x)〉H = ηi(x). Therefore

(2.2) Kd(x, t) =
dim(H)∑

i=1

ηi(x)ηi(t) for all x, t ∈ D.

In a way, the reverse of this argument is also true; see [24]. To this end, let {ηi}∞i=1

be a given arbitrary sequence of linearly independent functions defined on D such
that

∑∞
i=1 η2

i (t) < ∞ for all t ∈ D. Consider the space H = span{η1, η2, . . . }
of functions f(t) =

∑∞
i=1 fiηi(t) with real numbers fi such that

∑∞
i=1 f2

i < ∞.
Observe that f(t) is well defined. For f ∈ H the coefficients fi are uniquely
determined since the ηi’s are linearly independent. The inner product in H is given
by requiring that the ηi’s be orthonormal, 〈ηi, ηj〉H = δi,j . Hence, for f, g ∈ H
we have 〈f, g〉H =

∑∞
i=1 figi, with fi and gi being the coefficients of f and g,

respectively. Then H is a Hilbert space. We claim that

Kd(x, t) =
∞∑

i=1

ηi(x)ηi(t)

is its reproducing kernel. Indeed, Kd(·, t) ∈ H for all t ∈ D. Consider the matrix
M = (Kd(xi, xj))n

i,j=1 for arbitrary n and xi, xj ∈ D. Clearly, M is symmetric.
Moreover, for arbitrary real numbers ai we have

n∑
i,j=1

aiajKd(xi, xj) =
∞∑

k=1

n∑
i,j=1

aiajηk(xi)ηk(xj) =
∞∑

k=1

(
n∑

i=1

aiηk(xi)

)2

≥ 0.

This proves that M is nonnegative definite. Finally, for all f ∈ H and t ∈ D we
have

〈f, Kd(·, t)〉H =
∞∑

i=1

fiηi(t) = f(t).

Hence, Kd is the reproducing kernel of H, as claimed.
Note that the Hilbert space L2(D) does not have a reproducing kernel, since

point evaluation t ∈ D �→ f(t) is not well defined for L2(D) and thus cannot be
continuous. It is easy to see that H(Kd) is continuously embedded in L2(D) if we
assume that

(2.3)
∫

D

Kd(t, t) dt < ∞.

Indeed, f2(t) ≤ ‖f‖2
H(Kd)Kd(t, t), and therefore (2.1) holds with

(2.4) c(H(Kd)) =
(∫

D

Kd(t, t) dt

)1/2

.
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In this case, Hd(K) is a proper subset of L2(D), and Kd(·, t) ∈ L2(D) for arbitrary
t ∈ D.

We add in passing that if (2.3) does not hold, then H(Kd) need not be a subset
of L2(D). Indeed, take a function h : D → R that is not integrable, say, h(x) = x−1

1

for x1 ∈ (0, 1] and h(x) = 0 for x1 = 0. Let Kd(x, t) = h(x)h(t). Then H(Kd) =
span{h} is a one-dimensional Hilbert space, and H(Kd) is not a subset of L2(D).

In this case
∫

D
Kd(x, t) dt =

(∫ 1

0
x−2 dx

)2

= ∞.
Many examples of reproducing kernel Hilbert spaces can be found in the litera-

ture; see, for example, [15, 24]. Here we only mention one example of a tensor prod-
uct Hilbert space that is often studied for multivariate integration. Let H(Kd) =
W 1

2 ([0, 1]) ⊗ W 1
2 ([0, 1]) ⊗ · · · ⊗ W 1

2 ([0, 1]), where W 1
2 ([0, 1]) is the Sobolev space of

univariate absolutely continuous functions f : [0, 1] → R for which f ′ ∈ L2([0, 1]),
under the inner product

〈f, g〉W 1
2 ([0,1]) = f(0)g(0) +

∫ 1

0

f ′(t)g′(t) dt.

The reproducing kernel Kd takes the form

Kd(x, t) =
d∏

i=1

(1 + min{xi, ti})

for x = [x1, x2, . . . , xd], t = [t1, t2, . . . , td] ∈ D. The inner product in H(Kd) is
given by

〈f, g〉H(Kd) = f(0)g(0) +
∑

∅�=u⊂{1,2,...,d}

∫
[0,1]|u|

∂|u|

∂xu
f(xu, 0)

∂|u|

∂xu
g(xu, 0) dxu.

Here, the sum is over all nonempty subsets u of the index set {1, 2, . . . , d}, and
therefore we have 2d − 1 terms. Each term is an integral over the |u|-dimensional
unit cube, where |u| denotes the cardinality of the set u. For x ∈ D, the vector xu

denotes the |u|-dimensional vector that consists of the components of xj with j ∈ u.
Finally, the vector (xu, 0) denotes the d-dimensional vector whose jth component
is xj for j ∈ u and is zero for j /∈ u. Details can be found in, e.g., [19].

3. Multivariate integration and approximation

For a reproducing kernel Hilbert space H(Kd) with kernel Kd satisfying (2.3),
we consider multivariate integration, INTd : H(Kd) → R, defined as

INTd(f) =
∫

D

f(t) dt,

and multivariate approximation, APPd : H(Kd) → L2(D), defined as

APPd(f) = f.

Here, we want to approximate functions f from the space H(Kd) in the weaker norm
of the space L2(D). Thus multivariate approximation is an embedding operator.

For the reader’s convenience, we recall some well-known facts about multivariate
integration and approximation. It is easy to see that INTd and APPd are continuous
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linear operators. Their norms are defined as

‖INTd‖ := sup
f∈H(Kd)

‖f‖H(Kd)≤1

|INTd(f)| and ‖APPd‖ := sup
f∈H(Kd)

‖f‖H(Kd)≤1

‖f‖L2(D).

Since |INTd(f)| ≤ ‖f‖L2(D), the relation ‖INTd‖ ≤ ‖APPd‖ directly follows. Fur-
thermore, f2(t)≤‖f‖H(Kd)Kd(t, t) and (2.4) imply ‖INTd‖≤‖APPd‖≤c(H(Kd)).

We first consider multivariate integration. Letting

hd(t) =
∫

D

Kd(x, t) dx for all t ∈ D,

it is easy to verify that hd is the Riesz representer for multivariate integration, i.e.,
that

INTd(f) = 〈f, hd〉H(Kd) for all f ∈ H(Kd)

and

‖INTd‖ = ‖hd‖H(Kd) =
(∫

D

∫
D

Kd(x, t) dx dt

)1/2

=
(∫

D

hd(x)dx

)1/2

.

We approximate INTd(f) by a quadrature

Qn,d(f) =
n∑

i=1

aif(xi),

with weights ai ∈ R and sample points xi ∈ D. Note that Qn,d is also a continuous
linear functional since

Qn,d(f) =
〈

f,
n∑

i=1

aiKd(·, xi)
〉

H(Kd)

.

Observe that

‖Qn,d‖ =
∥∥∥∥

n∑
i=1

aiKd(·, xi)
∥∥∥∥

H(Kd)

=
( n∑

i,j=1

aiajKd(xi, xj)
)1/2

.

The error INTd(f) − Qn,d(f) can be represented as

INTd(f) − Qn,d(f) =
〈

f, hd −
n∑

i=1

aiKd(·, xi)
〉

H(Kd)

.

The worst case integration error of Qn,d is defined as the largest error for all f in
the unit ball in H(Kd),

(3.1) eINT(Qn,d, Kd) = sup
f∈H(Kd)

‖f‖H(Kd)≤1

|INTd(f) − Qn,d(f)|.
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Then it is clear that

eINT(Qn,d, Kd)2 = ‖INTd − Qn,d‖2 =
∥∥∥∥hd −

n∑
i=1

aiKd(·, xi)
∥∥∥∥

2

H(Kd)

= ‖hd‖2
H(Kd) − 2

n∑
i=1

aihd(xi) +
∥∥ n∑

i=1

aiKd(·, xi)
∥∥2

H(Kd)

=
∫

D

∫
D

Kd(x, y) dxdy − 2
n∑

i=1

ai

∫
D

Kd(xi, y) dy

+
n∑

i,j=1

aiajK(xi, xj).(3.2)

In this way, we obtain a well-known explicit formula for the worst case integration
error.

Next, we consider multivariate approximation APPd : H(Kd) → L2(D). We
first have to find the adjoint operator APP∗

d : L2(D) → H(Kd). Observe that for
f ∈ H(Kd) and g ∈ L2(D) we have

〈f, APP∗
d(g)〉H(Kd) = 〈APPd(f), g〉L2(D) =

∫
D

f(t)g(t) dt

=
∫

D

〈f, Kd(·, t)〉H(Kd) g(t) dt =
〈

f,

∫
D

Kd(·, t)g(t) dt

〉
H(Kd)

.

Hence,

APP∗
d(g) (x) =

∫
D

Kd(x, t)g(t) dt for all g ∈ L2(D).

For f ∈ H(Kd), this yields

‖f‖2
L2(D) = 〈APPd(f), APPd(f)〉L2(D) = 〈Wd(f), f〉H(Kd) ,

where

(3.3) Wd = APP∗
d ◦ APPd : H(Kd) → H(Kd)

is given by

Wd(f) (x) = (APP∗
d ◦ APPdf) (x) = APP∗

d(f) (x) =
∫

D

Kd(x, t)f(t) dt

for all f ∈ H(Kd).

Clearly, Wd is a self-adjoint nonnegative definite operator satisfying

‖APPd‖ = ‖Wd‖1/2.

The norm of Wd is equal to the largest eigenvalue of Wd and is bounded by∫
D

Kd(t, t) dt.
We approximate APPd(f) by linear algorithms

(3.4) An,d(f) =
n∑

i=1

wif(xj),

where, xi ∈ D as before, but the weights wi are now functions from L2(D). Note
that An,d is a continuous linear operator. The worst case approximation error of
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An,d is defined as

(3.5) eAPP(An,d, Kd) = sup
f∈H(Kd)

‖f‖H(Kd)≤1

‖APPd(f)−An,d(f)‖L2(D) = ‖APPd −An,d‖.

The operator norm of ‖APPd−An,d‖ is equal to the square of the largest eigenvalue
of the operator (APPd − An,d)∗(APPd − An,d), for which no explicit formula is
known. Hence we do not have an explicit formula analogous to (3.2) giving the
worst case error for multivariate approximation. But it is known that the error of
An,d is at least equal to the square of the (n+1)st largest eigenvalue of the operator
Wd; see, e.g., [22].

However, it is straightforward to show that multivariate approximation is not
easier than multivariate integration. Indeed, for any approximation algorithm An,d

of the form (3.4), we can define a quadrature QA
n,d by integrating An,d(f) (t) over

t, so that

QA
n,d(f) =

n∑
i=1

(∫
D

wi(t) dt

)
f(xi).

Then

INTd(f) − QA
n,d(f) =

∫
D

(
f(t) −

n∑
i=1

wi(t)f(xi)
)

dt

and

(3.6)

|INTd(f) − QA
n,d(f)| ≤

[∫
D

(
f(t) −

n∑
i=1

wi(t)f(xi)
)2

dt

]1/2

= ‖f − An,d‖L2(D)

for all f ∈ H(Kd).

Hence,

(3.7) eINT(QA
n,d, Kd) ≤ eAPP(An,d, Kd)

for all approximation algorithms An,d.

4. Global smoothness

We want to find universal algorithms that will be efficient for a (possibly large)
class of Hilbert spaces with reproducing kernels. We determine these classes by the
global smoothness of their kernels. To this end, for a nonnegative integer r and
β ∈ [0, 1] we define Kd,r,β to be the class of reproducing kernels Kd such that

Kd ∈ C r,r(D × D),(4.1)

K
(α,α)
d (x, x) − 2K

(α,α)
d (x, y) + K

(α,α)
d (y, y) ≤ LKd

‖x − y‖2β

for |α| ≤ r and x, y ∈ D.
(4.2)

Here, we use standard multi-index notation: for α = [α1, α2, . . . , αd] with nonnega-
tive integers αj , we write D(α) = ∂|α|/∂xα1

1 · · · ∂xαd

d and |α| := α1+α2+· · ·+αd ≤ r.
We let C r,r(D × D) denote the space of functions on D × D whose partial deriva-
tives of order up to r are continuous, with K

(α,α∗)
d (x, y) = Dα

x Dα∗

y K(x, y) for
multi-indices α, α∗ and x, y ∈ D. Note that the nonnegative number LKd

in (4.2)
depends only on the kernel Kd. Thus we assume that Kd is r times continuously
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differentiable and all its rth derivatives satisfy a Hölder-type condition with the ex-
ponent 2β. Note that the specific choice of the vector norm in (4.2) is not important
since all vector norms are equivalent.

Kernels having this kind of smoothness have been well studied; see, e.g., [15]
and the references cited therein. In particular, for any f ∈ H(Kd) and any α with
|α| ≤ r, we have

(4.3) max
x∈D

|f (α)(x)| ≤ ‖f‖H(Kd)

{
max
t∈D

K
(α,α)
d (t, t)

}1/2

.

Formula (4.3) can be derived as follows. Differentiation of f(t) = 〈f, Kd(·, t)〉H(Kd)

results in
f (α)(t) =

〈
f, K

(0,α)
d (·, t)

〉
H(Kd)

.

In particular, for f = K
(0,α)
d (·, x) we have

K
(α,α)
d (t, x) = (K(0,α)

d (·, x), K(0,α)
d (·, t))H(Kd).

For x = t we obtain
K

(α,α)
d (t, t) = ‖K(0,α)

d (·, t)‖2
H(Kd),

so that
|f (α)(t)| ≤ ‖f‖H(Kd)K

(α,α)
d (t, t)1/2,

which yields (4.3).
Furthermore, for |α| = r we have

f (α)(x) − f (α)(y) =
〈
f, K

(0,α)
d (·, x) − K

(0,α)
d (·, y)

〉
H(Kd)

and

|f (α)(x) − f (α)(y)| ≤ ‖f‖H(Kd) ‖K(0,α)
d (·, x) − K

(0,α)
d (·, y)‖H(Kd)

= ‖f‖H(Kd)

(
K

(α,α)
d (x, x) − 2K

(α,α)
d (x, y) + K

(α,α)
d (y, y)

)1/2

≤ ‖f‖H(Kd) L
1/2
Kd

‖x − y‖β ,

where we used (4.2) in the last estimate.
This shows that for Kd ∈ Kd,r,β we have H(Kd) ⊂ C r,β(D), where C r,β(D)

denotes the space of all functions from C r(D) whose partial derivatives up to order
r satisfy a Hölder condition with the exponent β. The norm in the space C r,β(D)
is given as

‖f‖C r,β(D) = max

⎧⎪⎨
⎪⎩ max

α: |α|≤r
max
x∈D

|f (α)(x)|, sup
α: |α|=r

x,y∈D, x�=y

|f (α)(x) − f (α)(y)|
‖x − y‖β

⎫⎪⎬
⎪⎭ .

Furthermore, for f ∈ H(Kd) we have

(4.4) ‖f‖C r,β(D) ≤ c(Kd, r, β)‖f‖H(Kd)

with c(Kd, r, β) = max
{

max
α: |α|≤r

max
t∈D

K(α,α)(t, t)1/2, L
1/2
Kd

}
.
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5. Algorithms for C r,β(D) and H(Kd) with Kd ∈ Kd,r,β

For the class C r,β(D) it is known that the optimal error bounds of algorithms for
multivariate integration and approximation are Θ(n−(r+β)/d); see [10, p. 34]. Thus,
the optimal rate of convergence is (r + β)/d. We now briefly discuss algorithms
achieving this optimal rate of convergence.

For k = 1, 2, . . . , we subdive the unit cube D into kd sub-cubes Dk,j of side-
length 1/k. The sub-cubes Dk,j are nonoverlapping with edges parallel to the
coordinate axes. Let l = r− 1 if β = 0, and l = r if β ∈ (0, 1]. Let ν =

(
d+l

l

)
be the

dimension of the linear space Pd,l of polynomials of d variables of degree at most
l. For each sub-cube Dk,j we use ν sample points x∗

k,j,1, x
∗
k,j,2, . . . , x

∗
k,j,ν from Dk,j ,

and ν polynomials w∗
k,j,1, w

∗
k,j,1, . . . , w

∗
k,j,ν of d variables of degree at most l such

that

p =
ν∑

i=1

p(x∗
k,j,i) w∗

k,j,i ∀ p ∈ Pd,l.

We consider algorithms for which the total number of sample points is nk = ν kd.
For multivariate approximation, we define the algorithm

A∗
nk,d(f) =

kd∑
j=1

ν∑
i=1

w∗
k,j,if(x∗

k,j,i),

and for multivariate integration, we define the quadrature

Q∗
nk,d(f) =

∫
D

A∗
nk,d(f) (t) dt =

kd∑
j=1

ν∑
i=1

a∗
k,j,if(x∗

k,j,i)

with a∗
k,j,i =

∫
D

w∗
k,j,i(t) dt.

Both algorithms involve nk sample points when k = 1, 2, . . . . For an arbitrary
positive integer n we proceed as follows. For n < ν, we set A∗

n,d = Q∗
n,d = 0. For

n ≥ ν, there exists a unique k such that n ∈ [nk, nk+1). We define

(5.1) A∗
n,d(f) = A∗

nk,d(f) and Q∗
n,d(f) = Q∗

nk,d(f).

The approximation error of A∗
nk,d in the space C r,β(D) is of order k−(r+β) =

Θ(n−(r+β)/d
k ) which can be proven by using Taylor’s theorem on each sub-cube

Dk,j . Since n = Θ(nk), the approximation error of A∗
n,d in the space C r,β(D) is of

order n−(r+β)/d, as claimed. Obviously, the same holds for multivariate integration,
due to (3.7). Hence, we have(

APPd(f) − A∗
n,d(f)

)
(x) = O

(
n−(r+β)/d ‖f‖C r,β(D)

)
, for all x ∈ D,(5.2)

‖APPd(f) − A∗
n,d(f)‖L2(D) = O

(
n−(r+β)/d ‖f‖C r,β(D)

)
,(5.3)

|INTd(f) − Q∗
n,d(f)| = O

(
n−(r+β)/d ‖f‖C r,β(D)

)
.(5.4)

Here, the factors in the O-notation do not depend on x, n, and f but may depend
on d, r, and β.

We emphasize that for different values of n the algorithms A∗
n,d and Q∗

n,d may
use different sample points. For example, consider the case n = nk+1 − 1. If we
increase n by 1, then we use a different partition of the cube D, and the new
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sample points x∗
k+1,j,i may not be related to the previous sample points x∗

k,j,i.
This is not a desirable property, since the number of function values used by, say,
A∗

1,d, A
∗
2,d, . . . , A

∗
n,d may be of order n2. The same holds for the quadrature case.

It would be better to have “nested” algorithms Anes
n,d and Qnes

n,d, i.e., algorithms of
the form

Anes
n,d(f) =

n∑
j=1

wn,jf(xj) and Qnes
n,d(f) =

n∑
j=1

an,jf(xj)

for some functions wn,j , numbers an,j , and some sequence x1, x2, . . . , xn, . . . of
sample points. The main idea behind nested algorithms is that the function values
used by, say, Anes

n,d are reused by Anes
n+1,d, so that we only need to compute at

most one extra function value f(xn+1) to obtain Anes
n+1,d(f). Hence, the number of

function values used by the sequence Anes
1,d , Anes

2,d , . . . , Anes
n,d is n. The same holds in

the quadrature case for the sequence Qnes
1,d , Qnes

2,d , . . . , Qnes
n,d.

We now show that it is possible to have nested algorithms for multivariate ap-
proximation and integration with the same order of convergence as A∗

n,d and Q∗
n,d,

respectively. Let X∗
n be the set of the sample points used by A∗

n,d and Q∗
n,d. We

form the sequence {xj} of sample points by taking

(5.5) X∗
20 , X∗

21 , . . . , X∗
2m , . . .

with an arbitrary ordering of the elements in the sets X∗
2m . Observe that the

cardinality of
⋃m

l=0 X∗
2l is at most cm = 2m+1 − 1. We are ready to define the

nested algorithms Anes
n,d and Qnes

n,d. For an arbitrary n ≥ 1, there exists a unique m

such that n ∈ [cm, cm+1). We set

(5.6) Anes
n,d(f) = A∗

2m,d(f) and Qnes
n,d(f) = Q∗

2m,d(f).

Thus, the algorithms Anes
n,d and Qnes

n,d are the same for n ∈ {cm, cm+1, . . . , cm+1−1},
coinciding with the algorithms A∗

2m,d and Q∗
2m,d that use the sample points from

the set X∗
2m . So Anes

n,d and Qnes
n,d use the first n elements of the sequence (5.5) as

sample points; the weights associated to the sample points not from the set X∗
2m

are zero. Clearly, n = Θ(2m) and therefore

‖APPd(f) − Anes
n,d(f)‖L2(D) = ‖APPd(f) − A∗

2m,d(f)‖L2(D)

= O(2−m(r+β)/d) = O(n−(r+β)/d),

as claimed. Obviously, the same results holds for multivariate integration.
We now comment on the errors of Anes

n,d and Qnes
n,d for f ∈ H(Kd) with Kd ∈ Kd,r,β .

We know that H(Kd) ⊂ Cr,β(D). Also, formula (4.4) states that ‖f‖C r,β(D) ≤
c(Kd, r, β) ‖f‖H(Kd) for all f ∈ H(Kd). Therefore for all f ∈ H(Kd) with Kd ∈
Kd,r,β , the estimates (5.2), (5.3), and (5.4) yield

(
APPd(f) − Anes

n,d(f)
)
(x) = O

(
n−(r+β)/dc(Kd, r, β)‖f‖H(Kd)

)
, for all x ∈ D,

‖APPd(f) − Anes
n,d(f)‖L2(D) = O

(
n−(r+β)/dc(Kd, r, β)‖f‖H(Kd)

)
,

|INTd(f) − Qnes
n,d(f)| = O

(
n−(r+β)/dc(Kd, r, β)‖f‖H(Kd)

)
.



CONVERGENCE RATE OF UNIVERSAL AND NONUNIVERSAL ALGORITHMS 1271

Furthermore, for the worst case approximation and integration errors of Anes
n,d and

Qnes
n,d we obtain

eAPP(Anes
n,d, Kd) = O(c(Kd, r, β) n−(r+β)/d)

and

eINT(Qnes
n,d, Kd) = O(c(Kd, r, β) n−(r+β)/d)

for all Kd ∈ Kd,r,β with c(Kd, r, β) given by (4.4). The factors in the O-notation
in the last five formulas are independent of x, n, and Kd, but may depend on d, r,
and β.

6. Universal algorithms

We are now ready to define the optimal rate of convergence for universal algo-
rithms for multivariate integration and approximation over H(Kd), with Kd from
the class Kd,r,β .

We begin with multivariate integration. Let Q = {Qn,d} be an arbitrary se-
quence of quadratures Qn,d(f) =

∑n
j=1 an,jf(xn,j) for some numbers an,j and

some sample points1 xn,j from D. We want to find universal quadratures Qn,d,
i.e., quadratures that approximate integrals for all functions from the space H(Kd)
and for all kernels Kd from the class Kd,r,β with the optimal (largest possible) rate
of convergence. We stress that these quadratures may only use the smoothness
property of the kernels; i.e., they may depend on the number of variables d and the
smoothness parameters r and β, but they must be independent of the specific form
of the kernel Kd. The optimal rate of convergence is defined as

pINT(Kd,r,β) = sup
{

p ≥ 0 : ∃ Q = {Qn,d}

such that ∀Kd ∈ Kd,r,β ∀ f ∈ H(Kd)

lim
n→∞

np |INTd(f) − Qn,d(f)| = 0
}

.

(6.1)

We say that Q = {Qn,d} is a universal quadrature for the class Kd,r,β if

lim
n→∞

np |INTd(f) − Qn,d(f)| = 0,

∀ p < pINT(Kd,r,β), ∀ f ∈ H(Kd), ∀Kd ∈ Kd,r,β .

For multivariate approximation, we proceed similarly and define the optimal
order of convergence as

pAPP(Kd,r,β) = sup
{

p ≥ 0 : ∃ A = {An,d}

such that ∀Kd ∈ Kd,r,β ∀ f ∈ H(Kd)

lim
n→∞

np ‖APPd(f) − An,d(f)‖L2(D) = 0
}

.

(6.2)

1In fact, we can even consider more general quadratures of the form Qn,d(f) =
φ(f(xn,1), f(xn,2), . . . , f(xn,n)) for some nonlinear mapping φ with an adaptive choice of
points xn,j ; i.e., xn,j can be an arbitrary function of the already computed function values

f(xn,1), f(xn,2), . . . , f(xn,j−1).
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We say that A = {An,d} is a universal approximation algorithm for the class Kd,r,β

if

lim
n→∞

np ‖APPd(f) − An,d(f)‖L2(D) = 0,

∀ p < pAPP(Kd,r,β), ∀ f ∈ H(Kd), ∀Kd ∈ Kd,r,β .

From (3.6) it follows that pAPP(Kd,r,β) ≤ pINT(Kd,r,β).
We are now ready to prove the main theorem of this paper.

Theorem 1. The nested quadrature Qnes = {Qnes
n,d} and the nested approximation

algorithm Anes = {Anes
n,d} defined by (5.6) are universal quadrature and universal

approximation algorithms for the class Kd,r,β. Their optimal rates of convergence
are

pAPP(Kd,r,β) = pINT(Kd,r,β) =
r + β

d
.

Proof. From the considerations in §5, we know that the errors of Qnes
n,d(f) and

Anes
n,d(f) are of order n−(r+β)/d for all f ∈ H(Kd) and all Kd ∈ Kd,r,β . Hence,

pINT(Kd,r,β) ≥ pAPP(Kd,r,β) ≥ (r+β)/d. Thus, it remains to show that pINT(Kd,r,β)
≤ (r + β)/d.

The proof of this estimate will use a technique due to Bakhvalov [4] for finding
lower bounds for multivariate integration for the class C r,β(D); see also [10], as well
as the result of Trojan [23] for analyzing the asymptotic setting for linear problems.
See also [22, Chapter 10].

Define g(x) = (x(1 − x))r+1 for x ∈ [0, 1] and g(x) = 0 for x ∈ R \ [0, 1].
Clearly g ∈ C r,β(R), and the support of g is [0, 1]. We partition the domain
D = [0, 1]d as before into kd sub-cubes Dj,k of side-length 1/k. For each of the kd

sub-cubes Dk,j , let tj = [tj,1, tj,2, . . . , tj,d] denote the lower left corner of Dk,j , and
for x = [x1, x2, . . . , xd] ∈ D let

gk,j(x) = k−(r+β)
d∏

i=1

g (k(xi − tj,i)) for j = 1, 2, . . . , kd.

Note that the sub-cube Dk,j is the support of gk,j . For α = [α1, α2, . . . , αd] with
|α| ≤ r we have

g
(α)
k,j (x) = k−(r+β−|α|)

d∏
i=1

g(αi)(k(xi − tj,i)).

Thus, |g(α)
k,j (x)| = O(1) with the factor in the O-notation independent of x, k, and

j.
Choose a multi-index α with |α| = r. Suppose that x and y lie in the same

sub-cube, say Dk,j . We have

g
(α)
k,j (x) − g

(α)
k,j (y) = k−β

( d∏
i=1

g(αi)(k(xi − tj,i)) −
d∏

i=1

g(αi)(k(yi − tj,i))
)

.

It can be checked by induction on d that
d∏

i=1

ai −
d∏

i=1

bi =
d∑

j=1

a1a2 · · · aj−1(aj − bj)bj+1bj+2 · · · bd
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for any choice of numbers ai and bi. Using this identity, the fact that all g(αi)(y)
are of order 1 for all y, and using the property that the g(αi) satisfy the Lipschitz
condition for αi ≤ r, we have

g
(α)
k,j (x) − g

(α)
k,j (y) = O

(
k1−β

d∑
j=1

|xj − yj |
)

= O
(
k1−β‖x − y‖1−β

1 ‖x − y‖β
1

)

= O
(
k1−βk−(1−β)‖x − y‖β

1

)
= O(‖x − y‖β

1 ).

Here ‖x‖1 =
∑d

j=1 |xj | is the l1-norm.
Keeping in mind the fact that |α| = r, we now suppose that x and y belong to

different sub-cubes. Let x ∈ Dk,j . Then there is a point z lying on the boundary
of the sub-cube Dk,j and belonging to the interval { cx + (1 − c)y : c ∈ [0, 1] } for
which ‖x−z‖1 ≤ ‖x−y‖1. Since y is outside of Dk,j , we have g

(α)
k,j (y) = g

(α)
k,j (z) = 0

and

g
(α)
k,j (x) − g

(α)
k,j (y) = g

(α)
k,j (x) − g

(α)
k,j (z) = O(‖x − z‖1) = O‖x − y‖β

1 ).

Hence, the Hölder condition holds for the l1-norm, and since all vector norms are
equivalent, this also holds for any other vector norm. Therefore gk,j ∈ C r,β(D)
and ‖gk,j‖C r,β = O(1), with the factor in the O-notation being independent of k
and j. Furthermore,∫

D

gk,j(t) dt =
∫

Dk,j

gk,j(t) dt = k−(d+r+β)

∫
D

g(t) dt = Θ(k−(d+r+β)).

We now partition the cube D into sub-cubes Dk,j with k = 2i for i = 1, 2, . . . .
Let

(6.3) G = { g2i,j : j = 1, 2, . . . , 2id, i = 1, 2, . . . }

be the set of functions g2i,j obtained by all such partitions of D. We claim that the
elements of the set G are linearly independent. To this end, take arbitrary numbers
ci,j for which

∞∑
i=1

2id∑
j=1

ci,jg2i,j(x) = 0 for all x ∈ D.

We need to show that this can happen only for ci,j = 0. Let

Γi =
2id⋃
j=1

∂D2i,j

be the union of the boundary points of all sub-cubes D2i,j . Clearly, Γi is a proper
subset of Γi+1. For i∗ = 1, 2, . . . and j∗ = 1, 2, . . . , 2id, choose a point x ∈ Γi∗+1

belonging to the interior of D2i∗ ,j∗ . Then x ∈ Γi for all i ≥ i∗ + 1. Since the
support of each g2i,j is the interior of D2i,j , we have g2i,j(x) = 0 for all i ≥ i∗ + 1
and all j = 1, 2, . . . , 2id. For such x, we obtain

0 =
∞∑

i=1

2id∑
j=1

ci,jg2i,j(x) =
i∗∑

i=1

2id∑
j=1

ci,jg2i,j(x).
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Since the supports of g2i,j are disjoint, the sum over j may have at most one nonzero
term for j = j(i) with x ∈ D2i,j(i). Thus

(6.4) 0 =
i∗∑

i=1

ci,j(i)g2i,j(i)(x).

If i∗ = 1, then j(1) = j∗ and c1,j∗ = 0. Since j∗ can be any integer from [1, 2d]
we see that all c1,j = 0. Then we use induction on i∗ and assume that all ci,j = 0
for i = 1, 2, . . . , i∗ − 1 and j = 1, 2, . . . , 2id. From formula (6.4), we conclude that
ci∗,j∗g2i∗ ,j∗(x) = 0. Thus, ci∗,j∗ = 0, which holds for all j∗ = 1, 2, . . . , 2i∗d. Hence
the ci,j are all zero, as claimed.

Now consider an arbitrary quadrature Q = {Qn,d}, and let xn,1, xn,2, . . . , xn,n

be the sample points used by Qn,d. Let us assume that for some positive p we have

lim
n→∞

np |INTd(f) − Qn,d(f)| = 0, ∀ f ∈ H(Kd), ∀Kd ∈ Kd,r,β .

We want to show that p ≤ (r + β)/d.
As before, we can switch to a nested quadrature Q̄n,d that uses the first n points

of the sequence {xi} of sample points given by

x1,1, x2,1, x2,2, . . . , x2m,1, x2m,2, . . . , x2m,2m , . . . ,

with Q̄n,d = Q2m,d for n ∈ [2m, 2m+1). Since n = Θ(2m), we also have

lim
n→∞

np |INTd(f) − Q̄n,d(f)| = 0, ∀ f ∈ H(Kd), ∀Kd ∈ Kd,r,β .

For i = 1, 2, . . . , define ni = 2id−1. For j = 1, 2, . . . , ni, the sample point xj used
by the algorithm Q̄ni,d belongs to D2i,l(j) for some index l(j) ∈ [1, 2id]. Let

Ji = {1, 2, . . . , 2id} \ {l(1), l(2), . . . , l(ni)}.
Clearly |Ji| ∈ [2id−1, 2id). Define

g2i(t) =
∑
j∈Ji

g2i,j(t)

as the sum of functions g2i,j whose supports D2i,j do not contain the sample points
used by Q̄ni,d. Therefore2 g2i(xj) = 0 for j = 1, 2, . . . , ni, and Q̄ni,d(g2i) = 0. We
also have

(6.5) g2i(t) = O
(
2−i(r+β)

)
and ∫

D

g2i(t) dt =
∑
j∈Ji

∫
D

g2i,j(t) dt

= 2−i(d+r+β)|Ji|
∫

D

g(t) dt = Θ(2−i(r+β)) = Θ(n−(r+β)/d
i ).

The function g2i also belongs to C r,β , and ‖g2i‖C r,β(D) = O(1) with the factor in
the O-notation independent of i.

Let δ be an arbitrary positive number. Consider the sequence of functions
{2−iδg2i}. These functions are linearly independent since they are from the set

2For a more general form of quadrature, it is enough to work with xn,j for which we obtain the
zero function values f(xn,j) = 0. Then Q̄n,d(gn) = φ(0, 0, . . . , 0). It is easy to see that the best

choice of φ(0, 0, . . . , 0) is zero, since otherwise the error for sign(−φ(0, 0, . . . , 0))gn is even larger.
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G = {g2i,j} (see (6.3)) of linearly independent functions as shown before. Due to
(6.5), we find that

∞∑
i=1

(
2−iδg2i(t)

)2
= O

( ∞∑
i=1

2−2i(r+β+δ)

)
< ∞.

As shown in §2, the Hilbert space

H = span
{

2−δg2, 2−2δg4, . . . , 2−iδg2i , . . .
}

,

with inner product
〈
2−iδg2i , 2−jδg2j

〉
H

= δi,j , has the reproducing kernel

Kd(x, y) =
∞∑

i=1

2−iδg2i(x) 2−iδg2i(y) for all x, y ∈ D.

We now show that Kd ∈ Kd,r,β . Indeed, for |α| ≤ r we have

K
(α,α)
d (x, y) =

∞∑
i=1

2−iδg
(α)
2i (x) 2−iδg

(α)
2i (y),

where the last series is convergent because

2−iδg
(α)
2i (x) 2−iδg

(α)
2i (y) = O(2−2i(r+β−|α|+δ))

with r+β−|α|+δ ≥ δ > 0. Hence, Kd ∈ C r,r(D×D), and (4.1) holds. Furthermore,
for |α| = r we have

K
(α,α)
d (x, x) − 2K

(α,α)
d (x, y) + K

(α,α)
d (y, y) =

∞∑
i=1

2−2iδ
(
g
(α)
2i (x) − g

(α)
2i (y)

)2

.

Since g
(α)
2i satisfies the Hölder condition with the exponent β and a constant, say

c, of order 1 independent of i, the condition (4.2) holds with the exponent 2β and
LKd

≤ c/(1 − 2−2δ). Hence, Kd ∈ Kd,r,β .
For the space H(Kd) we first compute the worst case error ewor(Q̄n,d) of the

quadrature Q̄n,d; see (3.1). It is well known (see, e.g., [22, p. 76]) that

(6.6) ewor(Qn,d) ≥ en,d := sup
f∈H(Kd)

‖f‖H(Kd)≤1

f(x1)=···=f(xn)=0,

|INTd(f)|.

For a given integer n, take an integer i such that

2(i−1)d < 2n ≤ 2id and f = 2−iδg2i .

Then f ∈ H(Kd) and ‖f‖H(Kd) = 1. Furthermore, by the construction of the
function g2i and since n ≤ ni = 2id−1, we have f(xj) = 0 for j = 1, 2, . . . , n. We
also have 2−dni ≤ n ≤ ni and n = Θ(ni). Finally,

en,d ≥ INTd(f) = Θ
(
2−i(δ+r+β)

)
= Θ(n−(δ+r+β)/d)).

We now apply Trojan’s theorem (see [22, p. 384]), which states that for any
positive δ and for any nested quadrature Q = {Qn,d}, the set{

f ∈ H(Kd) : lim
n→∞

|INTd(f) − Qn,d(f)|
n−δ/den,d

= 0
}

is nowhere dense. We apply this theorem to the nested quadrature Q̄n,d. Hence,
there exists a function f in H(Kd) for which |INTd(f)−Q̄n,d(f)| does not go to zero
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faster than n−(2δ+r+β)/d. Therefore p ≤ (2δ+r+β)/d. Since the positive number δ
can be chosen arbitrarily small, we conclude that p ≤ (r + β)/d. Since Q̄ = {Q̄n,d}
is an arbitrarily chosen nested quadrature, we have pINT(Kd,r,β) ≤ (r + β)/d, as
claimed. This completes the proof. �

7. Nonuniversal algorithms

Universal algorithms work for all Hilbert spaces H(Kd) for Kd ∈ Kr,d,β , and
their optimal rate of convergence is (r + β)/d. We now want to study how this
optimal rate can be improved if we allow nonuniversal algorithms that depend on
the specific kernel Kd; i.e., we consider algorithms of the form

∑n
i=1 bn,if(xn,i) with

bn,i and xn,i depending on Kd. Here, bn,i = an,i ∈ R for multivariate integration,
and bn,i = wn,i ∈ L2(D) for multivariate approximation. Let

pnonuni−INT(Kd,r,β) = sup
{

p ≥ 0 : ∀Kd ∈ Kd,r,β ∃ Q = {Qn,d}

such that ∀ f ∈ H(Kd)

lim
n→∞

np |INTd(f) − Qn,d(f)| = 0
}

,

pnonuni−APP(Kd,r,β) = sup
{

p ≥ 0 : ∀Kd ∈ Kd,r,β ∃ A = {An,d}

such that ∀ f ∈ H(Kd)

lim
n→∞

np ‖APPd(f) − An,d(f)‖L2(D) = 0
}

denote the optimal rates of convergence that can be achieved by using nonuniversal
algorithms for multivariate integration and approximation for the spaces H(Kd)
with Kd ∈ Kd,r,β . As before, (3.6) implies that

pnonuni−APP(Kd,r,β) ≤ pnonuni−INT(Kd,r,β).

Theorem 2. We have

pnonuni−INT(Kd,r,β) =
1
2

+
r + β

d
,

pnonuni−APP(Kd,r,β) = a +
r + β

d
with a ∈

[
1

4 + 4(r + β)/d
,

1
2

]
.

Proof. Let τ := 1/2 + (r + β)/d. We first consider multivariate integration. Using
known results, we can easily see that pnonuni−INT(Kd,r,β) ≥ τ. Indeed, it was proved
in [17] (see also [15, p. 136]) that for any Kd ∈ Kd,r,β there are sample points
xn,1, xn,2, . . . , xn,n from D and real numbers an,1, an,2, . . . , an,n all depending on
Kd such that the quadrature Qn,d(f) =

∑n
j=1 an,jf(xn,j) has a worst case error

of the order n−τ . The proof of this fact is nonconstructive. Its idea is as follows:
the worst case error of a quadrature for the unit ball of H(Kd) is the same as the
average case error of the same quadrature for the space of continuous functions
equipped with a zero mean Gaussian measure with the covariance function Kd.
We stress that the covariance function and the reproducing kernel are the same.
Then the average case error is bounded by roughly n−1/2 times the average case
error for the approximation problem in the L2 norm for the same space and the
same measure; see [25]. Furthermore we know from [28] that the average case
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error for this approximation problem is bounded by the worst case error of the
approximation problem for the unit ball of H(Kd) in the L∞ norm. Finally, since
in our case H(Kd) ⊂ C r,β(D) for K ∈ Kd,r,β , and since the approximation problem
in the L∞ norm has the rate n−(r+β)/d (see [10]), the result follows.

We now prove that pnonuni−INT(Kd,r,β) ≤ τ . Again, it is known that for even r
(see [16] and also [15, p. 153]), and for an arbitrary integer r and β ∈ (0, 1) (see
[15, p. 140]), there is a kernel Kd from Kd,r,β for which the worst case error of any
quadrature using n sample points is of order n−τ . Applying Trojan’s theorem we
conclude that pnonuni−INT(Kd,r,β) ≤ τ .

To show the same upper bound for all integers r and β ∈ [0, 1], we use the
construction from the proof of Theorem 1. For an arbitrary positive δ, we take the
set G of linearly independent functions defined by (6.3) and form the Hilbert space

(7.1) H = span
{

ηi,j := 2−iδg2i,j : i = 1, 2, . . . , j = 1, 2, . . . , 2id
}

with orthonormal ηi,j . The reproducing kernel of H is

Kd(x, y) =
∞∑

i=1

2id∑
j=1

ηi,j(x)ηi,j(y) for all x, y ∈ D.

We emphasize that the inner sum over j has at most one nonzero term, and therefore

∞∑
i=1

2id∑
j=1

η2
i,j(x) = O

( ∞∑
i=1

2−2i(δ+r+β)

)
< ∞.

As before, we can show that Kd ∈ Kd,r,β .
Now take an arbitrary quadrature Qn,d(f) =

∑n
k=1 an,kf(xn,k). We choose an

integer i such that 2(i−1)d < 2n ≤ 2id. The sample point xn,k belongs to a sub-cube
D2i,j(k) for some index j(k) ∈ [1, 2id]. Let

Jn = {1, 2, . . . , 2id} \ {j(1), j(2), . . . , j(n)}.
Then |Jn| ∈ [2id−n, 2id−1] ⊂ [2id−1, 2id−1], and obviously |Jn| = Θ(n). Consider
the function

f =
1

|Jn|1/2

∑
j∈Jn

ηi,j .

Since the ηi,j are orthonormal, we have ‖f‖H(Kd) = 1. Furthermore, f(xn,k) = 0
for k = 1, 2, . . . , n, since the supports of the functions ηi,j for j ∈ Jn do not contain
the sample points xn,k. We also have

INTd(f) =
1

|Jn|1/2
|Jn| 2−iδ 2−i(d+r+β)

∫
D

g(t) dt = Θ

((
1
n

)1/2+(r+β)/d−δ/d
)

.

From (6.6) we see that ewor(Qn,d) ≥ en,d = Θ(n−τ−δ/d). Applying Trojan’s the-
orem and letting δ tend to zero, we conclude that pnonuni−INT(Kd,r,β) ≤ τ , as
claimed.

We now turn to multivariate approximation. Obviously, pnonuni−APP(Kd,r,β) ≤ τ
since multivariate approximation is not easier than multivariate integration. This
proves that a ≤ 1/2. We now show that

pnonuni−APP(Kd,r,β) ≥ τ2/(τ + 1/2),

which is equivalent to a ≥ 1/(4 + 4(r + β)/d).
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We know from the proof of Theorem 1 that for any integer n there are sample
points xi = xi,n and functions wi = wi,n from L2(D) such that the algorithm
An(f) =

∑n
i=1 wif(xi) approximates f pointwise with error of order n−(r+β)/d.

Thus, for any f ∈ H(Kd) we have

gf,n(x) := f(x) − An(f)(x) = O
(
n−(r+β)/d ‖f‖H(Kd)

)
,

with the factor in the O-notation independent of x, n and f . Obviously, gf,n ∈
L2(D). Observe that gf,n(x) = 〈f, hn(·, x)〉H(Kd) with

hn(·, x) = Kd(·, x) −
n∑

i=1

wi(x)Kd(·, xi) ∈ H(Kd).

Taking f = hn(·, x)/‖hn(·, x)‖H(Kd) we conclude that

(7.2) ‖hn(·, x)‖H(Kd) = O
(
n−(r+β)/d

)
for all x ∈ D,

with an O-factor independent of x and n but depending on d, r and β.
To improve the error bound of the algorithm An for the space H(Kd), we need

to consider the operator Wd defined by (3.3). We denote its eigenpairs by (λj , ηj);
i.e., Wdηj = λjηj with λ1 ≥ λ2 ≥ · · · ≥ 0, and 〈ηi, ηj〉H(Kd) = δi,j . Without loss of

generality we assume that λi is positive, and set ζi = λ
−1/2
i ηi. Then for f ∈ H(Kd)

we have

〈f, ηi〉H(Kd) ηi =
1
λi

〈f, Wdηi〉H(Kd) ηi

=
1
λi

〈APPdf, APPdηi〉L2(D) ηi = 〈f, ζi〉L2(D) ζi.

(7.3)

Putting f = ηj , we conclude from the known facts that

(7.4) 〈ηi, ηj〉L2(D) = λiδi,j and 〈ζi, ζj〉L2(D) = δi,j .

We now show that

(7.5) λn = O(n−2τ ) for all n.

It is known (see, e.g., [22, p. 234]) that
(∑∞

j=n+1 λi

)1/2

is the minimal average case
error of algorithms (using at most n linear evaluations of f) for the multivariate
approximation problem defined on the space of continuous functions equipped with
a zero mean Gaussian measure with the covariance function Kd. It is proved in
[17] (see also [15, p. 135]) that the average case error for algorithms using at most
n function values is of order n−(r+β)/d. Therefore,

nλ2n ≤
∞∑

i=n+1

λi = O
(
n−2(r+β)/d

)
.

This yields λ2n = O(n−(1+2(r+β)/d)) = O(n−2τ ), as claimed.
Now let m be an integer, which will be specified later, and define the projection

Pmf =
m∑

i=1

〈f, ζi〉L2(D) ζi for all f ∈ L2(D).
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Let t1, t2, . . . , tn be sample points from D that will be also specified later, and define
the algorithm

A2n,m(f) = PmAn(f) + Bn,m(f),
where

Bn,m =
m∑

i=1

(
1
n

n∑
j=1

gf,n(tj) ζi(tj)
)

ζi.

Observe that the algorithm A2n,m uses at most 2n function values; f(x1), f(x2), . . . ,
f(xn) are used by An(f) and f(t1), f(t2), . . . , f(tn) are used by Bn,m.

Let f ∈ H(Kd). Then (7.3) implies that Pmf =
∑m

i=1 〈f, ηi〉H(Kd) ηi. Therefore

f =
∞∑

i=1

〈f, ηi〉H(Kd) ηi = Pmf + P⊥
mf,

where P⊥
mf =

∑∞
i=m+1 〈f, ηi〉H(Kd) ηi. The relations (7.4) and (7.5) yield

‖P⊥
mf‖2

L2(D) =
∞∑

i=m+1

λi 〈f, ηi〉2H(Kd) ≤ λm+1‖f‖2
H(Kd) = O

(
m−2τ‖f‖2

H(Kd)

)
.

We now estimate the error of A2n,m for the space H(Kd) with Kd ∈ Kd,r,β .
Clearly,

f − A2n,m(f) = en,m(f) + P⊥
mf,

where
en,m(f) = Pm (f − An(f)) − Bn,m(f).

We have

en,m(f) =
m∑

i=1

(
〈gf,n, ζi〉L2(D) −

1
n

n∑
j=1

gf,n(tj)ζi(tj)
)

ζi

=
m∑

i=1

〈
f,

∫
D

hn(·, x)ζi(x) dx − 1
n

n∑
j=1

hn(·, tj)ζi(tj)
〉

H(Kd)

ζi.

Therefore

‖en,m(f)‖2
L2(D) ≤ ‖f‖2

H(Kd)

m∑
i=1

αi,

where

αi =
∥∥∥∥
∫

D

hn(·, x)ζi(x) dx − 1
n

n∑
j=1

hn(·, tj)ζi(tj)
∥∥∥∥

2

H(Kd)

=
∫

D2
ζi(x)ζi(t) 〈hn(·, x), hn(·, t)〉H(Kd) dx dt

− 2
n

n∑
j=1

ζi(tj)
∫

D

ζi(x) 〈hn(·, x), hn(·, tj)〉H(Kd) dx

+
1
n2

n∑
k,j=1

ζi(tk)ζi(tj) 〈hn(·, tk), hn(·, tj)〉H(Kd) .

Observe that αi = αi(t1, t2, . . . , tn). We take the sample points tj as independent
random variables distributed uniformly over D and compute the average value
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of α(t1, t2, . . . , tn) :=
∑m

i=1 αi(t1, t2, . . . , tn). Using the same analysis as for the
classical Monte Carlo method (see, e.g., [10, 15, 22]), we obtain∫

Dn

α(t1, t2, . . . , tn) dt1 · · · dtn

=
1
n

m∑
i=1

(∫
D

ζ2
i (x) ‖hn(·, x)‖2

H(Kd) dx

−
∫

D2
ζi(x)ζi(t) 〈hn(·, x), hn(·, t)〉H(Kd) dx dt

)
.

Since
∫

D2 ζi(x)ζi(t) 〈hn(·, x), hn(·, t)〉H(Kd) dx dt = ‖
∫

D
ζi(x)hn(·, x)‖2

H(Kd) ≥ 0, we
obtain ∫

Dn

α(t1, t2, . . . , tn)dt1 · · · dtn ≤ 1
n

m∑
i=1

∫
D

ζ2
i (x) ‖hn(·, x)‖2

H(Kd) dx.

From (7.2) and the second part of (7.4) we obtain∫
Dn

α(t1, t2, . . . , tn)dt1 · · · dtn = O
( m

n1+2(r+β)/d

)
.

From the mean value theorem applied to the integral of α, we conclude that there
are sample points t1, t2, . . . , tn which may depend on Kd, for which

α(t1, t2, . . . , tn) = O
( m

n1+2(r+β)/d

)
.

Combining all these estimates and using the algorithm A2n,m with the sample points
from the mean value theorem, we obtain

‖f − A2n,m(f)‖L2(D) ≤ ‖en,m(f)‖L2(D) + ‖P⊥
mf‖L2(D)

= O

((
m1/2

(
1
n

)τ

+
(

1
m

)τ)
‖f‖H(Kd)

)
.

We choose m to minimize the expression in the O-notation. Then m=Θ
(
nτ/(τ+1/2)

)
and

(7.6) ‖f − A2n,m(f)‖L2(D) = O

((
1
n

)τ2/(τ+1/2)

‖f‖H(Kd)

)
.

This proves that pnonuni−APP(Kd,r,β) ≥ τ2/(τ + 1/2), as claimed, and completes
the proof. �

We now comment on Theorem 2. For multivariate integration, the optimal rate of
convergence for nonuniversal algorithms is 1/2 larger than for universal algorithms.
As already mentioned in the Introduction, this is important when d is large relative
to r + β.

For multivariate approximation, we only presented bounds on the optimal rate
of convergence for nonuniversal algorithms. Weaker bounds on pnonuni−APP(Kd,r,β)
can be concluded from the known results. For example,

pnonuni−APP(Kd,r,β) ≥ τ/(2τ + 1)

follows from [26, Corollary 1] and (7.5). Note that our bound τ2/(τ +1/2) is larger
than τ/(2τ + 1) for τ > 1/2, which holds iff r + β > 0. In fact, more can be said
about the optimal rate of convergence of nonuniversal algorithms using a proof
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technique similar to that in [8], where this problem is studied in the average case
setting. We leave further bounds on pnonuni−APP(Kd,r,β) for future research.

It is easy to check that τ ≥ 1/2 implies

pnonuni−APP(Kd,r,β) ≥ 1
4
.

Altogether, the optimal rate of convergence of nonuniversal algorithms cannot be
smaller than 1/2 for multivariate integration and 1/4 for multivariate approxima-
tion. This is in sharp contrast with the optimal rate of convergence of universal
algorithms that can be arbitrarily small depending on the values of d, r and β.

On the other hand, if we consider the favorable situation where the sum of the
smoothness parameters r + β is much larger than d, then τ/(τ + 1/2) ≈ 1 and

pnonuni−APP(Kd,r,β) ≈ pnonuni−INT(Kd,r,β)

≈ pAPP(Kd,r,β) = pINT(Kd,r,β) =
r + β

d
.

In this case, the difference between the optimal rates of convergence between uni-
versal and nonuniversal algorithms for multivariate integration and approximation
disappears.

8. Smooth product kernels

So far, we have studied kernels Kd with given smoothness whose structure is
unspecified. In this section we assume additional knowledge about the kernel,
namely that Kd is of product form. To be precise, we consider

(8.1) Kd(x, y) =
d∏

j=1

Krj ,βj
(xj , yj),

where the kernel Krj ,βj
: [0, 1]2 → R corresponds to the Hilbert space H(Krj ,βj

)
of univariate functions f : [0, 1] → R. As before, to guarantee some smoothness of
functions from H(Kd), we assume that for each j = 1, 2, . . . , d, we have Krj ,βj

∈
K1,rj ,βj

for some nonnegative integer rj and some real βj ∈ [0, 1]. This means that
the space H(Kd) is the tensor product of spaces H(Krj ,βj

) of univariate functions.
If span{ηj,1, ηj,2, . . . } is an orthonormal basis of H(Krj ,βj

), then span{η�k}, with
�k = [k1, k2, . . . , kd] and η�k(x) = η1,k1(x1)η2,k2(x2) · · · ηd,kd

(xd), is an orthonormal
basis of the space H(Kd). The space H(Kd) consists of functions

f(x) =
∞∑

k1,k2,...,kd=1

ck1,k2,...,kd
η1,k1(x1)η2,k2(x2) · · · ηd,kd

(xd)

with
∞∑

k1,k2,...,kd=1

c2
k1,k2,...,kd

< ∞.

Let Kprod,d,�r,�β denote the class of all such kernels Kd having the product form
(8.1) with Krj ,βj

∈ K1,rj ,βj
for j = 1, 2, . . . , d. We study universal and nonuni-

versal algorithms in the class Kprod,d,�r,�β with fixed �r = [r1, r2, . . . , rd] and �β =
[β1, β2, . . . , βd]. The optimal rates of convergence are defined as in (6.1) and
(6.2), the only difference being that the kernels Kd are now taken from the class
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Kprod,d,�r,�β . In this way we obtain the optimal rate pprod−INT of convergence for uni-
versal algorithms and pnonuni−prod−INT for nonuniversal algorithms for multivariate
integration, and correspondingly pprod−APP and pnonuni−prod−APP for multivariate
approximation. As before, pprod−APP(Kprod,d,�r,�β) ≤ pprod−INT(Kprod,d,�r,�β). Using
previously known results, as well as the results of this article, it is easy to establish
the following theorem.

Theorem 3. Let qd := minj=1,2,...,d{rj + βj}. Then

pprod−INT(Kprod,d,�r,�β) = qd,

pnonuni−prod−INT(Kprod,d,�r,�β) =
1
2

+ qd,

pprod−APP(Kprod,d,�r,�β) = qd,

pnonuni−prod−APP(Kprod,d,�r,�β) = a + qd with a ∈
[

1
4 + 4qd

,
1
2

]
.

Proof. For universal algorithms, since

pprod−APP(Kprod,d,�r,�β) ≤ pprod−INT(Kprod,d,�r,�β),

it is enough to prove that

pprod−INT(Kprod,d,�r,�β) ≤ qd and pprod−APP(Kprod,d,�r,�β) ≥ qd.

Let j∗ be such that
rj∗ + βj∗ = min

j=1,2,...,d
{rj + βj}.

To show that
pprod−INT(Kprod,d,�r,�β) ≤ qd,

consider an arbitrary algorithm Qn,d(f) =
∑n

i=1 ai,nf(xi,n) for some ai,n ∈ R

and xi,n ∈ D = [0, 1]d . We now apply this algorithm to the space H(Kd) with
Kd(x, y) =

∏d
j=1 Krj ,βj

(xj , yj), and with an arbitrary Krj∗ ,βj∗ from K1,rj∗ ,βj∗

and Krj ,βj
= 1 for all j �= j∗. For j �= j∗, we have H(Krj ,βj

) = span{1},
and H(Kd) consists of functions depending only on the j∗th variable. Hence,
Qn,d(f) =

∑n
i=1 ai,nf(xi,n,j∗), where xi,n,j∗ denotes the j∗th component of the

sample point xi,n, and f is a univariate function from H(Krj∗ ,βj∗ ). We now apply
Theorem 1 with d = 1 and conclude that the optimal rate of convergence is at most
qd.

To prove that qd ≤ pprod−APP(Kprod,d,�r,�β), we observe from §4 that H(Krj ,βj
) ⊂

Crj ,βj ([0, 1]) and that ‖f‖Crj ,βj ([0,1]) ≤ c(Krj ,βj
, rj , βj)‖f‖H(Krj,βj

); see (4.4). Fur-
thermore, from §5 we know there are algorithms Anes

n,1,j for multivariate approxima-
tion such that

‖APPd(f) − Anes
n,1,j(f)‖L2(D) = O

(
n−(rj+βj)c(Krj ,βj

)‖f‖H(Krj,βj
)

)
.

It is now enough to apply Smolyak’s algorithm (see [18]), using the univariate
algorithms Anes

n,1,j for j = 1, 2, . . . , d as its components. It is known that the error
of Smolyak’s algorithm is of order n−qd times a logarithmic factor log n raised to
a power that is linear in d − 1; see, e.g., [27, Remark 2] and the literature cited
therein. (Further details on various aspects of Smolyak’s algorithm can be found
in [6, 7, 11, 12, 21].) This proves that pprod−APP(Kprod,d,�r,�β) ≥ qd, as needed.
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The bounds on the optimal rates of convergence for nonuniversal algorithms can
be shown similarly. For multivariate integration, the bound

pnonuni−prod−INT(Kprod,d,�r,�β) ≤ 1
2

+ qd

follows from the construction of Kd as above and from Theorem 2. The opposite
inequality pnonuni−prod−INT(Kprod,d,�r,�β) ≥ 1

2 + qd follows from the application of
Smolyak’s algorithm for the univariate algorithms with errors of order n−(1/2+rj+βj)

whose existence is established in Theorem 2. For multivariate approximation, we
only need to prove that pnonuni−prod−APP(Kprod,d,�r,�β) ≥ 1/(4+4qd)+qd. This again
follows from the application of Smolyak’s algorithm for the univariate algorithms
with errors of order n−(aj+r+j+βj) with aj = 1/(4 + 4(rj + βj)), whose existence is
established in Theorem 2. Since

min
j=1,2,...,d

{
1

4 + 4(rj + βj)
+ rj + βj

}
=

1
4 + 4qd

+ qd,

the result follows. �
As already mentioned in the Introduction, the number d of variables plays a

much weaker role for product kernels. If we assume that

min
d=1,2,...

min
j=1,2,...,d

{rj + βj} > 0,

then even the optimal rates of convergence for universal algorithms do not suffer
from the curse of dimensionality. This shows that the product structure of re-
producing kernels is a powerful property that breaks the curse of dimensionality
present in the nonproduct case.

9. Conclusion and open problems

In this paper we studied the optimal rate of convergence of universal and nonuni-
versal algorithms for multivariate integration and approximation. We considered
functions from a reproducing kernel Hilbert space H(Kd) with an arbitrary Kd,
all of whose partial derivatives up to order r satisfy a Hölder-type condition with
exponent 2β. For universal algorithms, the weights and sample points may depend
on d, r and β, but are independent of the specific kernel Kd. For nonuniversal algo-
rithms, the weights and sample points may additionally depend on Kd. We proved
that for universal algorithms, the optimal rate of convergence is (r + β)/d for both
multivariate integration and approximation, whereas for nonuniversal algorithms,
the optimal rate of convergence is 1/2 + (r + β)/d for multivariate integration and
a + (r + β)/d with a ∈ [1/(4 + 4(r + β)/d), 1/2] for multivariate approximation.
Thus, universal algorithms are applicable to wide classes of functions without a
priori knowledge of the specific form of reproducing kernels, but they suffer from
the curse of dimensionality; i.e., for fixed smoothness r and β, their optimal rate of
convergence goes to zero with increasing d. This is the price we have to pay for uni-
versality. For nonuniversal algorithms, we know the reproducing kernel of a specific
Hilbert space from which the data stem. This knowledge may then be exploited in
the design of an algorithm, and leads to an optimal rate of convergence that does
not suffer from the curse of dimensionality. Unfortunately, in practical applications,
this additional knowledge may often not be available. If r + β is large relative to
d, then both the universal and the nonuniversal algorithms exhibit approximately
the same optimal rates of convergence.
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We also considered the case of a kernel Kd having product structure. This case
is closely related to spaces of bounded mixed derivatives. Then the optimal rates
of convergence of both universal and nonuniversal algorithms for multivariate inte-
gration and approximation only depend weakly on d. Furthermore, if the minimal
smoothness of product kernels does not deteriorate with d, then the curse of di-
mensionality is not present. However, we stress that in all cases, the multiplicative
factors in the order estimates are unknown functions of d, which means that they
could possibly grow exponentially (if not faster).

Finally, let us mention a few open problems.

• We were only able to give bounds on the optimal rate of convergence for
nonuniversal algorithms and multivariate approximation. This involves a
value a from the interval [1/(4 + 4(r + β)/d), 1/2] in the general case and
[1/(4 + 4qd), 1/2] with qd = minj=1,..,d{rj + βj} in the product kernel case,
respectively. Clearly, if we can improve our estimates of a, then we will
attain tighter bounds.

• In this paper we restricted ourselves to two multivariate problems, namely
integration and approximation. It is natural to study universal (and nonuni-
versal) algorithms for other practically important problems such as partial
differential equations or general linear problems. Such problems are in some
cases closely related to multivariate approximation, and we therefore hope
that it will be possible to apply our multivariate approximation results here
as well.

• As already often mentioned in this article, we do not control the depen-
dence on d of the factors in the order estimates. It is a natural question
to also study this question and to check on the optimal order of universal
algorithms for which the dependence on d of these factors is only polyno-
mial. This problem is related to the problem of tractability that so far
has only been studied for nonuniversal algorithms; see [13] for a survey.
Here, it seems natural to also consider universal algorithms for classes of
weighted spaces, with limited knowledge about smoothness and weights of
reproducing kernels.

• Universality of algorithms may also be studied in the randomized, average
case, and probabilistic settings. To illustrate this point, let us stress that
we have only considered deterministic algorithms in this article. In the
randomized setting, for example, randomized algorithms can be employed,
such as the classical Monte Carlo method for multivariate integration. It
would be natural to study the optimal rate of convergence for both uni-
versal and nonuniversal randomized algorithms in the classes Kd,r,β and
Kprod,d,�r,�β .

• For multivariate approximation and related problems, it is also reasonable
to consider algorithms that use information that is more general than func-
tion values. An example is given by algorithms that use arbitrary linear
functionals Li(f) for i = 1, 2, . . . , n for some finite n. It would be useful to
determine the optimal rates of convergence for universal algorithms using
this more general information and to compare them to the optimal rates of
convergence obtained in this paper for the classes Kd,r,β and Kprod,d,�r,�β .

These and similar problems concerning universal and nonuniversal algorithms
will be the subject of future research.
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MR1021519 (91a:65057)

[6] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13, 147–269, 2004.
[7] T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Alg., 18, 209-

232, 1998. MR1669959 (99m:65042)
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[13] E. Novak and H. Woźniakowski, When are integration and discrepancy tractable?, Foundation

of Computational Mathematics, Oxford, 1999, R. A. DeVore, A. Iserles, and E. Süli, eds.,
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