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Objectives
Fast simulation of localized material failure for macroscale material

samples through

efficient (Generalized) Finite Elements for global linear elasticity

problem and

the use of solution from a local particle simulation

as enrichment to construct discontinuous shape functions for the

global problem.

Discontinuous Approximation of Peridynamics
(Modified) Moving Least Squares approximation of displacements

from impact simulation (not yet used as enrichment)

upper left: coordinates xi + uni from Peridynamics, color coding

shows ‖uni ‖
lower left: coordinates xi + ηn(xi) from MLS approximation

I(u) = ηn of Peridynamics data xi,uni ,A
n
i,j, color coding shows

‖ηn(xi)‖
right: coordinates xi + uni , color coding shows ‖uni − ηn(xi)‖
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Damage everywhere
Enrichments and particle simulation needed everywhere

No speedup expected

Example: Peridynamics simulation of brittle impact

Peridynamics Simulation with Particles
Nonlocal equation of motion

ρü(x, t) =

∫
Ω(x)

f
(

(u(x̃, · )− u(x, · ))|(−∞,t] , x̃− x
)

dx̃ + b(x, t)

No gradients, discontinuities occur naturally

Discretization: fix xi, calculate uni ≈ u(xi, tn)

un+1
i =2uni − un−1i +

(∆t)2

ρ∑
j∈Ni

f
((

m 7→ umj − umi
)∣∣

(−∞,n]
, xj − xi

)
Vi,j + b(xi, tn)


Explicitly track bonds and bond failure between particles

An+1
i,j =

1 f

((
m 7→ umj − umi

)∣∣∣
(−∞,n]

, xj − xi

)
6= 0

0 otherwise

Data xi,u
n+1
i ,An+1

i,j for (discontinuous)

vector field approximation ηn+1

Moving Least Squares

Scattered data xi,u
n+1
i approximation with

ηn+1(x) :=qn+1
x (0) qn+1

x := argmin
p∈P

Jn+1
x (p)

Jn+1
x (p) :=

∑
i

Wn+1
i (x)

(
un+1
i − p(xi − x)

)2

Wn+1
i are normal Moving Least Squares weights Wi (some kernels)

modified to take An+1
i,j into account

Take wi,j(xi) = 1,wi,j ≤ 1 locally supported

Wn+1
i (x) := Wi(x)

∏
{j :An+1

i,j =0}
(1−wj,i (x))

Focus: Localized Damage
Enrichments and particle simulation needed only locally

Speedup depending on localization of damage expected

Example: Peridynamics simulation of petaling

Use global solution u(·, tn) to to

choose domain
⋃⋃⋃

i∈In+1 supp(ϕi) 3 xi

and initial and boundary conditions

(e.g. uni = u(xi, tn), . . .) for local

Peridynamics run(s)

Linear Elasticity with Generalized Finite Elements
Local equation of motion

ρü(x, t) = µ∆u(x, t) + (λ + µ)∇ div u(x, t) + b(x, t)

= (Lt u(·, t)) (x) + b(x, t)

Partition of Unity 0 ≤ ϕi ≤ 1, i ∈ I ∈ N, suff. smooth, locally

supported,
∑

i∈I ϕi = 1.

Local approximation spaces Pi (polynomial(s)), En+1
i

!
⊇ ∅

(enrichments) on supp(ϕi)

E n+1
i =

span
{
ηn+1

}
i ∈ In+1

∅ i /∈ In+1

Global shape functions for timestep tn+1⋃
i∈I

{ϕip : p ∈ Pi} ∪
⋃

i∈In+1

{(ϕiη
n)}

Discretization: find coefficients
(
cn+1
i ,·
)
i∈I and

(
dn+1
i

)
i∈In+1 such that

u(x, tn+1) =
∑
i∈I

ϕi(x)

∑
p∈Pi

cn+1
i ,p p(x)

 +
∑
i∈In+1

dn+1
i

(
ϕiη

n+1
)

(x)

!
=2u(x, tn)− u(x, tn−1) +

(∆t)2

ρ
((Ltnu(·, tn)) (x) + b(x, t))

(Discontinuous) enrichment ηn+1 for

construction of new shape functions

ϕiη
n+1 for global elasticity problem

Meshfree Multiscale (Coupled) Algorithm

Timestepping from u(·, tn) to u(·, tn+1):

1 From global solution u(·, tn) find patches supp(ϕi), i ∈ In+1 ⊆ I where microscale information is

necessary.

2 On
⋃⋃⋃

i∈In+1 supp(ϕi) use u(·, tn) to seed xi and find initial and boundary conditions to

3 Run local particle simulation to get xi,u
n+1
i .

4 From xi,u
n+1
i reconstruct vector field ηn+1 with gradients.

5 Use basis
⋃

i∈I {ϕip : p ∈ Pi} ∪
{(
ϕiη

n+1
)}

i∈In+1 to solve global problem yielding u(·, tn+1).

A first 2D Example
Setup

Symmetric constant loads applied in left corners

4× 4 bilinear Lagrange elements, 50 dof ϕi

400 Peridynamics particles throughout whole

domain

Pi = span{1}, Automated choice of enriched dof

20 GFEM timesteps with 20× 5 Peridynamics

timesteps

No global boundary conditions

Final Peridynamics Configuration

Final MLS Approximation, y component

Final Enriched Nodes

x nodes y nodes

Some Resulting Shape Functions

Sparseness of Final GFEM Mass Matrix

Final GFEM solution, y component


