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Abstract

Convolutional neural networks (CNN)s have
become the go-to choice for most image and
video processing tasks. Most CNN architec-
tures rely on pooling layers to reduce the
resolution along spatial dimensions. The
reduction allows subsequent deep convolu-
tion layers to operate with greater efficiency.
This paper introduces adaptive wavelet pool-
ing layers, which employ fast wavelet trans-
forms (FWT) to reduce the feature resolu-
tion. The FWT decomposes the input fea-
tures into multiple scales reducing the fea-
ture dimensions by removing the fine-scale
subbands. Our approach adds extra flex-
ibility through wavelet-basis function opti-
mization and coefficient weighting at differ-
ent scales. The adaptive wavelet layers inte-
grate directly into well-known CNNs like the
LeNet, Alexnet, or Densenet architectures.
Using these networks, we validate our ap-
proach and find competitive performance on
the MNIST, CIFAR-10, and SVHN (street
view house numbers) data-sets.

1 Introduction

The machine learning community has largely
turned to convolutional networks (CNNs) for image
[He et al., 2016], audio [Nagrani et al., 2019] and
video processing [Carreira and Zisserman, 2017]
tasks. Within CNNs, pooling layers boost computa-
tional efficiency and introduce translation invariance.
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Pooling operations replace the internal network
representation with a summary statistic of the fea-
tures at that point [Goodfellow et al., 2016]. Pooling
operations are important yet imperfect because they
often rely only on simple max or mean operations,
or their mixture, in a relatively small neighborhood.
Adaptive pooling attempts to improve classic pooling
approaches by introducing learned parameters within
the pooling layer. [Tsai et al., 2015] found adaptive
pooling to be beneficial on image segmentation tasks,
while [McFee et al., 2018] made similar observations
for audio processing.

Recently more sophisticated pooling strategies
have been introduced. These approaches uti-
lize basis representations in the frequency do-
main [Rippel et al., 2015], or in time (spatial) and
frequency [Williams and Li, 2018], a forward trans-
form handles the conversion. Pooling is implemented
by truncating those components a-priori deemed least
important in that basis representation and then trans-
ferring the features back into the original space. Note
that pooling by truncation in Fourier- or wavelet-basis
representations can be considered a form of regulariza-
tion by projection [Natterer, 1977, Engl et al., 1996].
[Zeiler and Fergus, 2013] presented stochastic pooling
as an efficient regularizer.

Previous wavelet-based [Bruna and Mallat, 2013]
layer and pooling architectures mostly utilized static
hand-crafted wavelets. Optimizable wavelet basis
representations have been designed previously for
network compression [Wolter et al., 2020] and graph
processing networks [Rustamov and Guibas, 2013].
From a pooling point of view, wavelets are an
approach that can more accurately represent the
feature contents with fewer artifacts than nearest-
neighbor interpolation methods such as max- or
mean- pooling [Williams and Li, 2018].

To the best of our knowledge, we are the first to pro-
pose wavelet (time and frequency domain) based adap-
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tive pooling. In this paper, we make the following con-
tributions:

• We introduce adaptive- and scaled-wavelet
pooling as an alternative to spectral-
[Rippel et al., 2015] and static-wavelet pool-
ing [Williams and Li, 2018].

• We propose an improved cost function for wavelet
optimization based on the alias cancellation and
perfect reconstruction conditions.

• We show that adaptive and scaled wavelet pooling
performs competitively in convolutional machine
learning architectures on the MNIST, CIFAR-10,
and SVHN data sets.

To aid with reproducing this work, source code for
all models and our fast wavelet transformation im-
plementation is available at https://github.com/

Fraunhofer-SCAI/wavelet_pooling .

2 Related work

Alternating convolutional and pooling layers followed
by one or multiple fully connected layers are the build-
ing blocks of most modern neural networks used for
object recognition. It is therefore not surprising that
the machine learning literature has long been studying
pooling operations.
Early investigations explored max-pooling and non-
linear subsampling [Scherer et al., 2010]. More re-
cent work proposed subsampling by exclusively us-
ing strides in convolutions [Springenberg et al., 2015]
and pooling for graph convolutional neural networks
[Porrello et al., 2019]. Next, we highlight the regular-
izing, adaptive, and Fourier or Wavelet-based pooling
approaches, which are of particular relevance for this
paper.

2.1 Pooling and regularization

[Zeiler and Fergus, 2013] introduced stochastic pool-
ing. The stochastic approach randomly picks the ac-
tivation in each pooling neighborhood. Like dropout,
these layers act as a regularizer. A similar idea has ap-
peared in [Malinowski and Fritz, 2013] which explored
random and learned choices of the pooling region.

2.2 Adaptive pooling

Learned or adaptive pooling layers seek to im-
prove performance by adding extra flexibility.
For semantic-segmentation adaptive region pooling
[Tsai et al., 2015] has been proposed. Working
on a weakly labeled sound event detection task

[McFee et al., 2018] propose an adaptive pooling oper-
ator. Their approach interpolates between min-, max-,
and average-pooling features. [Gulcehre et al., 2014]
finds that learned norm-pooling can be seen as a gen-
eralization of average, root mean square, and max-
pooling, [Liu et al., 2017] found this approach helpful
for video processing tasks. [Gopinath et al., 2019] de-
vised an adaptive pooling approach for graph convo-
lutional neural networks and found improved perfor-
mance on brain surface analysis tasks.

2.3 Fourier and wavelet domain pooling

[Rippel et al., 2015] proposes to learn convolution fil-
ter weights in the frequency domain and uses the Fast
Fourier Transform for dimensionality reduction by low-
pass filtering the frequency domain coefficients. Alter-
natively [Williams and Li, 2018] found the separable
fast wavelet transform (FWT) useful for feature com-
pression. The FWT obtains a multiscale analysis re-
cursively. The approach computes a two-scale analysis
wavelet decomposition and discards the first, fine-scale
resolution level. The synthesis transform only uses the
second, coarse-scale level coefficients to construct the
reduced representation. [Williams and Li, 2018] pro-
poses to use a fixed Haar wavelet basis; we conse-
quently refer to this approach as wavelet pooling.

The papers closest to ours are [Williams and Li, 2018]
and [Wolter et al., 2020]. [Wolter et al., 2020] pro-
poses to use flexible wavelets for network compres-
sion and formulates a cost function to optimize the
wavelets. We build on both approaches for feature
pooling, add coefficient weights, and devise an im-
proved broader loss function.

3 Methods

Our pooling approach relies on the multiscale repre-
sentation we obtain from the fast wavelet transform
(FWT). The recurrent evaluation of the FWT pro-
duces new scale coefficients each time it runs. We refer
to the number of runs as levels.
This section discusses the FWT and the properties our
wavelet filters must have, how to turn these into a cost-
function, and the rescaling of wavelet coefficients.

3.1 The fast wavelet transform

The fast wavelet transform constitutes a change of rep-
resentation and a form of multiscale analysis. It ex-
presses the input data points in terms of a wavelet
filter pair by computing [Strang and Nguyen, 1996]:

b = Ax, (1)
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Figure 1: Structure of the Haar analysis fast wavelet transformation matrix on the left followed by the structures
of the individual scale processing matrices. The full analysis matrix (left) is the product of multiple (here three)
matrices. Each describes the FWT-operations at the current level. Two convolution matrices H0 and H1 are
clearly visible in the three matrices on the left [Wolter, 2021].

the analysis matrix A is the product of multiple ma-
trices, each decomposing the input signal x at an indi-
vidual scale. Finally, multiplication of the total matrix
A with the input-data yields the wavelet coefficients
b.

We show the structure of the individual matrices in
figure 1. We observe a growing identity block ma-
trix I, as the FWT moves through the different scales.
The filter matrix blocks move in steps of two. Each
FWT step cuts the input length in half. The identity
submatrices appear where the results from the previ-
ous steps have been stored. The reoccurring diagonals
denote convolution operations with the analysis filter
pair h0 and h1. Given the wavelet filter degree d, each
filter has N = 2d coefficients. The filters are arranged
in vectors ∈ RN . The filter pair appears in the con-
volution matrices H0 and H1. Overall we observe the
pattern [Strang and Nguyen, 1996],

A = . . .

 H0

H1

I

(H0

H1

)
. (2)

The first two FWT-matrices are shown. The dots . . .
act as a placeholder for additional analysis matrices.
All of which factor into the final analysis matrix.

We have seen how to construct the analysis matrix A
and will now invert this process. Overall the inverse
FWT (IFWT) can again be thought of as a linear op-
eration,

Sb = x. (3)

The synthesis matrix S is constructed using the syn-
thesis filter pair f0, f1, where structurally the synthesis
matrices are transposed in comparison to their anal-
ysis counterparts. We show the multi-scale recon-
struction matrices in figure 2. Given the transposed
convolution matrices F0 and F1, S is constructed by

[Strang and Nguyen, 1996]

S =
(
F0 F1

)( F0 F1

I

)
. . . . (4)

In order to guarantee invertibility we must have SA =
I. To enforce it, conditions on the filter pairs h0,h1

as well as f0, f1, which make up the convolution and
transposed convolution matrices, are required. In sum-
mary, computation of the fast wavelet transform relies
on convolution pairs, which recursively build on each
other.

3.2 The two-dimensional wavelet-transform

The two-dimensional wavelet transform is based on the
same principles as the one-dimensional case. Separa-
ble and non-separable two-dimensional wavelet trans-
forms exist [Jensen and la Cour-Harbo, 2001]. Sep-
arable two-dimensional transforms work with two
one dimensional transforms. Non-separable trans-
forms use a single two-dimensional FWT. Separable
transforms have previously been found to problem-
atically single out axis-aligned and diagonal struc-
tures [Jensen and la Cour-Harbo, 2001]. We, there-
fore, choose to work with two-dimensional wavelet
transforms. We now have to handle the extra dimen-
sion and require two-dimensional filter quadruplets in-
stead of pairs.

Given the one-dimensional filter pairs f0, f1 and h0,h1,
their two-dimensional counterparts are computed us-
ing outer products [Vyas et al., 2018]. An outer prod-
uct of two column vectors a and b is defined as abT .
The required four filters are computed using the outer
products of all four combinations,

fll = f0f
T
0 , flh = f0f

T
1 , (5)

fhl = f1f
T
0 , fhh = f1f

T
1 . (6)

This filter set {fll, flh, fhl, fhh} ∈ fk is used in all for-
ward convolutions at every level.
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Figure 2: Structures of the Haar synthesis fast wavelet transformation matrices for three scales (right) as well
as the complete inverse matrix (left). We observe that the synthesis matrix is the product of stacked transposed
convolution matrices F0 and F1. In comparison to the forward transform matrices are reversed [Wolter, 2021].

In the non-seperated case, two-dimensional convolu-
tion ∗ is used to compute the wavelet coefficients. De-
noting the filter with k and using i for the scale, con-
volution with each of the four filters

xi ∗ fk = ki (7)

yields the four subbands with k ∈ [ll, lh, hl, hh]. The
last three coefficients are stored, and lli is used to com-
pute the next scale. In other words, the input signal
xi must be lli−1 after the first level where i > 1.

In the inverse or synthesis case, the two-dimensional
filters are once more constructed using outer prod-
ucts. Given the four subbands at the higher level, lli−1
is reconstructed using a transposed two-dimensional
convolution. The reconstruction completes the three
stored subband tensors on the level below, which we
keep during the forward pass. While inversely travers-
ing the list of sub-tensors stored during the analysis
transform, transposed convolutions successively recon-
struct the original input, combining the newly com-
puted lli−1 with the stored submatrices at every step.

3.3 Wavelet pooling

The fast wavelet transform turns into a pooling
method, when the first level, fine-scale coefficients
are discarded [Williams and Li, 2018]. The full anal-
ysis two-dimensional transform is computed for two
or more scales. The synthesis transform, how-
ever, is computed without using the subbands at
the first scale, which cuts the resolution in half
[Williams and Li, 2018]. We are comparing pool-
ing based on non-separable and separable transforms
[Williams and Li, 2018]. Separable transforms treat
the rows first and afterwards, independently, the
columns. Two-dimensional wavelet transforms us a
single 2D-convolution, see equations (5)-(7).

Without re-weighting, the inverse transform recom-
bines higher level sub-tensors into the original input.

In Section 3.4 we introduce sub-tensor weights, which
make multiscale wavelet pooling meaningful.

3.4 Scaled wavelet pooling

To further benefit from multiscale analysis transforms,
we introduce scaling weights for the pooling operation.
Our weights rescale the wavelet coefficient subbands at
higher levels. The idea is to allow our scaled wavelet
pooling layers to in- or decrease the contribution of a
particular scale to the pooled result.

The forward two-dimensional wavelet transform pro-
duces the coefficient quadruples lli, lhi,hli,hhi at
each scale i. It suffices to store the lh,hl,hh subma-
trices at each level to fully reconstruct the signal, since
the low-low lli coefficients serve as input to compute
the next quadruple at i+ 1.

We introduce three scale coefficient parameters
wlh,i, whl,i, whh,i ∈ R1 > 0, at all but the last scale,
where we additionally use a single wll > 0. The learned
parameters are multiplied with the submatrices. For
example, in the final low-low case, the inverse trans-
form would work with wll · ll. With I indicating the
total number of scales and dots denoting intermediate
subbands, overall the weighted list,

[[wlh,0 · lh0, ·whl,0hl0, whh,0 · hh0], . . . (8)

[wll,I · llI , wlh,I · lhI , ·whl,IhlI , whh,I · hhI ]] (9)

is fed into the inverse FWT to compute the pooled
features. Our approach gives the pooling operation
the opportunity to rescale features at various scales
according to their importance.

3.5 Wavelet properties

The chosen wavelet basis representation impacts the
pooling. We now aim to optimize the wavelet ba-
sis. We observe that for invertibility, the synthesis-
transform must undo the analysis-transform. This re-
quirement does not allow us to work with any filter.
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The so-called alias cancellation and perfect reconstruc-
tion conditions must hold [Strang and Nguyen, 1996].
Filters that satisfy these conditions turn into wavelets.
The analysis filter pair is called h0, h1, while one refers
to the synthesis pair as f0, f1. Both conditions work on
their z-transformed counterparts. For a complex num-
ber z ∈ C, the transformed filters Hp(z) and Fp(z) are
defined as, p ∈ {0, 1}

Hp(z) =
∑
n∈Z

hp(n)z−n, Fp(z) =
∑
n∈Z

fp(n)z−n, (10)

for both pairs. In the z-domain the alias cancellation
condition is given by [Strang and Nguyen, 1996]

H0(−z)F0(z) +H1(−z)F1(z) = 0. (11)

In filter design the alias cancellation condition
is often solved by the alternating signs solu-
tion F0(z) = H1(−z) and F1(z) = −H0(z)
[Strang and Nguyen, 1996]. For the perfect re-
construction condition to hold we must have
[Strang and Nguyen, 1996],

H0(z)F0(z) +H1(z)F1(z) = 2zc. (12)

The equation requires the filter product-sum at the
center zc to be equal to two, and zero everywhere else.
The power at the center is denoted as c.

3.6 The adaptive wavelet loss

It turns out that we do not have to compute the z-
transform in order to evaluate both conditions. The
time domain representations can be used, by exploit-
ing the equivalence of polynomial multiplication and
convolution [Wolter et al., 2020]. Instead of measur-
ing the deviation from the alternating signs solution,
we choose to work with convolutions for both our alias
cancellation and perfect reconstruction losses. Based
on (11) we now define for alias cancellation

Lac(θw) =

N−1∑
k=0

[
([h0 · (−1)k] ∗ f0)k

+ ([h1 · (−1)k] ∗ f1)k

]2
.

(13)

For the perfect reconstruction loss we follow
[Wolter et al., 2020] and use, based on (12)

Lpr(θw) =

N−1∑
k=0

[
(h0 ∗ f0)k + (h1 ∗ f1)k − 2 · ebN/2c

]2
,

(14)

where ebN/2c is the bN/2c-th unit vector. And k the
filter position as counted from left to right. Summing
up both expression leads us to the overall wavelet loss

L(θw) = Lac(θw) + Lpr(θw). (15)

To allow joint optimization of the network and wavelet
weights, this pooling loss function must be added to
the task-dependent loss function that we want the op-
timizer to improve.

4 Experiments

All experiments use Pytorch [Paszke et al., 2017] and
run on Nvidia Titan Xp cards, with 12GB memory.

Starting with a proof of concept experiment, we com-
pute a forward 2d-FWT, set the first subband coeffi-
cients to zero, and compute the synthesis FWT. The
resulting image appears in figure 3 on the left. Using
the cost function defined in equation 15, we optimize
zero-padded Haar wavelet filters to minimize the in-
formation loss resulting from not having the first level
coefficients. The second image from the left in figure 3
shows the resulting reconstruction. Right next to it,
figure 3 depicts the mean channel difference of both
reconstructions. We observe that the new reconstruc-
tion is improved, especially at the edges, and shows
fewer artifacts. Finally, the mean squared error ver-
sus the optimization steps appears on the very right
of figure 3. We conclude that the filter optimization
approach could help to improve wavelet pooling layers
in principle.

Haar-wavelet initialization tends to get stuck at the
Haar-Wavelet. In subsequent experiments, we choose
to work with randomly initialized filter coefficients.
The randomly initialized wavelet weights are pre-
trained to obtain sufficiently wavelet-like coefficients.
These, in turn, ensure stable FWT and iFWT compu-
tations.

We repeat the proof of concept experiment with ran-
domly initialized filters and show the converged filter
in figure 4. The solution displays a pattern that solves
the anti-aliasing condition. Some possible solutions
require F0(z) = H1(−z) and F1(z) = −H0(−z). Sub-
stituting (−z) produces a minus sign at odd powers in
the coefficient polynomial. Multiplication with (−1)
shifts the pattern to even powers. Whenever F0 and
H1 share the same sign F1 and H0 do not and the other
way around. Other patterns appear too. We picked
an alternating sign example because it is well known,
and other solutions to the convolutions in equations
(13) and (14) are harder to recognize.

In the next sections, we will evaluate the different
wavelet pooling approaches compared to max- and
mean-pooling on several data sets. Here, working with
standard CNN architectures, we compare the methods
by replacing the local pooling layers. We work with
first-degree wavelets. The wavelets in our CNN exper-
iments, therefore, use two coefficients in all four filter
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concept experiment shown in figure 3 using a random
initialization. H0, H1 denote the analysis, F0, F1 de-
note the synthesis filter pairs.

banks. Each wavelet-pooling layer has two scales and
its own weights.

Wavelet and scaled wavelet layers use Haar wavelets.
The scales are initially set to one. Adaptive wavelet
layers work with random filter initializations. Initial
values for the adaptive filters are drawn from the uni-
form distribution U [−1, 1]. To ensure working FWT
and IFWT transforms, we pre-train the adaptive fil-
ters for 250 steps to ensure that our forward- and
backward-fast wavelet transform produce useful values
from the start.

4.1 MNIST

The MNIST data set [LeCun et al., 1998] consists of
sixty thousand train- and ten thousand-test images.
All images have 28x28 pixels and belong to ten classes,

Table 1: Pooling method comparison on the MNIST
data set. Our evaluation uses a LeNet5 like network.
[Williams and Li, 2018] used a network based on Zeil-
ers network and what we refer to as wavelet pooling.
On MNIST adaptive wavelet pooling compares favor-
ably to classic pooling methods. While scaled wavelet
pooling performs competitively. For our experiments
mean, and standard deviation over ten runs are shown.

Experiment Accuracy [%]

adaptive wavelet 99.173± 0.037
scaled wavelet 99.075± 0.112

wavelet 99.073± 0.103
max 99.055± 0.140

adaptive max 98.809± 0.065
mean 99.059± 0.122

adaptive mean 99.064± 0.038

separable wavelet 99.071± 0.0967

wavelet [Williams and Li, 2018] 99.01

one for each digit from zero to nine.

We solve this classification problem using a LeNet-like
network with two convolution, two pooling, and three
fully connected layers. We choose to optimize using
stochastic gradient descent with a learning rate of 0.12,
a momentum value of 0.6, and decay the learning rate
by multiplication with 0.95 after every weight update.
Training stops after 25 epochs.

Table 1 shows experimental results on MNIST. We ob-
serve the highest mean accuracy with a small standard
deviation, for the adaptive wavelet approach. Followed
by scaled wavelet, mean, and max pooling. In these
experiments using adaptive mean oder max pooling
did not help. To evaluate the impact of choosing a
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Figure 5: Logarithmically scaled wavelet loss during
training in the second MNIST pooling layer. The green
line shows the perfect reconstruction loss as defined
in equation 14. The blue line the alias cancellation
loss from equation 13. Both plots overlap most of the
time. The yellow plot depicts the alias cancellation loss
function proposed in [Wolter et al., 2020]. We observe
that our wavelet has converged to a working solution
that the previous formulation does not allow.

seperable or non-separable wavelet transform, we im-
plemented and explored the effect of a separable trans-
form in the last row of Table 1, using a LeNet5 like ar-
chitecture as we do in all other MNIST experiments.
[Jensen and la Cour-Harbo, 2001] discourage this ap-
proach, but it does not reduce accuracy on MNIST.

Measurements of three wavelet loss formulations dur-
ing training are shown in figure 5. The perfect re-
construction loss formulation defined in equation 14 is
shown in green. Two different alias cancellation loss
formulations are compared. The blue line shows the
alias cancellation loss from equation 13. The yellow
plot depicts a measure of the mean squared deviation
from F0(z) = H1(−z) and F1(z) = −H0(−z),

Lac(θw) =

N∑
k=0

(
f0,k − (−1)kh1,k

)2
+
(
f1,k + (−1)kh0,k

)2 (16)

as proposed by [Wolter et al., 2020]. While this loss
formulation leads to alias cancelling wavelet filters if
optimized, we find it to be unnecessarily restrictive.
Figure 5 illustrates this point. The loss shown by the
blue line converges to a minimum which the formula-
tion from equation 16 would not have allowed.
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Figure 6: Wavelet scales weight during training in the
second MNIST pooling layer. Originally initialized to
have a weight of one, over time the optimizer adjusts
the relative weight of the subbands with respect to
each other.

Figure 6 depicts the evolution of the wavelet coefficient
submatrix weights during training. Since all weights
were initialized to one we see that the optimizer moves
these factors significantly as it adjusts the contribution
of the individual subbands. Table 1 showed us that
the scaling weights can lead to performance gains over
fixed wavelet pooling, while basis optimization appears
to be more efficient in this case.

4.2 CIFAR-10

The CIFAR-10 data set [Krizhevsky et al., 2009] con-
sists of 60k 32 by 32 color images of these 50k are
used for training and 10k for testing. The images show
airplanes, automobiles, birds, cats, deers, dogs, frogs,
horses, ships, and trucks. Networks trained on this
data set have to recognize these correctly.

We start our comparison of pooling methods using
an Alexnet [Krizhevsky, 2014] like network, which we
modify to work on CIFAR-10. While moving from ex-
periment to experiment, we always swap all pooling
layers.

We train using stochastic gradient descent with a
learning rate 0.06 and 0.6 momentum. The learning
rate was divided by 10 after 150 and again after 250
epochs. The training process was stopped after 300
epochs.

Results are tabulated in Table 2, again our adaptive
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Table 2: Pooling method comparison on the CIFAR-
10 data set using an Alexnet backbone. The last row
again shows the wavelet-pooling result from a Zeiler-
like network. We find our adaptive pooling approach
to perform well, while the scaled approach does slighly
worse yets remains competitive in this case.

Experiment Accuracy

adaptive wavelet 89.79%
scaled wavelet 88.94%

wavelet 89.01%
max 89.64%
mean 89.24%

separable wavelet 88.72%

wavelet [Williams and Li, 2018] 80.28%

Table 3: Pooling method comparison on the CIFAR-
10 data set using a densenet backbone. We find that
adaptive wavelet and max pooling work best, while
scaled wavelet and fixed wavelet pooling outperform
mean pooling.

Experiment Accuracy

adaptive wavelet 94.41%
scaled wavelet 94.30%

wavelet 94.22%
max 94.37%
mean 94.17%

wavelet pooling performed competitively. Overall we
find that the Alexnet backbone does much better than
the Zeiler-like approach used jointly with dropout in
[Williams and Li, 2018].

We repeat our experiments replacing the Alexnet with
a densenet [Huang et al., 2017] architecture. For all
experiments, we replace the pooling layers within all
transition blocks and leave the final global pooling
layer untouched. Optimization again used stochas-
tic gradient descent with momentum. The learning
rate was set to 0.05, again dividing it by ten after 150
and 250 epochs. Training stopped after 300 epochs.
Weight decay helped in this case and was set to 10−4.

Table 3 shows the best test set performance observed
during training. We find that adaptive and max-
pooling work best, while scaled and wavelet pooling
do better than mean pooling.

Table 4: Pooling method comparison on the SVHN
data set. Experiments again are based on a modified
Alexnet architecture. We find our adaptive pooling
method to perform on par with max pooling in this
case.

Experiment Accuracy

adaptive wavelet 94.87%
scaled wavelet 94.66%

wavelet 94.29%
max 94.87%
mean 94.42%

wavelet [Williams and Li, 2018] 91.10%

4.3 SVHN

The Street View House Numbers (SVHN) Dataset
[Netzer et al., 2011] has 73k color training 26k testing
images. We choose to use the CIFAR-10-like setting
with 32 by 32 color images.

We again use an Alexnet [Krizhevsky, 2014] structure.
Wavelet initialization and pretraining were left un-
changed. For optimization, we choose stochastic gra-
dient descent with a learning rate of 0.08 and no mo-
mentum.

The results shown in Table 4 confirm our previous ob-
servation that adaptive-wavelet and max-pooling per-
form best. The wavelet approach did not outper-
form mean pooling. This observation is in line with
[Williams and Li, 2018], for their experiments with
and without dropout. We note that scaled wavelet
pooling outperformed mean pooling in this case and
conclude that some form of learned flexibility is re-
quired within wavelet pooling layers.

5 Conclusion

We have introduced the usage of non-separable two-
dimensional fast wavelet transforms for pooling layers
in CNNs. Additionally, we proposed scaled and adap-
tive extensions. Here, an improved convolutional alias
cancellation wavelet loss formulation permits wavelets,
which an earlier employed restrictive alternating sign
formulation did not allow. In our experiments, we have
found that adaptive and scaled wavelet pooling deliv-
ers competitive results and adds extra flexibility to
wavelet pooling.

Experimentally we found that the extra flexibility,
added trough scaling or wavelet optimization leads to
improved results in comparison to static wavelet pool-
ing. In particular, we saw that fixed wavelet pool-
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ing often failed to outperform mean pooling. With
the exception of our CIFAR-10 experiments using the
Alexnet backbone, we saw that adding the scaling of
the coefficients generally leads to better performance
in comparison to mean pooling.

Wavelet optimization had a bigger impact than rescal-
ing the subbands. We speculate that this might be a
result of the small input images we chose to use for
computational reasons. These small images limit the
number of meaningful scales the FWT can produce.
Using more scales in future work might give the scaled
wavelet pooling approach an opportunity to have more
of an impact.

Our framework supports high-degree wavelets in
principle, but these require additional padding
to be invertible. Eventually, the extra padding
impacts results. Adopting boundary filters
[Strang and Nguyen, 1996] and wavelets instead
of a padding-based approach may help here. We hope
to investigate this in future work.

Future work could also train orthogonal wavelets. The
orthogonal FWT matrices do not change the norm
or the length of feature input vectors. Such or-
thogonality is of particular importance for the sta-
bility of recurrent neural networks, and could also
help stabilize CNNs. Having orthogonal wavelet fil-
ters should make the FWT analysis matrix orthogonal
AAT = I and ATA = I [Strang and Nguyen, 1996].
Translating these conditions back into the filters
leads to f0[k] = h0[−k] and f1[k] = h1[−k]
[Jensen and la Cour-Harbo, 2001].

This condition suggests an orthogonal loss function.
Such a loss could, for example, measure the mean
squared deviation from orthogonality, which might be
interesting in future investigations.
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