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Abstract. In this paper the upscaling process for the passage from atomistic to continuum mechanical models
of shape memory alloys is considered. First the modeling on the atomistic level is reviewed and a numerical
simulation of a Ni64Al36 alloy is presented. Then the upscaling to an intermediate continuum mechanical
model is performed by means of the inner expansion technique. This model is further approximated to
extract the essential properties. The resulting continuum mechanical model is finally used for the numerical
simulation of a SMA-based two-way micro-actuator.
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1 Introduction
Many materials exhibit a complex behavior which needs to be resolved on different length scales. Macro-
scopic effects can often be well described by models on the continuum mechanical level, whereas for micro-
scopical effects the atomistic level with the method of Molecular Dynamics (MD) is appropriate. Sometimes
it is even necessary to take quantum mechanical effects into account for an accurate description of the mi-
croscale. The computation of the behavior on a coarse length scale usually cannot be done on a finer length
scale due to computational limits. This shows the need of advanced analytical and numerical techniques to
bridge the gap between the different scales.
Basically two different approaches exist to address this problem. First, techniques to combine two or more
different length scales into one model are developed. Without any ambitions for completeness, let us mention
the recent development of multiscale simulations and bridging techniques by E and Engquist [8], Tadmor,
Ortiz and Philips [17] and Wagner and Liu [19]. On the other hand, models on a coarse length scale can
be obtained from models on a fine length scale. This process is called upscaling. Here, as many fine-scale
properties as possible should be retained in the coarse-scale model. Among known upscaling techniques let
us mention the scaling technique which is used by Blanc, Le Bris and Lions [4], E and Huang [9] and others,
the direct expansion technique which originates from Kruskal and Zabusky [12, 20] and the inner expansion
technique by A. and Griebel [2, 3].
In this paper the relation between the atomistic and the continuum length scale is examined. First, the mod-
eling on the atomistic level is shortly described. As an application, we present the results of the numerical
simulation of a Ni-Al alloy. The potential energy for this alloy is given by the Embedded-Atom Method [7].
This material is especially interesting because it exhibits the shape memory effect. It belongs to the class of
so-called smart materials and has many applications in the fields of medicine, engineering and nanotechnol-
ogy.
We then come to the upscaling process to the continuum mechanical level. First, we use the inner expansion
technique which was proposed by A. and Griebel in [2, 3] to derive an intermediate continuum model from
the atomistic model. The technique is based on an expansion of the macroscopic deformation function y and
leads to a description of the potential energy in terms of the derivatives of y up to a given order. It allows for
an accurate description of the material properties.



In a second step, the intermediate continuum mechanical model is further approximated by extracting cer-
tain properties such as the Young modulus and the position of the wells. This way an effective continuum
mechanical model is obtained. It is easier to use for numerical computations, but still retains the important
physical properties.
Finally, the numerical implementation of the continuum model by finite elements is discussed. As an appli-
cation, the dynamics of a two-way micro-actuator is simulated. Such devices can cause small and precise
movements and play an important role in the rapidly advancing field of nanotechnology.

2 Atomistic Length Scale

2.1 Atomistic Model of Crystalline Solids
On the atomistic length scale, the specimen under consideration is described by a system of N interacting
atoms. The atom positions are denoted by

{y(x)}x∈L∩Ω. (1)

Here, the set L ∩Ω serves as the reference configuration, where Ω ⊂ Rd describes the form of the crystal
and L is a lattice. The latter is given by the infinite periodic continuation

L := {x + Az | x ∈ Lcell,z ∈ Zd} (2)

of the finite base cell Lcell ⊂ Rd along the column vectors of the matrix A ∈ GL(d,R). Here d ∈ N denotes
the spatial dimension. The function

y : L ∩Ω→ Rd (3)

describes the deformation from the reference configuration of the crystal in space. The behavior of the
specimen is determined by the potential energy function Φ(A). It depends on the atom positions:

Φ(A) = Φ(A)({y(x)}x∈L∩Ω). (4)

The time evolution of the atomistic system is governed by Newton’s second law of motion

m
∂2

∂t2 y(x) =−∇y(x)Φ(A)({y(x̃)}x̃∈L∩Ω) ∀x ∈ L ∩Ω, (5)

where m denotes the mass of an atom.

2.2 Embedded-Atom Method
The potential energy Φ(A) reflects the specific behavior of the material. A huge amount of different potentials
for different materials has been proposed in the literature. The potential we use here for the Ni-Al alloy is
given by the Embedded-Atom Method (EAM). It has been proposed by Daw and Baskes [7] and is widely
used for the description of metals.
The EAM is based on the hypothesis that every potential induces a certain electron density. Vice versa, it
has been shown by Hohenberg and Kohn [10] that the electron density uniquely determines the potential.
This principle is employed by the EAM to define the potential in terms of the electron density. Every atom
x ∈ L ∩Ω is embedded in the set of surrounding atoms, the so-called host. The electron density of the atom
is then assumed to depend on the electron density ρhost

x of the host:

Φemb
x = Fx

(
ρhost

x
)
. (6)

The embedding function Fx is fitted to the material properties. We furthermore assume that ρhost
x is given

by the superposition of the electron densities of the single atoms in the host. The latter are presumed to be
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radially symmetric functions of the distance. They depend on the type of the atom and are quantified by
single-determinant Hartree-Fock calculations, see [5]. Thus we write

ρhost
x = ∑

x̃∈L∩Ω
ρatom

x̃ (‖y(x)− y(x̃)‖). (7)

Hence the embedding part of the overall potential is given by

Φemb = ∑
x∈L∩Ω

Φemb
x = ∑

x∈L∩Ω
Fx

(
∑

x̃∈L∩Ω
ρatom

x̃ (‖y(x)− y(x̃)‖)
)
. (8)

Note that Φemb is not a pair potential, because Fx is nonlinear in general.
The embedding part by itself is not sufficient to describe the physical properties of the solid.1 Therefore we
augment it by a pair potential

Φpair
x =

1
2 ∑

x̃∈L∩Ω

Zx(‖y(x)− y(x̃)‖)Zx̃(‖y(x)− y(x̃)‖)
‖y(x)− y(x̃)‖ . (9)

The functions Zx and Zx̃ can be interpreted as effective charges. They vanish for distances of more than a few
Å. The pair potential can thus be interpreted as a localized Coulomb potential.
All in all the potential energy is given by

Φ(A) = Φemb + Φpair = ∑
x∈L∩Ω

Φemb
x + Φpair

x . (10)

2.3 Atomistic Simulation of a Ni-Al Alloy
Now we employ the EAM potential to simulate a Ni64Al36 shape memory alloy on the atomistic level. The
concrete material parameters for the EAM potential have been taken from [11].
At higher temperatures, the lattice of the specimen has the B2 structure, see e.g. [16]. One cubic sublattice
only consists of Ni atoms, whereas the other one is randomly occupied by Ni and Al atoms. This reflects the
composition of a real Ni-Al alloy. The reference configuration is chosen as a ball of 2474 atoms arranged in
this structure. The choice of a ball instead of a cube reduces the boundary effects.
Next we perform a molecular dynamics simulation of the time evolution of this system as governed by
equation (5). To this end, the reference configuration is taken as the initial configuration. The initial velocities
of the atoms are chosen randomly to realize the initial temperature of 800K. Additionally the system is
subjected to a cooling process from 800K to 100K during the simulation. This is achieved by scaling the
atom velocities by a uniform factor. The system of ordinary differential equations (5) is discretized in time
by means of the leap-frog scheme. The resulting system is then numerically integrated.
Figure 1 shows four snapshots of the solution. The Ni atoms are plotted in blue and the Al atoms in green.
The upper left snapshot shows the initial configuration. The B2 lattice structure can be clearly recognized
here. Shortly after this, the atoms undergo a slight perturbation due to the temperature, but the lattice structure
remains intact, see the upper right snapshot. But as the cooling proceeds, the systems undergoes a martensitic
structural transformation. The body-centered B2 lattice is transformed to a tetragonal face-centered lattice
(fct). The beginning of the transformation is shown in the lower left snapshot. The last snapshot shows the
system at the final temperature of 100K. Here the phase transformation is fully finished. The system has
been transformed from the austenitic phase at high temperature to the martensitic phase at low temperature.
Note that the crystal did not only change its lattice structure, but also underwent a macroscopic deformation.
It has been elongated along one axis (the x-axis in the figure), whereas it has been compressed along the
other two axes. This transformed the ball into an ellipsoid. We will come back to this later.

1The Young modulus of the embedding part fulfills the relation C44 = 0 and C11 = C12, which is violated by measurements of
real solids.
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Figure 1: Snapshots of molecular dynamics simulation of Ni64Al36.

3 Inner Expansion Technique
After we studied the crystal on the atomistic level, we now come to the upscaling to the continuum mechani-
cal level. Several techniques exist to perform the upscaling process, such as the scaling technique, see e.g. [4]
and [9], and the direct expansion technique, see e.g. [12], [20], [6], [13] and [14]. Here we use the inner
expansion technique which has been proposed by A. and Griebel in [2] and [3] to derive a quasi-continuum
model. In the following we briefly describe the scheme. For details we refer to the mentioned papers.
First we split the overall potentials in the sum of local potentials around some center points x ∈ L ∩Ω, where
L denotes an associated lattice. In case of the EAM potential (10), the splitting is already given by the
two sums. The points x are simply chosen as the points x for the embedding part and as the center points
x = 1

2(x + x̃) for the pair interaction part. This leads to a description of the potential in the form

Φ(A)({y(x)}x∈L∩Ω) = ∑
x∈L∩Ω

Φ(A),x({y(x)}x∈L∩Ω). (11)

Up to now, the deformation function y is defined only discretely on the finite set Ω∩L , cf. (3). For the
upscaling, an energy has to be assigned to a deformation function y : Ω→ Rd which is continuously defined
on the whole domain Ω⊂Rd . To this end, we consider the Taylor expansion of y around the point x ∈ L ∩Ω
up to some degree K ∈ N:

y(x)≈
K

∑
k=0

1
k!

∇ky(x) : (x− x)k. (12)

The colon is a short notation for the higher dimensional scalar products. The expression (12) now allows to
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rewrite the local potential Φ(A),x as follows:

Φ(A),x({y(x)}x∈L∩Ω)≈Φ(A),x

({
K

∑
k=0

1
k!

∇ky(x) : (x− x)k

}

x∈L∩Ω

)

= Φ(I),x(y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)). (13)

Here Φ(I),x is defined by

Φ(I),x(d0,d1,d2, . . . ,dK) := Φ(A),x

({
K

∑
k=0

1
k!

dk : (x− x)k

}

x∈L∩Ω

)
. (14)

Thus we transformed the original potential Φ(A),x, which depends on the deformation function y at all lattice
points x ∈ L ∩Ω, to a representation which depends on the derivatives of y, evaluated only at the single point
x. The overall potential Φ(I) is now given by

Φ(I)(y) = ∑
x∈L∩Ω

Φ(I),x (y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)
)
. (15)

This representation of the potential energy still contains the finite sum over all expansion points x ∈ L ∩Ω.
Note that this sum is a Riemann sum, which is close to an integral. Therefore it makes sense to average it by
passing to the integral representation

Φ(J)(y) =
1

|detA|
∫

Ω
Φ(I),x (y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)
dx. (16)

The factor 1
|detA| stems from the volume of the base cell of the lattice, c.f. (2). We emphasize that the

transition to the integral does not correspond to letting the number N of atoms tend to infinity like the scaling
technique does. Instead, it is still an approximated description of the system for a fixed finite number N of
atoms. Thus we call it an approximation within the quasi-continuum regime.
This technique is applied to the EAM potential in a straightforward but tedious calculation. The resulting
terms are long and intricate, hence we do not state them here.

4 Macroscopic Approximation
The continuum mechanical model which is achieved in the last section can now be used to simulate the Ni-Al
alloy on the continuum mechanical level. However, this is computationally expensive due to the complexity
of the terms. Therefore we perform a next step of approximation on the macroscopic level to extract the
essential properties.

4.1 Macroscopic Approximation of the Principal Part
To study the phase transformation process, it suffices to restrict ourselves to the principal part ∇y of the
approximation. Therefore we choose the order K = 1 of approximation for the inner expansion technique in
Section 3. We yield the continuum mechanical energy

Φ(J)(y) =
∫

Ω
Φ(I),x (y(x),∇y(x)) dx. (17)

For the EAM potential, the energy density Φ(I),x is homogeneous, i.e. it does not depend on x. Furthermore
the translational invariance of the potential allows to skip the dependence on y. Therefore we shortly write

Φ(J)(y) =
∫

Ω
ϕ(∇y(x)) dx. (18)
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Representative W Number of occurrence

W1 =




1.2256 0 0
0 0.89522 0
0 0 0.89522


 658.673

W2 =




0.89522 0 0
0 1.2256 0
0 0 0.89522


 654.655

W3 =




0.89522 0 0
0 0.89522 0
0 0 1.2256


 654.786

unattainable 31.886

Table 1: Normal form of the minima of the potential energy.

Each mechanical system tends to minimize the potential energy. For the time evolution of such systems, this
is expressed by Newton’s second law of motion, which states that the acceleration always points towards
the direction of steepest descent of the potential energy. In the stationary setting, the minimization of the
potential energy is even imposed as the governing principle. Consequently, the system stays nearby of the
minima of the energy landscape. Thus it makes sense to approximate the energy landscape in the vicinity of
the minima.
First, the minima of the potential energy have to be identified. Since there are infinitely many of them, a
classification is in order. To this end, we employ the invariance of the atomistic potential with respect to
rigid body motions. It has been shown in [1] that the invariance also transfers to the continuum mechanical
level. Thus ϕ is frame indifferent, i.e. we have ϕ(∇y) = ϕ(R∇y) for all orthogonal matrices R ∈ O(d). The
set of all minima therefore is the union of several so-called wells O(d)W . The polar decomposition lemma
states that each well contains exactly one representative which is symmetric positive definite. This turns out
to be a convenient normal form for W .
Therefore our task is to identify the representative W of each well. For this purpose, a Monte Carlo technique
is carried out to scan the region of attainable deformations. Each such deformation is used as a starting point
for a minimization routine. Here a steepest-descent minimization technique with an Armijo step-size control
is employed. This ensures that the set of all possible minima is detected. For each minimum which is found
this way the according representative is determined by means of the polar decomposition. The whole process
has been performed 2.000.000 times. The results are given in Table 1. A few minima have to be removed
because the algorithm converged to a non-attainable minimum. Note that the elongation along one axis and
the compression along the other two axes which is expressed by the wells has already been observed in the
atomistic simulation.
The wells W1, W2 and W3 correspond to the martensitic phase. The austenitic phase cannot be found by the
same technique, because the potential describes the crystal at zero temperature at which the austenitic phase
does not occur. Since we have chosen the reference configuration such that it corresponds to the austenitic
phase, we add the well W0 = I. Thus we deal with four wells W0,W1,W2 and W3.
Secondly, we approximate the energy density ϕ in the vicinity of the wells. To reduce the degrees of freedom,
we employ the polar decomposition lemma once more. It states that each frame indifferent function ϕ can
be expressed in terms of the strain tensor. The latter is given by

εi =
1
2

(W−T
i ∇yT ∇yW−1

i − I), (19)

relative to the well Wi. Hence we have

ϕ(∇y) = ϕ̂i(εi). (20)
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Well W1 Well W2 Well W3 Value
C1

1111 = C2
2222 = C3

3333 = 553.119 GPa
C1

2222 = C1
3333 = C2

1111 = C2
3333 = C3

1111 = C3
2222 = 491.451 GPa

C1
2233 = C2

1133 = C3
1122 = 292.370 GPa

C1
1122 = C1

1133 = C2
1122 = C2

2233 = C3
1133 = C3

2233 = 412.757 GPa
C1

2323 = C2
1313 = C3

1212 = 44.720 GPa
C1

1212 = C1
1313 = C2

1212 = C2
2323 = C3

1313 = C3
2323 = 104.353 GPa

Table 2: Young modulus of the martensitic wells W1, W2 and W3. All remaining constants vanish.

Well W0
C0

1111 = C0
2222 = C0

3333 = 472.443 GPa
C0

1122 = C0
1133 = C0

2233 = 389.630 GPa
C0

1212 = C0
1313 = C0

2323 = 102.724 GPa

Table 3: Young modulus of the austenitic well W0. All remaining constants vanish.

We perform the Taylor expansion of ϕ̂i around the minimum εi = 0:

ϕ̂i(εi)≈ ϕ̂i(0) +∑
kl

∂ϕ̂i

∂εi
kl

∣∣∣
εi=0

εi
kl +

1
2 ∑

klmn

∂2ϕ̂i

∂εi
kl∂εi

mn

∣∣∣
εi=0

εi
klε

i
mn. (21)

The first order derivatives ∂ϕ̂i
∂εi

∣∣
εi=0 vanish because we are in a local minimum. The second order derivative

∂2ϕ̂i

∂εi2

∣∣
εi=0 =: Ci is called the Young modulus. Due to the symmetry of the strain tensor εi, there can be only

21 different values at maximum, compared to 81 values for an expansion of ϕ in terms of ∇y. In our case of
the EAM potential, the Young modulus of the martensite computes to the values given in Table 2. Note that
several values coincide due to the tetragonal symmetry of the martensitic wells.
We cannot proceed similarly for the austenite, because ϕ describes the energy at zero temperature, at which
only the martensite phase does exist. As a remedy, we transform the Young modulus of the martensite, which
is relative to the well Wi, back to W0 and adapt it to the cubic symmetry group, see [1] for details. This leads
to the values stated in Table 3.
It remains to determine the constants ϕ̂i(0), which describe the offset of the potential energy for the respective
wells. They are assumed to depend linearly on the temperature. The difference between the martensitic and
the austenitic offset is given by

ϕ̂i(0)− ϕ̂0(0) = C (ϑ−ϑeq) for i = 1,2,3, (22)

where ϑeq denotes the equilibrium temperature ϑeq = 400K, see [15]. The constant C = 5.4 MPa/K depicts
the Clausius-Clapeyron slope and has been taken from [18].
Finally, the approximated overall potential Φ̃(C) is taken as the minimum of all local approximations:

Φ̃(C)(y,ϑ) =
∫

Ω
min

i

(1
2 ∑

klmn
Ci

klmnεi
klε

i
mn−δi0C (ϑ−ϑeq)

)
dx. (23)

4.2 Application: Two-way Micro-actuator
The approximated potential Φ̃(C) from (23) can now be used for numerical simulations. As an example, we
consider a two-way micro-actuator made of Ni64Al36. Such actuators are an important tool in the field of
nano-engineering. These small components are used to generate forces or to cause small movements and
thus form the active part within micro-scale and nano-scale devices. The area of application is very broad
and rapidly increasing and includes micro-valves, nano-pliers etc. The advantage of SMA-based actuators
compared to other techniques is their precision and reproducibility due to the fixed lattice structures.
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Figure 2: Operating principle of the two-way micro-actuator.

Two-way actuators are characterized by their ability to perform a certain movement forward and backward
by themselves, i.e. the process is reversible. In contrast to this, one-way actuators can only perform a certain
movement in one direction, whereas the return movement has to be induced by outer forces or the like.
The geometry of the two-way micro-actuator we consider here is shaped like the letter H. It is fixed at all
four end points such that it is slightly stretched in vertical direction. To all four end points electrodes are
attached. The impression of an electrical voltage to two of these electrodes causes a current to flow through
a part of the actuator. As a consequence, parts of the device will be heated.
The operating principle is depicted in Figure 2. First, an electrical voltage is impressed to the lower two
electrodes. This induces a current through the lower part of the actuator, including the bridge in the middle.
This part is now heated, whereas the remaining part stays cold. This is depicted in red and blue in the left part
of Figure 2. As a consequence, the specimen transforms to the austenite phase in the lower part, because this
phase is energetically preferable at high temperatures. Opposed to this, the upper part exists in the martensitic
phase. Due to the tensile stress in vertical direction, the upper part consists of the martensitic variant with
the elongation in vertical direction, cf. Table 1. Thus the two upper rods of the actuator are slightly longer
and thinner than the lower ones.
Then the process is reversed. The electrical current is turned off at the lower part and turned on at the upper
part. Therefore the upper and the middle part will be heated, whereas the lower part cools down, see the
second diagram of Figure 2. The upper part now transforms to the austenitic phase and the lower part to
the martensitic phase. For the same reason as above, the two upper rods of the actuator are shortened and
the lower ones lengthened. Since the whole actuator is fixed at the ends, the bridge in the middle of the
actuator undergoes a vertical movement. This movement can be used for any desired purpose within the
micro-device, such as to control a valve or the like.
The behavior of the actuator will now be simulated numerically. The time evolution is governed by the
equation

ρ
∂2y
∂t2 = divϕ′(∇y) in Ω, (24)

where ρ = |detA|−1m denotes the mass density. The domain Ω is meshed by means of a simplicial grid. For
our geometry here, 159.744 simplices have been used in total. The evolution equation (24) is then discretized
in space using piecewise linear and globally continuous finite elements on this grid.
The time discretization is done using finite differences and an implicit scheme. The resulting discrete prob-
lem is then reformulated as a non-convex incremental minimization problem in terms of the potential energy.
In each time step, it is solved by a steepest descent minimization routine with an Armijo time-step control.
Due to the relatively slow transformation process, the mass ρ can be neglected. All numerical details can be
found in [1].
The process of redirecting the electrical current is repeated several times within the simulation. After any
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redirection, the temperature increases linearly in one part and decreases linearly in the other part. This is
reflected in the model by setting the temperature ϑ accordingly and affects the offset of the different wells in
the potential energy, cf. (23). The middle part is kept continuously hot due to the constant electrical current
here.
The results of the numerical simulation are shown in Figure 3. First, the current is applied to the lower part.
This leads to a transition to the austenitic phase, which is indicated by the green color. The upper part occurs
in the martensitic variant which is elongated in vertical direction and displayed in yellow. The remaining
two martensitic variants are plotted in red and blue. Then the current is altered. As a consequence, the upper
rods transform to the austenite, whereas the lower ones transform to the martensite. This is depicted in the
second and third snapshot. One can clearly observe the typical microstructure in the martensitic phase here.
The fourth snapshot shows the fully finished transformation process. Note that the the middle bar moved
upwards during the transformation. Then the current is altered again. The resulting reverse transformation is
shown in the fifth and sixth snapshot.
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Figure 3: Snapshots of the continuum mechanical simulation of the two-way micro-actuator.
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