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Abstract The increasing amount of data produced in

many scientific and engineering domains creates as many

new challenges for an efficient data analysis, as possi-

bilities for its application. In this paper, we present one

of the use cases of the project VAVID, namely the con-

dition monitoring of sensor information from wind tur-

bines, and how a data gateway can help to increase the

usability and security of the proposed system. Starting

by briefly introducing the project, the paper presents

the problem of handling and processing large amount

of sensor data using existing tools in the context of

wind turbines. It goes on to describe the innovative ap-

proach used in VAVID to meet this challenge, covering

the main goals, numerical methods used for analysis,

the storage concept, and the architectural design. It

concludes by offering a rational for the use of a data

gateway as the main entry point to the system and how

this is being implemented in VAVID.
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1 Introduction

Immensely growing volumes of data in a variety of engi-

neering areas generate new challenges for efficient data

handling. Novel analytical approaches can be applied

to extract new and useful knowledge from these large

data sets. In particular, comparative data analyzes can

help to uncover relationships, similarities, and differ-

ences in the underlying, ultimately parameter depen-

dent objects. Comparative data analysis is the focus of

the VAVID project1, where participating partners con-

sider data from numerical simulation and sensor mea-

surement with applications in the automotive industry

and the wind energy sector. Besides developing novel

comparative analytical techniques, we are also develop-

ing improved techniques for data compression as well as

new methods for data management and interactive data

visualization to better support the comparative data

analysis. Generally, the holistic approach of VAVID re-

duces the cost of data storage and creates the trans-

parency needed by engineers to monitor and optimize

processes, and therefore ultimately also products. One

objective is the support of product development, which

nowadays depends on numerical simulations both in the

area of vehicle crashes and the system simulation of

wind turbines, where increasingly accurate simulations

generate a growing amount of data.

At the same time, an exponential rise in data vol-

umes is also being seen due to the acquisition of sensor

data during the operation of machines and factories.

These measurements allow engineers to draw impor-

tant conclusions about how well control systems are

working and how they can further optimize production.

Additionally, measurement data is more and more be-

1 Project homepage - http://www.vavid.de
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ing used together with simulation results for new prod-

uct releases. However, plain archival of these amounts

of data pose significant challenges to companies. The

next step, which is the extraction of insights out of the

available data, is often out of reach due to the lack

of adequate processing technology. Therefore, we are

developing novel methodologies for efficient data anal-

ysis and data management in combination with high

performance computing (HPC) systems. These meth-

ods and techniques contribute to the creation of a high

performance data management system that will enable

centralized access to data storage, control of analysis

workloads, as well as retrieval of results data.

One of the main challenges arising from the use of

complex HPC infrastructures in the context of indus-

trial data processing is the usually limited expertise of

the intended user base with regard to such systems.

Relying on command line interfaces and dealing with

batch systems is often found to be tedious and some-

times challenging. VAVID works around this issue by:

(1) using a high-level workflow engine to take care of the

execution and monitoring of different algorithmic com-

positions created by the users to analyze the data, and

(2) offering a data gateway as the central entry point

to the system, with which the users can create, launch,

and evaluate such compositions in a user-friendly man-

ner.

This paper is conceived as an extension of [1], in

which we presented the general goals and approach taken

by VAVID. It extends the previous publication in sev-

eral ways. Firstly, we introduce a workflow and meth-

ods for the automatic detection of ice formation on

rotor blades from sensor measurements as part of the

wind turbine use case. The description of the numerical

methods has been revised, and the presentation of our

in-memory database concept now includes an in-depth

explanation of its functioning. Additionally, a new sec-

tion has been added about the challenges and impor-

tance of data provenance in the context of VAVID. Fi-

nally, we provide the example of fault detection of rotor

blades to demonstrate the viability of our approach.

The paper is structured as follows:

– Section 2 presents related previous work.

– Then, we introduce a major use case: the handling

and analysis of wind turbine monitoring data

– Based on this use case, we describe our HPC-aware

infrastructure in Section 4. In particular, we show

how the different algorithms and technologies are

interacting with a HPC infrastructure.

– In Section 5, we discuss important numerical algo-

rithms that are essential in our system.

– Section 6 introduces our implementation concept

for the mentioned algorithms, which is based on

an HPC-aware in-memory database and its flexible

API.

– Data provenance considerations and the approach

taken is the subject of Section 7.

– The last section offers an example of rotor blade

fault detection using the VAVID approach.

2 Related Work

Science and data gateways [24] are built to efficiently

integrate complex underlying infrastructures to enable

novel research methods and make these available in

a user-friendly way. The data gateway described here

is integrating the UNICORE middleware [4] that man-

ages computing and data resources. It is mature, flex-

ible, continuously being developed, and used in ma-

jor research infrastructures such as PRACE [37], XSE-

DE [46], and the Human Brain Project [21]. UNICORE

consists of the target system, middleware, and client

layers. The first integrates underlying HPC systems,

the second contains services that manage jobs and data,

and the third offers various client interfaces. The li-

braries of the command line client are used in gUSE

(grid User Support Environment) [25,17], in particular

as a DCI-bridge [29], to provide access to HPC systems

via UNICORE. gUSE is a high-level middleware that

provides web services for workflow management, exe-

cution and sharing, and integrates with cloud and dis-

tributed computing infrastructures. WS-PGRADE [25,

17] provides graphical user interfaces to gUSE for work-

flow [2] creation, modification, execution, monitoring,

and related data management. Together, gUSE and WS-

PGRADE form a science gateway framework that runs

within the open source Liferay portal framework [33].

By virtue of providing web portals, Liferay only re-

quires a web browser and internet connection, and is

widely used in industry and research projects.

The MoSGrid (Molecular Simulation Grid) [30,16]

science gateway was built by integrating and extending

the above technologies. It enables complex molecular

simulations via workflows and HPC resources for the

three major chemical application domains (molecular

dynamics, quantum chemistry, and docking) via easy-

to-use graphical user interfaces. By logging in once, the

user gains access to all underlying systems while avoid-

ing the need to re-authenticate [15]. Furthermore, work-

flows and data is annotated with metadata based on

MSML (Molecular Simulation Markup Language) [18]

and thus, improving reproducibility and usability. Vari-

ous other science gateways based on gUSE/WS-PGRA-

DE exist [7,3,41,42,45]. The VAVID data gateway de-

scribed in this manuscript is based on the MoSGrid ex-
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periences and architecture and extends it to facilitate

the VAVID wind energy turbine use case.

3 Use Case: Monitoring of Wind Turbines

The adequate simulation of wind turbines plays an im-

portant role when designing and certifying new instal-

lations [14], as well as when determining the optimal lo-

cation where to place them. Moreover, simulations are

also applied to fine-tune the installations and explore

the effect of possible upgrades. In order to evaluate a

wind turbine, a series of thousands of transient simula-

tions are conducted using data from hundreds of sen-

sors. The gigabytes of data produced in this way, model

the behavior of the installation for a time window in the

order of minutes, using only one of hundreds of possible

configurations. Given the amount of data produced and

the number of configurations that have to be explored,

the use of numerical simulations for the design and opti-

mization of wind turbines is very complicated. Existing

computer-aided engineering (CAE) tools are based on

models derived from fundamental laws, which in addi-

tion exploit engineering knowledge to further simplify

the computations. They only allow punctual compar-

isons of time series or parameters from a small number

of configurations. HPC approaches to obtain 3D compu-

tational fluid dynamics solutions of the Navier-Stokes

equation might arise during the development of the

CAE tools, but not necessarily during the actual design

process of a wind turbine. To investigate structural be-

havior, e. g. in regard to failures, the manufacturers rely

on Finite Element Models (FEM) in comparison with a

real prototype. The downside of FEM-approaches is the

cumbersome analysis of cause and effects, furthermore

many manufacturers never make the models available,

which prohibits external service providers from exploit-

ing their structural information.

Condition monitoring systems (CMS) on the other

hand rely on empirical models derived from sensor data.

Applied to wind turbines, they have the goal of deter-

mining the health of the components, ensuring safety

(e. g. by detecting ice build-ups on rotor blades), and

reducing the wear of the mechanical parts [31]. Diag-

nosis and fine-tuning are made available thanks to the

condition information of hundreds of sensors collected

by the turbine control station. Precise control strate-

gies can be derived from this information in order to

reduce wear, hence prolonging the healthy state of the

installation. The condition monitoring of rotating ma-

chine parts has a long tradition, whereas the monitor-

ing of rotor blades with oscillation analysis has been

studied far less deeply up until now. Therefore, VAVID

will concentrate its effort on the analysis of rotor blade

oscillation data enriched with operational data of the

wind turbine. The operational data includes for exam-

ple the meteorological conditions and the operational

modes of the wind turbine.

The analysis of the rotor blade oscillation data has

to be based on robust behavioral models of the rotor

blade. This means that these models need to be gen-

erally applicable for different wind turbine types, and

also valid for a broad range of operational modes and

meteorological conditions. Since in condition monitor-

ing the models themselves are deduced from historical

data, it is necessary to examine the data from a vast

amount of wind turbines over a broad range of opera-

tional conditions in order to validate these behavioral

models. Various kinds of analysis methods are used for

this task, especially signal analysis and statistical meth-

ods for regression, clustering, and optimization. Since

the approach is empirical, the results are fraught with

statistical uncertainty. VAVID will guide the users to

evaluate those uncertainties. For example, the system

will produce a warning when no cross-validation data

is selectable, e. g. when the user initially selected to

process all available data. Otherwise, data for cross-

validation shall be suggested or the user will be guided

to make different but comparable model hypotheses.

Since parameters and the selection of data varies for

every analysis, it is necessary to store these parame-

ters and selections of data, thus linking the analysis’

results to the algorithms that produced them and the

data they were applied to. This enables VAVID to make

the results comparable, even with metrics not exist-

ing during early experiments, which can then be repro-

duced. Cross-validation will be supported by running

parametrized workflows on different data sets. These

features guide the user to find the best analysis methods

for their particular goal and to evaluate the robustness

of a behavioral model.

In the context of the VAVID project, the sensor in-

formation coming from up to 600 wind turbines is to

be analyzed, each of them producing a data stream of

about 100 MiB per hour. This data is typically highly

fragmented, consisting of millions of single measure-

ments structured in individual files and databases. The

sensor data is to be kept at least as long as the wind

turbine remains operational, which is in the order of 20

years.

VAVID builds a data gateway for massive data anal-

ysis with a user interface designed for the day-to-day

use by engineers, enabling them to execute empirical

analysis of the data and gain results with an educated

trial-and-error approach comparable to physical exper-

iments.
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Table 1 Comparison of two data analysis experiments for
determining an ice formation model.

Step Method I Method II

Data
selection

Time series selection. Mappings of envi-
ronmental conditions and labels.

Single time series per data set.

Feature
space trans-
formation

Hann window and
discrete Fourier
transformation.

Empirical mode

decomposition.

Single spectrum
per data set.

Modal separated
time series per
data set.

Feature
extraction

Determine max-
ima for frequency
range.

Determine period
lengths and conver-
sion to peak fre-
quency.

Peak frequencies per data set.

Feature
reduction

Selection of single peak frequency per
data set.

Single peak frequency per data set.

Analysis
method

Linear regression of
order one.

Kernel regression.

Regression model.

Characte-
ristic gene-
ration and
visualization

Distance between peak and model pre-
diction. Comparison of certain limit and
mapped labels.

Using the gateway, following just-in-time wind tur-

bine data evaluations for ice detection becomes possi-

ble. Especially in cold climates, the rotor blades of wind

turbines are prone to ice formation. Depending on the

location of the turbine site, the ice on the rotor blades

pose a serious threat to the safety of nearby people,

creatures, and objects when the ice falls off from the ro-

tating blades. Therefore, it is often necessary to stop the

wind turbine when a certain amount of ice has formed

on the rotor blades. Ice formation can be detected by

frequency shifts in the rotor blade oscillations. Since

these oscillations are also dependent on environmental

conditions and the operation mode of the turbine, it is

necessary to find models that exactly predict the oscil-

lation frequencies in order to distinguish the frequency

shifts based on ice formation from the frequency shifts

produced due to changes in the environmental condi-

tions or the operation mode.

Table 1 lists two different data analysis experiments

that could be used to determine such a model. The

description of the general steps is shown on the left col-

umn. The experiments are executed from top to bot-

tom. The actual experiment steps correspond to the

columns Method I and Method II. The intermediate

rows in italic mark additional data produced by the

previous workflow step that serve as input for the sub-

sequent step. The data selection phase is the same for

both experiments as well as the final generation of char-

acteristics that are used for the comparison or visual-

ization of the results. Such a setup makes the work-

flows themselves comparable. Both workflows have to

be understood as templates for data analysis experi-

ments, since each step can be parametrized separately.

To achieve the goal of creating an adequate behavioral

model for ice formation, it is necessary to execute the

experiments with multiple different parameter sets.

The main differences between both workflows are in

the feature transformation and the analysis steps. In the

standard workflow (Method I), the time series are trans-

formed to a frequency space using Fast Fourier Trans-

formations (FFT), whereas in the alternative workflow

(Method II), empirical mode decomposition [22] is used

to separate the time series into its modal components.

This makes it necessary to use different feature extrac-

tion procedures for each method since the resulting fea-

ture space is different. Together with the corresponding

feature extraction, these parts of the workflow are in-

terchangeable. Both feature extraction methods have

in common that their output length may vary for each

processed data set. To address this issue, a feature re-

duction step is introduced. This step simply selects one

of the available peak frequencies per data set. The dif-

ferent parameter sets of this selection will lead to the

behavioral models for the different oscillation modes of

the rotor blade.

The analysis algorithms for both workflows are based

on regression methods: a linear regression in case of

Method I, and a non-parametric regression for Method

II. Both steps can be parametrized, although non-parametric

regression suggests otherwise. The main parameter for

linear regression is a polynomial model whose coeffi-

cients are determined by the analysis method. The non-

parametric regression doesn’t need a pre-defined model,

but may be parametrized with different kernels. The

result of both analysis methods is a predictor of peak

frequencies which takes environmental conditions as in-

put.

To determine the quality of the model, we calculate

the distance between the actual peak frequencies calcu-

lated in the steps before the analysis and the predicted

frequencies for each data set. These differences are then

compared against an arbitrary limit. Each distance ex-

ceeding the limit is labeled as ice formation. Comparing

these labels to the mapped labels for each data set lets

us determine the true-positive and false-positive rate of

the predictor subject to the chosen limit.
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4 VAVID Infrastructure

The VAVID data gateway is responsible for providing

the end users with a friendly way of controlling the

processes and interactions taking place within the dif-

ferent components of the VAVID architecture. Thus,

it’s aimed at enabling a high overall user acceptance

of the system. The overview of the data life cycle in

VAVID is illustrated in Figure 1. On the left side, data

coming from the wind turbines is collected in a cen-

tral repository for analysis and long term storage. In

order to efficiently analyze the data, a smaller subset

of the arriving data is generated using pre-processing

algorithms for data anonymization, compression, and

pattern extraction. This subset of data is kept and man-

aged in the in-memory database presented in Section 6

and serves as input for the different numerical analy-

ses described in Section 5. Both the pre-processing and

the numerical analysis are multi-step processes involv-

ing many tools with different levels of parallelization,

performance, and system requirements. These building-

blocks are in modular form following a general conven-

tion. This way, all modules will be available to the user

when creating workflow compositions using the data

gateway. The resulting workflows are controlled by a

workflow orchestration and mapping system, which in

turn is accessed by the users through the data gateway.

The advantage of this approach is that the users do not

have to spend time creating and maintaining orchestra-

tion and mapping scripts, or dealing with the different

batch systems of HPC clusters. Additionally, the data

gateway possesses extensible visualization capabilities

that users can employ to inspect the data and the re-

sults of the analyses.

Models
Simulations
Measurements

Extracted Data
Derived Data
Meta-Data

Data management

User interface Visualization

Pre-processing
Compression
Data extraction

Complex Analyses

Big Data

Simple Analyses

Storage & Database System

Interactive Big Data Analysis

Server side

User side

Fig. 1 Overview of the data life cycle in VAVID.

The technical realization of this concept is illus-

trated in Figure 2. At the lowest level, a cluster file

system is responsible for storing the bulk of data com-

dCache

Lustre In-Memory DB

UNICORE

Science Gateway Portal Users

Computing
nodes

Fig. 2 Architecture of the VAVID system.

ing from the geographically distributed wind turbines.

In order to keep up with the data inflow, as well as to

provide enough bandwidth for an effective data anal-

ysis on HPC clusters, a parallel file system like Lus-

tre [35] or GPFS [39] is the most sensible choice. In

VAVID, Lustre is the natural choice since it is the paral-

lel file system used on the available HPC systems at the

ZIH. Even though parallel file systems offer unmatched

bandwidths, they often lack in areas such as fault tol-

erance, replication, federated identity, advanced data

management, and client support. To improve the data

management functionality in these areas, the VAVID

data gateway will access the parallel file system indi-

rectly through a dCache [39] layer that allows end users

a more comfortable interaction with the underlying file

system without hindering the HPC components from

directly accessing the parallel file system to maximize

performance. The HPC cluster Taurus [6] located at the

ZIH is the primary HPC system used to power the dif-

ferent data analyses during development and evalua-

tion. However, given the site-replication capabilities of

dCache, other remote HPC clusters could be seamlessly

integrated into the data gateway.

Processing wind turbine data is a multi-step process

involving data compression, pre-processing, dimension-

ality reduction as well as different analyses based on

numerical methods that generate characteristic values.

These values are then evaluated by scientists and engi-

neers in order to optimize the setup of the turbines and

improve their models. VAVID will provide its users with

an effective way of creating, executing and monitoring

such workflows. Building on the experience of the MoS-

Grid collaboration, the responsibility of managing the

workflows is shared amongst two state of the art tech-

nologies: UNICORE and gUSE. Given that the wind

turbines continuously generate large amounts of files

that have to be processed, the transmission and launch

of the pre-processing workflow will be fully automatic.

This automation is achieved by creating adequate inter-
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faces for the transmission of the data, coupled with the

data-oriented processing capabilities of UNICORE [40].

Science and data gateways offer different ways of

workflow composition that range from text-based de-

scriptions to various graphical paradigms [10]. In VAVID,

workflows are composed graphically using the web in-

terface of the data gateway. As part of the project,

the Java-based workflow editor available in gUSE/WS-

PGRADE has been substituted by a modern one that

relies solely on HTML and Javascript to function. This

was achieved thanks to a collaboration between the

University of Edinburgh and the MTA SZTAKI. The

new editor has replaced the former one in the official

version of gUSE to profit the whole gUSE community.

A vital aspect for VAVID is securing the access to

the measurement and simulation data. The requirement

of strict confidentiality is a result of the industrial con-

text in which this data is produced. Ensuring the seam-

less integration of all the components present in VAVID

in a secure way while keeping the user acceptance high

is a complex and challenging task. With the help of dig-

ital certificates, VAVID will tackle both issues at once.

Certificate-based encryption of network transmissions

is widely supported by the components used in VAVID,

so certificates will be used to increase the security this

way. On the other hand, certificate-based single sign-

on protocols also enjoy a high level of support in most

of the VAVID components and they help the users by

removing the burden of having to separately authenti-

cate with each of the different components in the sys-

tem. The overall challenge is to enable a high usabil-

ity, especially from the users point of view. This goal

will be significantly facilitated by freeing users from

having to apply for, configure, and manage user cer-

tificates. The identity management solution Unity [43]

will be deployed and integrated with the system to en-

able certificate-free usage of the VAVID data gateway.

Thanks to this, users are able to log into the system us-

ing a traditional username/password without compro-

mising security, since Unity generates SAML-assertions

for the users on-the-fly when they need them (e. g. to

start the workflow or encrypt communication).

5 Numerical Algorithms

A main requirement for the analysis of the wind tur-

bine data is to be able to compare the measurements

from the different situations, e. g. change of wind tur-

bine type, of operational mode or in the weather con-

ditions, see Section 3. Roughly speaking, four different

kind of algorithms will be involved.

The first step involves the computation of suitable

features derived from the raw time-dependent data [26],

for example with the typical representation of the aris-

ing data in the frequency domain, which involves the

fast Fourier transform. In the course of the project,

a large range of algorithms will be studied, including

Hilbert transform or Cepstrum, both based on Fourier

transforms, or wavelet analysis. Another aspect in the

study of such time-dependent data are signal decom-

positions to allow the extraction of unwanted effects or

noise, for these exists a range of established so-called

filters, which for example allow the decomposition into

low and high frequency signals [26]. As an alternative, in

the last twenty years empirical mode decomposition [22]

was successfully used in many applications. It allows

to reduce time series data into a collection of intrinsic

mode functions. But also new approaches from recent

years, e. g. shapelets [47], will be investigated to allow

the data analyst the utilization of a range of algorithms

for the development and identification of suitable fea-

tures for the task at hand.

In the second step (dimensionality reduction) we

employ methods to obtain a low dimensional embed-

ding of the data which still describes most of their

characteristics. The standard dimensionality reduction

method is principal component analysis (PCA), which

gives a low-dimensional representation of data which

are assumed to lie in a linear subspace. But if the data

resides in a nonlinear structure, PCA gives an inefficient

representation with too many dimensions.

Therefore, and particularly in recent years, algo-

rithms for nonlinear dimensionality reduction, or man-

ifold learning, have been introduced, see e. g. [32]. The

goal consists in obtaining a low-dimensional represen-

tation of the data, i. e. in two or three dimensions,

which respects the intrinsic nonlinear geometry in high

dimensions, so that nearby points in the high dimen-

sional space stay nearby in the low dimensional em-

bedding. One can describe several practically relevant

approaches for nonlinear dimensionality reduction as a

generalization of metric multidimensional scaling (MDS),

where now a distance matrix is computed which is not

based on the Euclidean distance, but a suitable different

one. Examples are among others Isomap, locally linear

embeddings, or maximum variance unfolding. The em-

bedding is then obtained by a spectral decomposition

of the distance matrix [32].

To allow the latter, different distance measures for

the raw high dimensional time series data will be inves-

tigated, so that the embedding can provide an efficient

and truthful comparison for an interactive navigation of

bundles of sensor measurement data. Furthermore, for

such time series data one needs to consider the prob-

lem of temporal shifts or lags. Here a simple shift, i. e.

two time series show the same behavior, but with a
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slight overall shift, can be handled by a transformation

into the Fourier frequency domain. A time lag on the

other hand, i. e. the same effect takes place later in one

time series in comparison to the other, is more diffi-

cult to handle. Here, dynamic time warping is one of

the approaches which provide distance measures which

can adapt to time lags and shifts [23]. These three steps

need to connect in a suitable fashion. See [12] for results

on real life data from time series from wind energy ap-

plications. Generally speaking, the signals need to be

“clean” enough for the embedding, which requires the

extraction of unwanted parts of the spectrum. Depend-

ing on the specific analysis goal, time lags are either

signals to detect, or are to be ignored, since the essen-

tial behavior is the same. Here the data analyst needs to

be able to easily apply different distance measures for

time series data in the overall analysis workflow. Fur-

thermore, the identification of suitable distance mea-

sures for this kind of data will give insight into the

choice of features. For a large scale data analysis, the

fast computation of the pairwise distances is one im-

portant building block in the overall workflow, an effi-

cient and parallel numerical data processing inside the

database as described in Section 6 is therefore very im-

portant.

Based on the derived features and exploiting dimen-

sionality reduction, supervised algorithms for classifi-

cation or regression will be used. The aim is to obtain

characteristic values, which then can be provided to

the controller for decision making. A linear regression

will likely not be enough, so nonlinear classification or

regression methods like support vector machines, logis-

tic regression, random forests, or neural networks will

be studied [20]. In particular for the latter, HPC com-

puting capabilities can nowadays be exploited, for in-

stance, using GPU setups for so called deep learning

algorithms. Since in the application domain the aspect

of data set shift likely occurs, we will also investigate

our approaches for covariate shift [44] or transfer learn-

ing [13]. Also relevant are machine learning algorithms

for anomaly detection.

In the overall data life cycle in Figure 1, the user

needs to be have a range of data analysis tools avail-

able on the server side. This involves different feature

constructions, different distance measures, different em-

beddings approaches, and different supervised learning

algorithms. Automatic testing tools will be provided

to be able to automatically evaluate the different ap-

proaches and streamline the process to an usable data-

driven model for the behavior of the wind turbine, as

explained in Section 3 for the case of ice detection.

6 Exploratory HPC Data Processing

Exploratory data analysis is a core requirement of the

VAVID user community as outlined in sections 3 and 5.

On the one hand, this requirement encompasses tasks

like data selection and mapping of additional informa-

tion which are traditionally accomplished using rela-

tional database systems. On the other hand, a major

focus is on numerical processing of time series data that

is collected from various virtual and physical sensors.

Users compose and parametrize a large variety of exist-

ing methods to transform, filter, aggregate and model

said time series. Another group of users tries to develop

novel analytical tools which have to be integrated into

the existing ecosystem to allow realistic evaluation and

eventually application.

To support these use cases from a specification as

well as execution perspective, we rely on ERIS [27],

a data management and processing engine for HPC

systems that enables the creation, composition, and

parametrization of efficient general purpose data anal-

ysis tools for both relational and linear algebra process-

ing. Linear algebra operations form the compute inten-

sive core of most modern numerical algorithms and an

efficient implementation of these operations will allow

us to implement standard numerical tools as well as al-

low the development and integration of new approaches.

ERIS is a pure in-memory storage engine for HPC

systems that provides data analysis programs with effi-

cient parallel access to large structured data sets. The

development of ERIS began with the investigation of in-

dexing data structures that are optimized for in mem-

ory use [5,28]. It was shown that prefix trees (tries)

can avoid the inherent drawbacks of hash- or tree-based

approaches, which can suffer from poor caching perfor-

mance due to frequent memory access to random loca-

tions. When ERIS was introduced in 2014 [27], it en-

compassed a set of efficient low-level data formats and

data access primitives, but lacked an easy to use pro-

gramming environment for the development of useful

data processing applications. To address that shortcom-

ing, a high-level programming model that is based on

flexible data-parallel database operators was proposed

in 2015 [19]. In an article that has been accepted for pre-

sentation recently [34], the programming environment

was extended to include a set of high-level, domain-

specific programming models for relational and linear

algebra processing.

ERIS relies on a set of optimized physical data for-

mats to provide excellent low-level performance for both

relational and linear algebra workloads. In the con-

text of VAVID, users will be able to integrate ERIS

processing tasks into UNICORE workflows. The work-
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flow manager configures ERIS to load data sets from

disk, execute arbitrary processing tasks, and eventually

dump results back to disk, where they can be retrieved

by subsequent workflow steps.

Historically, database systems were considered soft-

ware components that provide a comprehensive SQL

language interface. However, current applications, as

considered in VAVID, demand a new approach to data-

base programming. SQL’s limited set of operations, in-

flexible syntax, as well as lacking support for user-defined

abstractions make it a bad language for application de-

velopment in VAVID. The use of SQL as an interme-

diate language that is generated and executed as part

of an external program is insufficient as well. The SQL

approach limits the database’s ability to apply global

optimizations and implies an expensive transfer of inter-

mediate results between the database and the control

program. What’s more, SQL’s relational model, opti-

mizations, and data structures are simply not geared

for use cases like high-performance numerical process-

ing.

To support VAVID’s intended applications in an in-

tegrated end-to-end solution, we develop ErisPC, a gen-

eral and extensible programming concept for ERIS. For

end-users, ErisPC provides ErQL, an integrated set of

embedded domain-specific languages (DSLs) that com-

bine data structures and operations like matrices and

matrix multiplication or relations and the relational al-

gebra with a flexible procedural host language2. Us-

ing ErQL, users can rely on domain specific constructs

where they are appropriate, compose them with more

general control flow constructs like loops or conditional

execution, and even bridge the gap between data types

by using data combination operations. ErisPC’s main

component is an extensible compiler that can trans-

form ErQL programs into an intermediate representa-

tion (IR), apply optimizations, and eventually generate

code that can be executed by ERIS. Domain-specific

constructs like relational joins, selections, projections,

or matrix multiplication are explicitly represented in

ErisPCs intermediate representation to enable domain-

specific optimizations like join ordering.

Figure 3 depicts the main elements of the program-

ming concept. At the bottom, the ERIS’ low-level Scan

API offers efficient parallelized access to physical data

containers. The Scan API revolves around the SCAN

routine, which traverses over a single data container

and concurrently applies a user-defined C++ function

(UDF) to record subsets of the container. The user-

defined function can access all records of its particular

container subset, create new records, or execute another

(embedded) SCAN to realize more complex algorithms.

2 A subset of Scala (http://www.scala-lang.org/)

Scan API

ErisPC Compiler

ErQL SQL

IR Nodes Optimizations Code Gen

Linear Algebra

Fig. 3 Overview of the ERIS programming concept ErisPC.

ERIS’ Scan API implements a general, data-parallel

processing framework that provides a UDF with effi-

cient access to subsets of a data container’s data. Dif-

ferent physical data formats for relations (column and

row) and matrices (dense, sparse) result in format spe-

cific overloads of the SCAN operator and might require

some type-specific parameters. In general though, all

formats are exposed through the same data-parallel mo-

del. Cumbersome and direct access to physical data

structures as well as missing support for domain-specific

constructs and optimizations make the Scan API a bad

fit for end-user application programming.

To remedy these shortcomings, we develop the Eris-

PC Compiler which translates high-level ErQL code

into low-level Scan API code. ErisPC compiler is im-

plemented as set of extensions for an existing com-

piler framework for domain-specific languages [38]. Ex-

tensions can introduce new intermediate representation

(IR) nodes, optimization rules, and code generation func-

tions that translate IR nodes into Scan API code. The

core of ErisPC compiler is formed by a small set of gen-

eral purpose extensions. Besides control flow constructs

and general numerical and string operations, the core

especially contains IR nodes and code generation for a

set of data format specific partitioning and combina-

tion operations as well as a general purpose processing

operation. Partitioning, combination, and execution op-

erations can be directly translated into SCAN calls; they

form ErisPC’s basic abstraction from the low-level Scan

API.

Partitioning operations prepare a data set for data

parallel processing by splitting it into subsets. Exam-

ples for relational partitioning operations are rows to

split a relation by row, and equivalents(attr) which

groups all rows of a relation that have the same value

in attribute attr. Important matrix partitionings are

rows, columns, and elements. Essentially, a partition-

ing represents the configuration of a single SCAN op-

eration, it specifies the data subsets the SCAN should

consider. They are made explicit as IR nodes to allow

optimization rules that exploit sequences of partition-
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ing, preserving operations or certain compositions of

partitionings and combinations.

Combination operations enable joint processing of

multiple data sets. Classical operations that require joint

processing include relational joins and all binary lin-

ear algebra operations. The most general combine op-

eration is cross, which creates the cartesian product

of two, possibly partitioned, data sets. To compute a

matrix-vector multiplication one could for example cross

a rows-partitioned matrix and an unpartitioned column

vector and then process each of the resulting (row

vector, column vector) combinations to perform the

actual multiplication. equi(attr1, attr2) is a more

specialized combination operation that combines only

elements that have the same value in one of their at-

tributes. Combination operations can also be used to

join data elements of different types: a cross of a rows-

partitioned relation and an unpartitioned matrix com-

bines each row of the relation with the complete matrix

and allows a subsequent process operation to access

(row, matrix) combinations. Combinations can be ap-

plied to different storage formats and each of these con-

figurations can be targeted individually by optimization

rules and can be backed by special code generation. In

general, code generation for combinations is more in-

volved than for partitionings as it takes two interleaved

SCANs to combine data from different sources.

The final base operation is process which applies

a user-defined function to the subsets of a partitioned

data set. The UDF has to accept a data subset as its in-

put, can access and process all contained data elements,

and eventually has to return a data set. process col-

lects the outputs of all UDF calls and returns them

as a partitioned data set for further processing. Each

process is compiled into a Scan API UDF and em-

bedded into the last SCAN operation of the preceding

partitioning or combine operations.

The ErisPC core extensions form the basis for more

specialized extensions (SQL, Linear Algebra), e. g. for

the matrix operations which arise for approaches like

PCA or the generalization of MDS from Section 5. Fig-

ure 4 outlines the ErisPC Compiler pipeline for a sim-

ple matrix-matrix-vector multiplication expression as

it would be defined in a linear algebra extension. The

first step is the transformation of the DSL expression

into ErisPC intermediate representation. The IR con-

sists of an object graph where nodes represent opera-

tions (Mult) and data (v, M1, M2). The second step

are domain-specific optimizations. In the example, the

IR graph is transformed from a configuration where the

matrices M1 and M2 are multiplied first, to a configura-

tion where matrix M2 and vector v are multiplied first.

In summary, the optimization replaces an expensive

let M = M1 * M2 * v

Mult

vMult

M1 M2

Mult

M1 Mult

M2 v

1

2

Cross

Rows v

M2

Process

3

UDF(row, col) {
var result = 0.0
for(i in 0..rowVec.size) {
result += row(i) * col(i)

}
return Matrix.elem(
row.idx,
col.idx,
result

)
}

MUnion

Fig. 4 Compilation of a linear algebra extension.

matrix-matrix multiplication and a cheap matrix-vector

multiplication with two cheap matrix-vector multiplica-

tions. This kind of domain-specific optimization is only

possible because domain operations are represented ex-

plicitly in the intermediate representation.

Step three is the mapping of domain-specific IR

nodes onto core IR nodes. To keep the example small,

we focus on a single multiplication operation. The Mult

node is mapped onto three core nodes: MUnion, Pro-

cess, Cross, and Rows. Rows partitions M2 by row and

Cross generates all (row, v) combinations. Process ap-

plies a user-defined function to all (row, v) combina-

tions which computes the individual elements of the

output vector. Finally, MUnion, a matrix-specific par-

titioning function, combines the individual elements of

the result vector into a single unified matrix, which is

the result of the overall expression. Code generation,

which would be the final step of the compilation pro-

cess was left out of the example to keep it brief and

because the low-level Scan API is not the focus of this

work.

7 Data Provenance

The analysis process used in VAVID for the data coming

from wind turbines consist of the sequential workflow

that is described in Table 1 and illustrated in Figure 5.

When the workflow is executed, each of its constituent

steps is given not only certain input data, but also a set
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of parameters that establish the global configuration of

the analysis process. The execution of a workflow can

be repeated multiple times using different combinations

of input data sets and parameters both for algorithmic

exploration and production use. Every step of the work-

flow produces intermediate results that can be useful to

the analysts, adding to the complexity and scale of the

data that has to be managed.

Data Gateway

UNICORE

Wind
turbine

Data selection

Space transformation

Feature extraction

Feature reduction

Data analysis

Visualization

Archive

Fig. 5 Analysis workflow for wind energy installation data.

One of the problems the analysts experience in an

scenario like this is the increasing difficulty of answering

questions like: who created this data set and when?

which methods, parameters, and input data were used

to generate the results? have they been modified? by

whom? etc. Keeping a rigorous record of all this actions

is known as providing data provenance.

A well-known problem in the workflow approach is

that most of the time only partial information is kept

about how the workflow steps were executed. Moreover,

there is a notorious lack of adequate data provenance

support in the state of the art workflow management

systems [8]. Data provenance support is essential for

VAVID to be able to not only compare and reproduce

experiments, but also to trace optimal results back to

the responsible configuration and input data set.

There are four kinds of provenance information that

should be collected when working with scientific work-

flows like the ones used in VAVID [9]. They are:

– Prospective provenance,

– Retrospective provenance,

– Causality provenance, and

– User-defined provenance

Prospective provenance is the general specification

of the workflow that is needed in order to produce a

certain data. This information is usually produced by

workflow systems like UNICORE and gUSE. It is kept

in the same directory where the data is produced.

Retrospective provenance is the log of all actions and

execution environments that were made to produce the

data. In VAVID, we use the Hierarchical Data Format

Version 5 (HDF5) [11] to store persistent results. HDF5

is a self-describing format with extensive support for

metadata. The choice of HDF5 in VAVID relied not

only on the fact that it’s a proven and widespread soft-

ware, but also because UNICORE is capable of scan-

ning HDF5 files and indexing their metadata [36]. More-

over, it also provides ways of querying this metadata

and use the results for automatic decision-making be-

fore or during the workflow execution.

Each independent step in a VAVID workflow is re-

sponsible for augmenting the retrospective provenance

of its input data and store it as metadata amongst its in-

termediate output in HDF5 files. This ensures the com-

pleteness of the retrospective provenance of each output

data set. Since the provenance information is now an in-

trinsic part of the output data residing inside the same

files, the complexity of managing the coherency of the

metadata is greatly reduced.

Causality provenance describes the dependency re-

lationships between data and the processes that cre-

ated it. Normally, and in the case of VAVID, it can be

derived by analyzing the prospective and retrospective

provenances.

Finally, user-defined provenance comprises informa-

tion that cannot be automatically derived by the system

but plays an important role during execution. This in-

formation can also be stored as metadata annotations

inside the HDF5 files and its inclusion is left at the

discretion of the user starting the workflow.

8 Example

To illustrate a typical usage of the infrastructure, we

consider a condition monitoring use case for fault detec-

tion of a rotor blade. This is based on non-confidential

data analysis procedures, as opposed to the ice forma-

tion case described in Section 3, but it involves similar

steps in the analysis workflow. See [12] for a detailed

description, we present here the basic ingredients. The

data set contains around 4,000 data points taken over

the course of seven months. The occurrence of damage

in this data set is approximately known and its date

was estimated by a proprietary method of BRMS.
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We concentrate on the analysis of rotor blade oscil-

lation data, enriched with operational data of the wind

turbine. The vibrational data from the rotor blades are

collected by two acceleration sensors per blade, mounted

in different angles. Data points stem from hourly mea-

surements, where in each measurement cycle the vibra-

tion from the sensors is captured over the course of 100

seconds and afterward transformed into the frequency

domain. Additionally, the following operational param-

eters are saved: timestamp of measurement, rotation

number of rotor, power output of the turbine, wind

velocity, pitch angle of the rotor blades, and environ-

mental temperature, where the instationary values are

averaged over the time window.

Since in condition monitoring the models themselves

are deduced from historical data, it is in general neces-

sary to examine the data from a vast amount of wind

turbines over a broad range of operational conditions

in order to validate these behavioral models. We use

anomaly detection, also called novelty detection, where

one builds a model from existing data of the undamaged

turbine. Additional data points, i. e. measured during

the normal operation, are checked for conformity with

this model. When such current data deviates from the

model, the occurrence of damage is assumed and fur-

ther investigations are triggered.

We illustrate the workflow for an approach based

on dimensionality reduction, namely we utilize princi-

pal component analysis (PCA) on vibrational sensor

measurements of a wind turbine, given in the form of

frequency spectra, to compute a baseline by way of a

low-dimensional basis [20]. Further measurement sam-

ples are projected into this basis to detect deviation of

the coefficients from those of the baseline, indicating

anomalies.

Before one computes the actual analysis algorithm

on data, some pre-processing steps are needed. For ex-

ample, the data points are divided into different classes

according to their operational parameters. These classes

represent different operational modes, e. g. grouped by

rotational speed or similar wind velocities. Such a selec-

tion is performed by the analyst based on engineering

knowledge and directly results in different analysis runs

for the different behavioral classes. In the next step the

variables to be examined are selected. These are cer-

tain frequency bands which are associated with dam-

age features. In the development of a specific analysis

approach, the user will investigate several choices of fre-

quency bands, perform the computational analysis, and

evaluate the results.

In this example, the data originate from turbines

which are essentially operated with constant rotational

speeds, therefore it is advisable to separate data classes

Fig. 6 Spectrogram of samples taken under the same rota-
tional speed. Frequencies fi are marked to illustrate ways to
select variables.

accordingly. Figure 6 shows the spectrogram of mea-

surements taken under one rotational speed. It is clearly

seen that there are structures in the frequency spectra

of the normal operation (upper part of the figure) which

can be exploited. The data points originating from this

rotational mode are selected for further analysis in this

exposition. This leaves around 2,000 data points which

cover the time domain of the data quite well.

Instead of processing the frequency spectra as a

whole, smaller frequency bands are selected for analysis.

The underlying idea behind analyzing smaller portions

of the spectrum separately, is that each band can con-

tribute to the damage signal on its own. This is favor-

able when damage manifests locally in some frequency

bands which are dominated in variance by other not

relevant frequencies. On the downside, this approach

can result in a higher false positive rate. Here one can

distinguish between two different approaches:

– (F1) analysis of the whole frequency band, i. e. be-

tween the frequencies f2 and f3 in Figure 6.

– (F2) the whole spectrum is divided into several smaller

frequency bands of the same width, i. e. intervals of

length f1 − f0 in Figure 6, which are analyzed sep-

arately and their results are summarized afterward.

We calculate the baseline model using principal com-

ponent analysis (PCA) from data up to a point in time

t, until which the turbine is assumed to be free of dam-

age. Based on the decline of the eigenvalues for this

data, we keep the first three principal components for

the computation of the baseline model. The pre-proces-

sing steps and the calculation of the baseline parameters

are now performed for different settings and evaluated

to obtain a damage detection method.

To summarize, one analyzes data from a single sen-

sor of the turbine and detects deviations from the intact

initial state with the following steps:
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Fig. 7 Damage signal from evaluation of frequency band F1.
The signal from rotor blade 3 increases after date td, the
assumed date of the damage occurrence.

1. Pre-processing

- Divide data points into operational classes

- Select frequency ranges to be analyzed

2. Select data points describing the intact initial state

3. Compute baseline model using PCA

4. Measure statistical deviations the baseline model

For a given collection of frequency spectra and a

baseline model, the analysis procedure returns the cor-

responding damage signal s. The data points occurring

after time stamp t can be interpreted as a continuous

data feed in real time. Therefore, after the computation

of a baseline model, this data feed can be directly eval-

uated and a continuous signal feed is generated in real

time.

In Figure 7, we show exemplary results for a selected

frequency band. The three plots in one figure show the
values of the damage signal over time. The left vertical

line indicates the point in time for which the baseline

was selected. The dashed line represents the approxi-

mate date td, at which the damage is first detected by

the proprietary method of BRMS, and evaluated for the

stored sensor data.

The first rotor blade does not show significant devi-

ations, but small deviations shortly after the assumed

date of damage occurrence. The second blade, on the

other hand, shows small deviations before the assumed

date of damage occurrence td. It is unknown whether

this is an indicator for damage or not. Nevertheless,

one can see clearly that the damage signal from the

third rotor blade increases after date td, so the purely

data-driven procedure obtains results very similar to

the proprietary approach.

After re-activation of the turbine in month 5, the

deviations persist and even increase in blade 1 and 2,

which indicates a change of operational or environmen-

tal conditions due to the repair of the rotor blades and

other maintenance efforts. For the purpose of condition

monitoring, a new baseline would need to be derived in

such a situation.

9 Conclusion and Outlook

In this paper, we introduce the novel VAVID architec-

ture to provide a platform for big data analysis in dif-

ferent industrial domains. Here, the focus is on the use

case of the condition monitoring of wind energy tur-

bines, for which a motivation was provided explaining

the current situation as well as the need for the VAVID

platform. We describe the central concept of a novel

big data gateway serving as the main entry point to

the system in order to improve both its usability and

overall security. Furthermore, we describe the general-

ities of the numerical methods used for data analysis

and presented our concept for the in-memory process-

ing of hot data. Lastly, we portray the need for rigorous

data provenance when dealing with scientific data and

workflows and outline our approach in VAVID. We con-

clude the paper by demonstrating the usability of our

approach by investigating fault detection of rotor blades

using models derived from real data.

Amongst the things deserving further studies are

the performance and scalability of the numerical meth-

ods and storage subsystem, the interoperability and in-

terfaces of the different components, production work-

flows and their aggregated performance, as well as to

further improve the data gateway in order to maximize

user acceptance.
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