
Computer Science - Research and Development manuscript No.
(will be inserted by the editor)

A multi-GPU accelerated solver for the three-dimensional two-phase
incompressible Navier-Stokes equations

Michael Griebel · Peter Zaspel

Received: date / Accepted: date

Abstract The use of graphics hardware for general purpose
computations allows scientists to enormously speed up their
numerical codes. We presently investigate the impact of this
technology on our computational fluid dynamics solver for
the three-dimensional two-phase incompressible Navier-
Stokes equations, which is based on the level set technique
and applies Chorin’s projection approach. To our know-
ledge, this is the first time, that a two-phase solver for the
Navier-Stokes equations profits from the computation power
of modern graphics hardware. As part of our project, a Ja-
cobi preconditioned conjugate gradient solver for the pres-
sure Poisson equation and the reinitialization of the level
set function of our CPU based code were ported to the gra-
phics processing unit (GPU). They are implemented in dou-
ble precision and parallelized by the Message Passing In-
terface (MPI). We obtain speedups of 16.2 and 8.6 for the
Poisson solver and the reinitialization on one GPU in con-
trast to a single CPU. Our implementation scales close to
perfect on multiple GPUs of a distributed memory cluster.
This results in excellent speedups of 115.8 and 53.7 on eight
GPUs of our cluster. Furthermore our whole multi-GPU ac-
celerated solver achieves an impressive speedup of 69.6 on
eight GPUs/CPUs.

Keywords Computational fluid dynamics · Graphics
hardware · Navier-Stokes equations · Multi-GPU · Two-
phase flows

M. Griebel
Institute for Numerical Simulation - University of Bonn
Wegelerstr. 6, 53115 Bonn, Germany
E-mail: griebel@ins.uni-bonn.de
Tel.: +49-228-733437, Fax: +49-228-737527

P. Zaspel
Institute for Numerical Simulation - University of Bonn
Wegelerstr. 6, 53115 Bonn, Germany
E-mail: zaspel@ins.uni-bonn.de
Tel.: +49-228-732748, Fax: +49-228-737527

1 Introduction

The numerical solution of the three-dimensional incompress-
ible Navier-Stokes equations is a computationally expensive
task. So far, high resolution fluid simulations are performed
on large parallel clusters only. General purpose computa-
tions on graphics cards promise to perform the same calcu-
lations on small cost-effective workstations with low energy
requirements.

Current graphics processors, i.e. GPUs, can be used as
highly parallel computation units. Computer graphics and
image processing were among the first fields that utilized
computations on graphics hardware [10], [11]. For now,
GPU parallelizations follow the single instruction multiple
data (SIMD) idea. Depending on the hardware, tens or even
hundreds of streaming processor cores compute fully par-
allel on large data sets. Since the first generation of pro-
grammable GPUs was limited to single precision floating
point arithmetics, they could not be effectively used in nu-
merical fields with high accuracy requirements, such as
computational fluid dynamics for engineering applications.
With the introduction of the latest graphics architectures,
e.g. the NVIDIA Tesla platform, double precision calcula-
tions are now available on the GPU. As a result, this type of
hardware becomes increasingly popular for scientific appli-
cations.

So far, there are still only few applications of GPUs to
solve the full1 non-stationary incompressible three-dimen-
sional Navier-Stokes equations with an Eulerian grid based
approach. Krüger [14] was one of the first to publish results
in this field with the target of realtime applications for fluid
dynamics. His solver uses Chorin’s projection approach [2]

1 Note, that we call the standard Navier-Stokes equations full, to
be able to distinguish them from the inviscid Navier-Stokes equations
frequently found in computer graphics.

2

on a staggered grid, finite differences with forward and cen-
tral differencing, velocity advection as proposed by Stam
[18], a conjugate gradient (CG) solver for the pressure Pois-
son equation and vorticity confinement [19] to reduce the
numerical diffusion introduced by Stam’s method. Due to
hardware, this solver was limited to single precision.

Furthermore, Thibault and Senocak [21] implemented
the first multi-GPU solver for the full incompressible Na-
vier-Stokes equations. Instead of Stam’s advection approach
they use a first order explicit Euler scheme. The pressure
Poisson equation is solved by a Jacobi iterative solver. To
compute on multiple GPUs, they use a shared-memory par-
allelization by Posix threads and a standard domain decom-
position approach. Due to hardware limitations, they also
compute in single precision. This way, they obtain a speedup
factor of 33 on one GPU compared to a single CPU and a
speedup factor of 100 on four GPUs.

Cohen and Molemaker [3] implemented a double preci-
sion solver for the Navier-Stokes equations. They included
temperature into their model via the Boussinesq approxima-
tion [6]. The discretization employs a second order finite
volume approach on a staggered regular grid, the pressure
projection method and a second order Adams-Bashforth
time integration. A multigrid solver handles the Poisson
equation. This way, a maximum speedup factor of 8.5 is
obtained on the latest available graphics hardware (i.e. an
NVIDIA C1060) compared to an eight-core multithreaded
Fortran fluid solver.

A fundamental effort to implement three-dimensional fi-
nite difference methods on GPUs has been made by Micike-
vicius [15]. He introduced base patterns for the fast compu-
tation of high order finite difference stencils. Additionally,
he presented a scalable and fast multi-node / multi-GPU par-
allelization using MPI.

The currently available literature on the solution of the
Navier-Stokes equations on graphics hardware already
shows quite promising performance gains. However, the ap-
plied numerical methods are often not designed for real-
world engineering applications. Engineers and researchers
need a parallel high order double precision fluid solver that
scales on large clusters. Our in-house CPU Navier-Stokes
solver NaSt3DGPF [5], [4] meets these requirements. It
solves the full two-phase non-stationary incompressible Na-
vier-Stokes equations in three dimensions. Similar to [21],
we apply the pressure projection approach of Chorin and
discretize the equations on a staggered grid with finite differ-
ences. A fifth order Weighted Essentially Non-Oscillatory
(WENO) [12] space discretization is used for the convective
terms. Time integration is discretized either by a second or-
der Adams-Bashforth or a third order Runge-Kutta method.
The Poisson equation is solved with a Jacobi-preconditioned
conjugate gradient iterative method or with an algebraic

multigrid method [7]. Arbitrary geometries as well as a va-
riety of boundary conditions are handled. A large-eddy tur-
bulence model, temperature and passive transport of species
concentration is implemented, as well. An MPI-paralleliza-
tion based on the domain decomposition method of Schwarz
[4] allows our solver to scale on large clusters.

There are a lot of applications where the solution of the
Navier-Stokes equations for one phase does not fulfill the re-
quirements of a realistic simulation model. Studies of drop-
let behavior [5], gas bubble dynamics or the physics of rivers
crossing a dam construction [20] make the simultaneous
simulation of two fluid phases (e.g. air and water) necessary.
Our solver NaSt3DGPF uses a level set function [17] for the
distinction of the two phases. Additionally, surface tension
effects of the free surface between the two phases are in-
cluded by the Continuum Surface Force (CSF) scheme [1].

We presently port parts of our CPU fluid solver to the
GPU. After investigating the performance bottlenecks of our
code, we first implemented the Jacobi-preconditioned con-
jugate gradient solver for the Poisson equation and the reini-
tialization process for the level set function on the GPU. The
level set reinitialization is performed by solving a partial dif-
ferential equation of Hamilton-Jacobi type in artificial time.
For its spacial discretization, we implemented the fifth or-
der WENO method, the time discretization is performed by
a Runge-Kutta method of third order. The GPU code is in-
tegrated with the domain decomposition MPI parallelization
framework. We thus obtain a substantially multi-GPU accel-
erated, fully parallel and scalable fluid solver.

The remainder of this article is organized as follows. In
Section 2, we introduce our model for the solution of the
two-phase Navier-Stokes equations as well as parallelization
techniques. Section 3 outlines the necessary implementation
details of our GPU code. In Section 4, we measure and ana-
lyze the performance of our implementation. Section 5 sum-
marizes the results and gives a short outlook.

The contribution of this publication is as follows:

– We show the first application of multi-node / multi-GPU
computations in a high order engineering targeted solver
for the full2 non-stationary incompressible Navier-
Stokes equations.

– For the first time, a two-phase solver for the incompress-
ible Navier-Stokes equations profits from the power of
current graphics hardware.

– We present a successful example for the integration of
GPU computations into a legacy CPU code.

2 See footnote 1.

3

2 Two-Phase Incompressible Navier-Stokes Equations

The simulation of incompressible two-phase flows utilizes
the level set function and is based on the two-phase Navier-
Stokes equations with surface tension [5]. They consist of
the momentum equation

ρ(φ)
Du
Dt

+∇p = ∇ · (µ(φ)S)−σκ(φ)δ (φ)∇φ +ρ(φ)g

and the continuity equation

∇ ·u = 0 .

The tensor S is given by S := ∇u + {∇u}T and the mate-
rial derivative Du

Dt can be expressed by Du
Dt := ∂tu+(u ·∇)u .

The fluid velocity u and pressure p are space- and time-
dependent with time t ∈ [0, tend]. The level set function φ

is a signed distance function with

φ(x, t)

< 0 if x ∈Ω1
= 0 if x ∈ Γf
> 0 if x ∈Ω2

and |∇φ |= 1

and defines the free surface Γf (t) = {x : φ(x, t) = 0} between
the two fluid phases. We set the density ρ and the dynamic
viscosity µ on the two disjoint fluid phase domains Ω1 and
Ω2 as

ρ(φ) := ρ2 +(ρ1−ρ2)H(φ)
µ(φ) := µ2 +(µ1−µ2)H(φ)

, H(φ) :=

0 if φ < 0
1
2 if φ = 0
1 if φ > 0

.

The surface tension coefficient is denoted by σ , volume for-
ces (such as gravity) are given by g, the curvature of the free
surface Γf is called κ and δ is the Dirac δ -functional.

In our CPU code [5], we apply Chorin’s projection me-
thod and the level set method to solve the two-phase un-
steady Navier-Stokes equations. This results in Algorithm 1
which describes the time-discrete computation of the velo-
city, the pressure and the level set function for a new time
step tn+1 with time step size δ t in our simulation.3

After the level set transport in step 2 of Algorithm 1,
the distance property |∇φ | = 1 may be destroyed. By per-
forming the reinitialization in step 3, this property can be
recovered. We solve the reinitialization equation by a time
stepping method in artificial time τ . For τ = 0 the distance
field d is initialized with the transported level set function
φ ∗. After convergence, the distance field d, becomes the
level set function φ n+1 of the new time step.

Our CPU parallelization follows the domain decomposi-
tion approach of Schwarz. We thus decompose our uniform
grid into subblocks of similar size. Each parallel process
stores the simulation data of its own subblock and computes
on this data. For stencil operations, we add several layers

3 Here, for ease of notation, we describe a forward Euler time in-
tegration scheme. The application of higher order schemes is straight-
forward.

Algorithm 1 (Computation of a new time step)

1. compute intermediate velocity field u∗

u∗−un

δ t
= −(un ·∇)un +g+

1
ρ(φ n)

∇ · (µ(φ n)Sn)

− 1
ρ(φ n)

σκ(φ n)δ (φ n)∇φ
n

2. transport level set function

φ
∗ = φ

n +δ t (un ·∇φ
n)

3. reinitialize level set function by solving

∂τ d + sign(φ ∗)(|∇d|−1) = 0

4. solve the pressure Poisson equation

∇ ·
(

δ t
ρ(φ n+1)

∇pn+1
)

= ∇ ·u∗

5. apply velocity correction

un+1 = u∗− δ t
ρ(φ n+1)

∇pn+1

Fig. 1 Data exchange between ghost cells of two parallel processes

of ghost cells at the boundaries between the parallel blocks.
The layer count depends on the order of the stencil. Ghost
cells contain the necessary field values of the neighbor pro-
cess. This data is exchanged when necessary (see Fig. 1).

3 GPU Implementation Details

The GPU implementation of the Poisson solver and the re-
initialization process were performed using the Compute
Unified Device Architecture (CUDA) framework [16] for
parallel programming, which has been introduced by the
graphics hardware company NVIDIA. CUDA defines a par-
allel hardware architecture as well as an extension to the C
programming language for SIMD parallelizations. As part
of the language extension, the programmer is able to imple-
ment C functions called kernels, which are executed on the
GPU. In addition, there are user methods for hardware ini-
tialization, memory handling and thread management. For
reasons of brevity, we do not describe the the basic concepts
of CUDA and its parallel programming framework. We re-

4

fer the reader to [3], [21] or [8] for short introductions to
CUDA.

Poisson Solver Our implementation of the preconditioned
conjugate gradient (PCG) solver utilizes double precision
calculations, because our engineering applications impose
very high accuracy requirements. Since we discretize the
left-hand side of the pressure Poisson equation with a stan-
dard seven-point stencil, the matrix of the discretized linear
system is sparse. By choosing the appropriate variable or-
dering, we get a matrix with seven non-zero diagonals. We
thus have to implement a sparse PCG solver.

As initialization process of the PCG solver, we precal-
culate the non-zero coefficients of the matrix and the right-
hand side of the system on the CPU and transfer them to the
GPU. This approach reduces the implementation effort and
is still efficient, because the calculation time for the coeffi-
cients is dominated by the time needed for the PCG iterative
solution.

The three most important building blocks of a sparse
PCG solver are a fast sparse matrix-vector product, a fast
scalar product and the preconditioner. We have implemented
GPU kernels for all of them.

The diagonal structure of the sparse matrix allows us to
implement a very efficient matrix-vector product, which is
based on the SIMD parallel summation of the seven sten-
cil points. Note, that we do not assemble the full matrix. To
reduce the usage of GPU registers, we save the memory ac-
cess addresses for the pressure field in shared memory. The
register reduction leads to a higher occupancy of the GPU’s
multiprocessors which results, in this case, in an optimized
data throughput for our matrix-vector product kernel.

To avoid the implementation of an additional kernel for
the enforcement of the Poisson equation’s Neumann bound-
ary conditions, we integrate the boundary handling directly
into the matrix-vector product. Instead of a summation of
all of the seven stencil values, we omit those values which
would be normally removed by a separate boundary treat-
ment. To find these points, we calculate a flag field of bound-
ary positions on the CPU and transfer it to the GPU. It is then
passed to the matrix-vector product kernel and used to de-
cide whether to use a stencil value. Extensive profilings have
shown that the necessary additional conditional statements
in the kernel have only slight effect on the performance.

For the implementation of an efficient scalar product, we
follow the lines of [9], and implement a highly optimized,
shared memory based scalar product kernel.

The Jacobi preconditioner is perfectly suited for the
SIMD parallelism of the GPU. The pointwise product can
be easily implemented in a CUDA kernel and shows excel-
lent performance.

Level Set Reinitialization The reinitialization process of the
level set function was implemented with double precision

GPU kernels for the calculation of the regularized sign func-
tion, boundary conditions, the gradient of the distance field d
and the Runge-Kutta time integration. We focus here on the
details of the WENO based ∇d computation as this turned
out to be most challenging when ported to the GPU.

The partial derivatives dx, dy and dz of the gradient are
computed with an upwind method based on a fifth order
WENO scheme. We will briefly sketch the idea of the
WENO scheme. For further reading, we suggest [12] and
[13].

WENO is a finite difference discretization scheme for
derivatives, which is stable even in the case of the existence
of large gradients or shocks in the discretized field. The main
concept of the scheme is to weight the grid points of the sten-
cil according to their smoothness. The smoother the derived
function in a grid point, the higher its weight. Thereby, dis-
continuities or large gradients are ignored. A weighting can
be achieved by so-called smoothness indicators which are
based on the first order forward differences of each neigh-
boring stencil grid point. The WENO scheme computation
is summed up in Algorithm 2.

Algorithm 2 (Sketch of WENO computation)

1. compute first order forward differences between invol-
ved grid points

2. compute smoothness indicators
3. build weighted sum of forward differences according to

smoothness indicators

⇒ high order approximation of derivative

A first straight-forward GPU implementation of the gra-
dient in one computation kernel turned out to be very slow,
as the WENO scheme requires a lot of computations per grid
point and many variables. Consequently the register usage
increased dramatically, so that we had to limit the register
number and force the compiler to put most of the local vari-
ables into the slow local memory.

Our fastest gradient computation kernel is now based on
the idea to divide the computation into several small kernels.
We compute each partial derivative separately. Additionally,
the first order forward differences (step 1 of Algorithm 2)
are first precomputed in one kernel for the whole level set
field and stored in a temporary data field. A second kernel
than loads this data to compute the smoothness indicators
and the approximation of the partial derivative. By following
this approach, we could more than triple our computation
performance.

Efficient Multi-GPU Parallelization The multi-GPU paral-
lelization has been fully integrated with the distributed
memory MPI parallelization of our CPU code. Thus, each

5

GPU holds exactly the same decomposed subblocks of the
data fields which belong to the respective CPU.

The major challenge of the multi-GPU parallelization is
an efficient implementation of the data exchange process. In
the case of a parallel CPU implementation, data exchanges
involve the data transport from CPU memory to the network
interface, the data transmission over the network and a final
data copy from the network interface to the CPU memory. A
distributed memory multi-GPU parallelization requires add-
itional data transfers from the GPU to the CPU and vice
versa. As a matter of fact, memory transfers between the
GPU and the CPU are one major performance bottleneck of
GPU computations. It is therefore necessary to find a fast
way to exchange the ghost cells of the decomposed data
blocks between the GPU and the CPU.

A broadly known solution to this problem lies in an ef-
ficient data reordering for a fast GPU ↔ CPU transfer. If
each ghost cell slice is copied separately from GPU to CPU
and vice versa, this would be a badly coalesced copy oper-
ation and would result in a massive performance lost. We
therefore copy the ghost cells to one contiguous memory
block on the GPU and transfer this block between the GPU
and the CPU. The reordering or packing on the GPU is fast,
since data transfers on the GPU memory are fast. Addition-
ally, a GPU↔ CPU data transfer of a contiguous data block
is the fastest available data exchange. A technical realization
of the data reordering involves the implementation of GPU
kernels for data packing and unpacking and corresponding
CPU functions for unpacking and packing.

By using the latest generation of GPUs (e.g. an NVIDIA
Tesla S1070), we can often even go further and, similar to
the work done in [15], completely hide the total time ne-
cessary for GPU ↔ CPU and network data transfers. This
can be achieved by the so-called concurrent copy and exe-
cution capability: The GPU is now able to perform an asyn-
chronous data transfer while it is calculating on another
piece of data. Controlled by CUDA Streams, we can also
launch CPU methods while the GPU is performing calcula-
tions. Consequently we are able to reorder and transfer data
while a GPU kernel works on another data package.

Let us exemplify this technique by the sparse matrix-
vector product of our PCG solver. In a straight-forward im-
plementation, one would first exchange the ghost cell data
and then calculate the whole matrix-vector product. In con-
trast, by the approach of parallelized computations and com-
munications described above, we can hide the time of data
transfers behind the time-consuming matrix-vector product.
The main idea is to calculate the matrix-vector product on
the inner variables of the decomposed field blocks while the
ghost cell variables are exchanged. In a last serial step, the
matrix-vector product is performed on the ghost cells. This
can be done very fast. Details of this approach are given in
Algorithm 3.

Note, that the reinitialization process of the level set
function could also profit from the application of overlapped
data transfers and calculations. However, this is still work in
progress.

Algorithm 3 (Concurrent data transfer and calculation)

Stream 1 Stream 2

1. pack ghost cell data on GPU

2.1 GPU → CPU transfer
of packed ghost cells

2.2 unpack ghost cell data
on CPU

2. perform matrix-vector
product on inner cells

2.3 exchange data over
network connection

2.4 pack received ghost
cell data on CPU

2.3 CPU → GPU transfer
of packed ghost cells

3. unpack ghost cell data on GPU

4. perform matrix-vector product on ghost cells

Fig. 2 Photorealistic visualization of the benchmark problem of a large
air bubble rising in water (time: 0.0s – 0.34s)

6

4 Performance Results

We have measured the performance of our implementation
on an eight GPU cluster, which is based on two separate
workstations. Both workstations use a four core Intel Core
i7-920 CPU with 2.66 GHz and are equipped with 12GB
DDR3-RAM (1333 MHz). Each node is connected to an
NVIDIA Tesla S1070 GPU computing system. The 10 gi-
gabit network interconnect Myri-10G is used for parallel
communication. As software setup, we employ the Ubuntu
Linux 9.10 operating system as 64 bit version, a GCC 4.2,
MPICH-MX 1.2.7 and CUDA 2.3 . Our fluid solver was
compiled with the optimization flag -O3.

The correctness of our GPU implementation was
checked against the CPU code. We use identical numerical
methods in both codes. Consequently, we can expect equal
results up to machine accuracy and up the order of conver-
gence. However, it is a well-known fact, that the parallelized
scalar product used in our GPU based PCG solver leads to a
slightly different numerical result in contrast to a sequential
scalar product, since the different parallel summation order
introduces modified rounding errors.

Our error measurements totally agree with our expec-
tations. The PCG solver reduces the residual of the linear
system to machine accuracy. For the reinitialization, we also
get equal results up to machine accuracy and convergence
order.

CPU and GPU performance benchmarks were perfor-
med on the same machines to be comparable. Time measure-
ments were made using the gettimeofday command and
include, in the case of GPU computations, the time neces-
sary for the CPU precalculations and the GPU↔ CPU data
transfers. We measured wall clock times.

Our benchmark problem is the simulation of a large air
bubble rising in a box filled with water. Table 1 provides the
parameters of the test problem and Figure 2, shows a pho-
torealistic visualization of the simulation result. The mea-
sured benchmark times reflect the time consumption of the
level set reinitialization and the Poisson solver methods dur-
ing the first 50 time steps of the simulation. In the case of the
PCG solver, we fix the number of iterations to one thousand.

domain size: 20cm×20cm×20cm
liquid phase: water at 20oC

gas phase: air at 20oC
volume forces: standard gravity

initial air bubble radius: 3cm
initial center position of bubble: (10cm,6cm,10cm)

Table 1 Parameters of the benchmark problem of a rising air bubble
in water

Figure 3 shows the GPU speedup results for the Pois-
son solver and the level set reinitialization compared to the
computation on one CPU core. The grid resolution of the

1 2 4 8

0

20

40

60

80

100

120

8.6
15.1

25.6

53.7

16.2

32.3

61.4

115.8

Number of GPUs
Sp

ee
du

p
co

m
pa

re
d

to
on

e
C

PU

Level Set Reinitialization
Jacobi-Preconditioned CG

Fig. 3 GPU speedup compared to one CPU core for a grid resolution
of 3003

503 1003 1503 2003 3003

8

10

12

14

16

18

20

9.1

12

13.1

10.2

8.6

9.8

14.7

15.8
16.1 16.2

Simulation Grid Resolution

Sp
ee

du
p

on
on

e
G

PU

Level Set Reinitialization
Jacobi-Preconditioned CG

Fig. 4 Speedup of one GPU relative to one CPU for different resolu-
tions

benchmark simulation is 3003. We get an excellent speedup
of 16.2 for the double precision Poisson solver on one GPU.
The double precision GPU reinitialization process achieves
a major speedup of 8.6. When using our full eight GPU clus-
ter, we are able to achieve impressive speedups of 115.8 for
the PCG solver and 53.7 for the reinitialization.

In [21], it is observed that, with growing problem sizes,
the per-GPU efficiency increases up to optimality. Figure 4
presents speedup results for growing problem sizes. When it
comes to the PCG solver, we can agree with this observation.
However, the reinitialization process of the level set function
shows a somewhat different behavior: for problem sizes of

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1

1.76

2.97

6.24

1

2

3.79

7.15

1.76

Number of GPUs

Sp
ee

du
p

re
la

tiv
e

to
on

e
G

PU

Level Set Reinitialization
Jacobi-Preconditioned CG

Fig. 5 Multi-GPU speedup relative to one single GPU for a grid reso-
lution of 3003

503, 1003 and 1503 the speedup compared to one CPU in-
creases similar to [21], but breaks down for simulation grid
sizes of 2003 and 3003. We could think of multiple reasons
for this kind of behavior. Possible explanations might be the
GPU occupancy or uncoalesced memory accesses. A rigor-
ous analysis of this result is subject to further research.

The high quality of our parallel multi-GPU implemen-
tation can be seen in Figure 5. The multi-GPU scaling of
our PCG solver meets our expectations to be close to perfect
on all eight GPUs. This results from the highly optimized
data transfer with fully parallel computations and communi-
cation. A nearly linear scaling with high parallel efficiency
can be observed for the reinitialization process. In this case,
the lack of a parallelized computation and communication
is visible. The bend in the graph can be explained by the
limited performance of the second generation PCI Express
8x slots on the mainboards of our workstations. The more
than doubled speedup, which can be seen between four and
eight GPUs, agrees with the observations made for the reini-
tialization process in Figure 4: Since we halve the number
of grid points per GPU, we get a better per-GPU efficiency
on eight GPUs.

The floating point operation throughput of a numerical
algorithm can act as an indicator for implementation effi-
ciency. This is why we calculated it for our PCG solver.
After figuring out the required number of double precision
floating point operations for a thousand iterations we can
calculate the throughput in floating points per second
(FLOPS) based on our time measurements. Please note
again, that we include the time necessary for the CPU pre-
calculations and the CPU ↔ GPU data transfers into our
measurements. The real throughput of our GPU kernels is

1 2 4 8

10

20

30

40

50

60

70

10.6

20.7

37

69.6

Number of CPUs/GPUs
Sp

ee
du

p
co

m
pa

re
d

to
on

e
C

PU

Multi-GPU accelerated NaSt3DGPF

Fig. 6 Overall speedup of our multi-GPU accelerated fluid solver com-
pared to one CPU core for a grid resolution of 3003

Throughput in GFLOPS

1 GPU 2 GPUs 4 GPUs 8 GPUs

4.279 8.599 16.452 31.221

Table 2 Throughput measurements for the double precision PCG
solver at a resolution of 3003

even higher. Table 2 sums up the performance in double pre-
cision gigaFLOPS (GFLOPS). We get a remarkable maxi-
mum of 4.3 GFLOPS for one GPU and impressive 31.2
GFLOPS of throughput on eight GPUs.

We finally had a look at the overall speedup of our multi-
GPU accelerated Navier-Stokes solver. Figure 6 shows the
speedup results of the whole CPU fluid solver when using
multi-GPU computations. Again, we compare our results
with computation times on one CPU core. Even though we
just ported two components of our solver to the GPU we get
a major speedup of 10.6 by using one GPU and an excellent
speedup of 69.6 on our full eight GPU cluster.

5 Conclusions and Outlook

We have presented the progress of porting our parallel CPU-
based in-house solver for the three-dimensional two-phase
Navier-Stokes equations to the GPU. The first two imple-
mented GPU components are a Jacobi-preconditioned con-
jugate gradient solver for the pressure Poisson equation and
the reinitialization of the level set function. Both GPU im-
plementations were sketched. Additionally, an efficient and
scalable distributed memory multi-GPU parallelization has
been proposed. Our optimization techniques are quite gen-

8

eral, and can be applied to a variety of numerical algorithms.
The performance measurements underline the quality of our
GPU implementation as well as the perfect applicability of
GPU computations in the field of computational fluid dy-
namics.

Encouraged by our first GPU computation results, we
plan to port our whole fluid solver to the GPU. Since we
have already implemented WENO space and Runge-Kutta
time discretizations for the level set reinitialization process
on graphics hardware, it should be very little effort to apply
the GPU kernels to the advection part of our fluid solver.
The porting of the remaining CPU code should be straight-
forward. After a full GPU port of the whole fluid solver, a lot
of CPU ↔ GPU data transfers will become redundant and
can be removed. This will result in a completely multi-GPU
based high-performance two-phase incompressible Navier-
Stokes solver.

Acknowledgements This work was supported in parts by the Sonder-
forschungsbereich 611 Singular phenomena and scaling in mathema-
tical models funded by the Deutsche Forschungsgemeinschaft.

References

1. Brackbill JU, Kothe DB, Zemach C (1992) A
continuum method for modeling surface ten-
sion. J Comput Phys 100(2):335–354, DOI
http://dx.doi.org/10.1016/0021-9991(92)90240-Y

2. Chorin AJ (1968) Numerical Solution of the Navier-
Stokes Equations. Math Comp 22(104):745–762

3. Cohen J, Molemaker M (2009) A Fast Double Preci-
sion CFD Code using CUDA. In: Proceedings of Paral-
lel CFD 2009, Moffett Field, California, USA

4. Croce R, Griebel M, Schweitzer MA (2004) A Par-
allel Level-Set Approach for Two-Phase Flow Prob-
lems with Surface Tension in Three Space Dimensions.
Preprint 157, Sonderforschungsbereich 611, Universität
Bonn

5. Croce R, Griebel M, Schweitzer MA (2009) Numerical
simulation of bubble and droplet deformation by a level
set approach with surface tension in three dimensions.
Int J Numer Methods Fluids, accepted

6. Griebel M, Dornseifer T, Neunhoeffer T (1998) Numer-
ical Simulation in Fluid Dynamics, a Practical Introduc-
tion. SIAM, Philadelphia

7. Griebel M, Metsch B, Oeltz D, Schweitzer MA (2006)
Coarse Grid Classification: A Parallel Coarsening
Scheme For Algebraic Multigrid Methods. Numer Lin-
ear Algebra Appl 13(2–3):193–214

8. Halfhill TR (2008) Parallel Processing with CUDA. Mi-
croprocessor Report

9. Harris M (2007) Optimizing Parallel Reduction in
CUDA. Tech. rep., NVIDIA Corporation

10. Hoff KE III, Keyser J, Lin M, Manocha D, Cul-
ver T (1999) Fast computation of generalized Voronoi
diagrams using graphics hardware. In: SIGGRAPH
’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, pp 277–286

11. Hopf M, Ertl T (1999) Hardware Based Wavelet Trans-
formations. In: Workshop ’99 on Vision, Modeling and
Visualization, Erlangen, Germany

12. Jiang GS, Peng D (1999) Weighted ENO Schemes
for Hamilton-Jacobi Equations. SIAM J Sci Comput
21:2126–2143

13. Jiang GS, Shu CW (1996) Efficient implementation of
weighted ENO schemes. J Comput Phys 126(1):202–
228, DOI http://dx.doi.org/10.1006/jcph.1996.0130

14. Krüger J (2006) A GPU Framework for Interactive
Simulation and Rendering of Fluid effects. PhD thesis,
Technische Universität München

15. Micikevicius P (2009) 3D Finite Difference Com-
putation on GPUs using CUDA. In: GPGPU-2:
Proceedings of 2nd Workshop on General Pur-
pose Processing on Graphics Processing Units,
ACM, New York, NY, USA, pp 79–84, DOI
http://doi.acm.org/10.1145/1513895.1513905

16. NVIDIA (2008) CUDA programming guide, Version
2.3. NVIDIA Corporation

17. Osher S, Sethian JA (1988) Fronts propagating
with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations. J Comput Phys
79(1):12–49, DOI http://dx.doi.org/10.1016/0021-
9991(88)90002-2

18. Stam J (1999) Stable fluids. In: SIGGRAPH
’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, pp 121–128, DOI
http://doi.acm.org/10.1145/311535.311548

19. Steinhoff J, Underhill D (1994) Modification of the Eu-
ler equations for “vorticity confinement”: Application
to the computation of interacting vortex rings. Phys Flu-
ids 6:2738–2744, DOI 10.1063/1.868164

20. Strybny J, Thorenz C, Croce R, Engel M (2006) A Par-
allel 3D Free Surface Navier-Stokes Solver For High
Performance Computing at the German Waterways Ad-
ministration. In: The 7th Int. Conf. on Hydroscience and
Engineering (ICHE-2006), Philadelphia, USA

21. Thibault JC, Senocak I (2009) CUDA Implementation
of a Navier-Stokes Solver on Multi-GPU Desktop Plat-
forms for Incompressible Flows. In: Proceedings of
the 47th AIAA Aerospace Sciences Meeting, Orlando,
Florida, USA

