Gauss theorem for tensor divergence

Def. 1 Let $f,g : \mathbb{R} \rightarrow \mathbb{R}$ be functions, $u,v : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ vector fields, $A : \mathbb{R}^2 \rightarrow \mathbb{R}^{2 \times 2}$ a tensor field.

Def. 2 The tensor divergence is defined as

$$(\nabla \cdot A)_i = \sum_j A_{ij}.$$ (1)

Thm. 3 (Gauss theorem)

$$\nabla \cdot \mathbf{F} = \oint_{\partial \Omega} \mathbf{F} \cdot d\mathbf{r} = \int_\Omega \nabla \cdot \mathbf{F} \, d\mathbf{r}$$ (2)

with outside normal vector \mathbf{v} on $\partial \Omega$.

If we set $\mathbf{F} = u_i$ and sum over i in (2), we obtain

$$\int_\Omega \nabla \cdot u = \oint_{\partial \Omega} u \cdot v. \quad (3)$$

Inserting $u = \nabla g$ into (3) yields

$$\int_\Omega \nabla g \cdot \nabla g = - \int_\Omega \nabla \cdot A g + \oint_{\partial \Omega} v \cdot \nabla g. \quad (4)$$
This equation is fundamental to the finite element discretization of Kirchhoff's equation. To discretize Stokes or linear elasticity we have to go one step further.

Note that

\[\nabla \cdot (A \nabla v) = \sum_i \frac{\partial}{\partial x_i} \sum_{j} A_{ij} v_j = \]

\[= \sum_{ij} (v_j \frac{\partial}{\partial x_i} A_{ij} + A_{ij} \frac{\partial v_j}{\partial x_i}) = \]

\[= v \cdot \nabla A^T + A : (\nabla v)^T. \quad (5) \]

Thus using \(u = A^T v \) in (3) yields

\[\int_\Omega A : \nabla v = - \int_\Omega v \cdot \nabla A + \int_\Omega v \cdot A \nabla v. \quad (6) \]

We have not assumed symmetry of \(A \). The symmetric form of Stokes etc. follows from setting

\[A = \frac{1}{2} (\nabla u + (\nabla u)^T) \quad \Rightarrow \quad (7) \]

\[\int_\Omega A : \nabla v = \int_\Omega \frac{1}{2} (\nabla u + (\nabla u)^T) : \frac{1}{2} (\nabla u + (\nabla u)^T). \]