Staff Dr. Frank Kiefer
Mr. Kiefer is now at Deutsche Forschungsgemeinschaft (DFG). This page is no longer maintained.
Contact Information
Research Projects
Scientific Computing
- Multilevel Methods for Nonsymmetric Problems as Iterative Methods on Generating Systems (project description in german)
- Generalized Hierarchical Basis Multigrid Methods for Convection-Diffusion Problems
Research Interests
- (Generalized) Hierarchical Basis and (Algebraic) Multigrid Methods
- Wavelets and Multiscale Methods
- Sparse Approximate Inverses
Workshops and Conferences
Talks at International Conferences:
2001
- Wavelet-like Multiscale Solvers for Convection-Diffusion Problems based on Algebraic Multigrid, ENUMATH 2001, European Conference on Numerical Mathematics and Advanced Applications, July 23-28 (Ischia, Italy)
- AMG-based Wavelet-like Multiscale Solvers for Convection-Diffusion Problems, PRISM‘01, Preconditioned Robust Iterative Solution Methods for Problems with Singularities, May 20-23 (Nijmegen, The Netherlands)
- AMG-based Wavelet-like Multiscale Solvers for Convection-Diffusion Problems, 10th Copper Mountain Conference on Multigrid Methods, April 1-6 (Copper Mountain, Colorado, USA)
2000
- Wavelet-based Multigrid Methods for Convection-Diffusion Problems, SIAM Annual Meeting, July 10-14 (Rio Grande, Puerto Rico)
- Generalized Hierarchical Basis Multigrid Methods for Convection Dominated Problems, Second Conference on Numerical Analysis and Applications, June 11-15 (Rousse, Bulgaria)
1998
- Sparse Approximate Inverse Multilevel Preconditioning for Convection Dominated Problems, Workshop on the Analytical and Computational Methods for Convection-Dominated Problems, August 27-31 (Lozenetz, Bulgaria)
Organized Meetings:
2001
- International Workshop on Meshfree Methods for Partial Differential Equations, September 11-14 (Bonn, Germany)
1998
- 10th Anniversary International GAMM-Workshop on Multigrid Methods, October 5-8 (Bonn, Germany)
Current Research Projects
Publications
-
Wavelet and Multigrid Methods for Convection–Diffusion Equations.
T. Gerstner, F. Kiefer, and A. Kunoth.
In H.-J. Neugebauer and C. Simmer, editors, Dynamics of Multiscale Earth Systems, Lecture Notes in Earth Sciences 97, 123–134. Springer, 2003.
BibTeX
PostScript
-
Generalized hierarchical basis multigrid methods for convection-diffusion problems.
M. Griebel and F. Kiefer.
SFB Preprint 720, Sonderforschungsbereich 256, Institut für Angewandte Mathematik, Universität Bonn, 2001.
BibTeX
PostScript
-
-
Vorgänge möglichst realitätsnah simulieren. Wissenschaftliches Rechnen als neue Dimension in der Forschung.
M. Griebel, F. Kiefer, and G. Zumbusch.
Bonner Universitätsnachrichten, 217:48–49, January 2000.
also as `Simulating Processes as Realistically as Possible', Bonn University News International (BUNI), 7:28–29, November 2000.
BibTeX
Link
-
Lösung einer Dirichletschen Außenraumaufgabe für eine elliptische Differentialgleichung zweiter Ordnung mit Hilfe des Prinzips der Grenzabsorption im Rahmen der Funktionenräume und .
F. Kiefer.
Diplomarbeit, Universität Bonn, 1996.
BibTeX
-
Wavelet and Multigrid Methods for Convection–Diffusion Equations. T. Gerstner, F. Kiefer, and A. Kunoth. In H.-J. Neugebauer and C. Simmer, editors, Dynamics of Multiscale Earth Systems, Lecture Notes in Earth Sciences 97, 123–134. Springer, 2003. BibTeX PostScript
-
Generalized hierarchical basis multigrid methods for convection-diffusion problems. M. Griebel and F. Kiefer. SFB Preprint 720, Sonderforschungsbereich 256, Institut für Angewandte Mathematik, Universität Bonn, 2001. BibTeX PostScript
-
Vorgänge möglichst realitätsnah simulieren. Wissenschaftliches Rechnen als neue Dimension in der Forschung. M. Griebel, F. Kiefer, and G. Zumbusch. Bonner Universitätsnachrichten, 217:48–49, January 2000. also as `Simulating Processes as Realistically as Possible', Bonn University News International (BUNI), 7:28–29, November 2000. BibTeX Link
-
Lösung einer Dirichletschen Außenraumaufgabe für eine elliptische Differentialgleichung zweiter Ordnung mit Hilfe des Prinzips der Grenzabsorption im Rahmen der Funktionenräume und . F. Kiefer. Diplomarbeit, Universität Bonn, 1996. BibTeX