© Universität Bonn/ Bernadett Yehdou
Job Offer
There is an open PhD (for 3 years) or postdoc (for 2 years) position on the design, numerical (error) analysis, and implementation of adaptive methods for nonlinear PDEs in my workgroup at the University of Bonn to be filled as soon as possible.
The position is funded by the joint ANR-DFG project “Robust adaptivity for nonlinear partial differential equations” in collaboration with Martin Vohralík (Inria Paris). Please do not hesitate to contact me in case of questions.
Research Interests
- Numerical treatment of partial differential equations
- Finite element methods (FEM)
- Least-squares FEM
- Boundary element methods (BEM)
- Space-time methods
- Isogeometric analysis (IGA)
- A posteriori error analysis
- Adaptive mesh-refining strategies
- Convergence and optimality of adaptive algorithms
Short Curriculum Vitae
since 11/2023 | Professor for Mathematics (Bonn Junior Fellow), University of Bonn, Germany |
11/2022-10/2023 | (tenured) Inria Starting Faculty Position, Inria Paris, France |
02/2022-10/2022 | Postdoc at the Institute for Analysis and Scientific Computing, TU Wien, Austria |
11/2019-01/2022 | Postdoc at the Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Netherlands |
12/2017-10/2019 | Postdoc at the Institute for Analysis and Scientific Computing, TU Wien, Austria |
08/2014-11/2017 | PhD student in Technical Mathematics, supervised by Dirk Praetorius, TU Wien, Austria |
06/2014 | Diploma in Technical Mathematics, TU Wien, Austria |
05/1990 | born in Hollabrunn, Austria |
Awards
Teaching
See teaching activities of the whole group.
Research Projects
Current
Completed
See all projects of the group.
Publications
Software
-
IGABEM2D.
G. Gantner, D. Praetorius, and S. Schimanko.
zenodo:6282997, 2022.
BibTeX
DOI
-
Fast solutions (for the first-passage distribution of diffusion models with space-time-dependent drift functions).
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
osf.io/xv674/, 2021.
BibTeX
DOI
-
Implementation of: Adaptive space-time BEM for the heat equation.
G. Gantner and R. van Venetië.
zenodo:5165042, 2021.
BibTeX
DOI
Preprints
-
Aubin–Nitsche-type estimates for space-time FOSLS for parabolic PDEs.
T. Führer and G. Gantner.
2024.
BibTeX
arXiv
-
Space-time FEM-BEM couplings for parabolic transmission problems.
T. Führer, G. Gantner, and M. Karkulik.
2024.
BibTeX
arXiv
-
Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems.
G. Gantner and M. Ruggeri.
2024.
BibTeX
arXiv
Articles
-
Improved rates for a space-time FOSLS of parabolic PDEs.
G. Gantner and R. Stevenson.
Numer. Math., 156:133–157, 2024.
BibTeX
DOI
arXiv
-
Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis.
G. Gantner and M. Vohralík.
Math. Models Methods Appl. Sci., 34(3):477–522, 2024.
BibTeX
DOI
arXiv
-
Goal-oriented adaptive finite element methods with optimal computational complexity.
R. Becker, G. Gantner, M. Innerberger, and D. Praetorius.
Numer. Math., 153(1):111–140, 2023.
BibTeX
DOI
arXiv
-
Applications of a space-time FOSLS formulation for parabolic PDEs.
G. Gantner and R. Stevenson.
IMA J. Numer. Anal., 44(1):58–82, 2023.
BibTeX
DOI
arXiv
-
Efficient numerical approximation of a non-regular Fokker–Planck equation associated with first-passage time distributions.
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
BIT, 62:1355–1382, 2022.
BibTeX
DOI
arXiv
-
Mathematical foundations of adaptive isogeometric analysis.
A. Buffa, G. Gantner, C. Giannelli, D. Praetorius, and R. Vázquez.
Arch. Comput. Methods Eng., 29:4479–4555, 2022.
BibTeX
DOI
arXiv
-
Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations.
G. Gantner and D. Praetorius.
Appl. Anal., 101(6):2085–2118, 2022.
BibTeX
DOI
arXiv
-
Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations.
G. Gantner and D. Praetorius.
Comput. Math. Appl., 117:74–96, 2022.
BibTeX
DOI
arXiv
-
Plain convergence of adaptive algorithms without exploiting reliability and efficiency.
G. Gantner and D. Praetorius.
IMA J. Numer. Anal., 42(2):1434–1453, 2022.
BibTeX
DOI
arXiv
-
Stable implementation of adaptive IGABEM in 2D in MATLAB.
G. Gantner, D. Praetorius, and S. Schimanko.
Comput. Methods Appl. Math., 22(3):563–590, 2022.
BibTeX
DOI
arXiv
-
A well-posed first order system least squares formulation of the instationary Stokes equations.
G. Gantner and R. Stevenson.
SIAM J. Numer. Anal., 60(3):1607–1629, 2022.
BibTeX
DOI
arXiv
-
Adaptive space-time BEM for the heat equation.
G. Gantner and R. van Venetië.
Comput. Math. Appl., 107:117–131, 2022.
BibTeX
DOI
arXiv
-
Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries.
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
J. Math. Psych., 105:102613, 2021.
BibTeX
DOI
preprint
-
Rate optimality of adaptive finite element methods with respect to the overall computational costs.
G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko.
Math. Comp, 90:2011–2040, 2021.
BibTeX
DOI
arXiv
-
Further results on a space-time FOSLS formulation of parabolic PDEs.
G. Gantner and R. Stevenson.
ESAIM Math. Model. Numer. Anal., 55(1):283–299, 2021.
BibTeX
DOI
arXiv
-
Optimal convergence behavior of adaptive FEM driven by simple (h−h/2)-type error estimators.
C. Erath, G. Gantner, and D. Praetorius.
Comput. Math. Appl., 79(3):623–642, 2020.
BibTeX
DOI
arXiv
-
Adaptive IGAFEM with optimal convergence rates: T-splines.
G. Gantner and D. Praetorius.
Comput. Aided Geom. Design, 81:101906, 2020.
BibTeX
DOI
arXiv
-
Adaptive isogeometric boundary element methods with local smoothness control.
G. Gantner, D. Praetorius, and S. Schimanko.
Math. Models Methods Appl. Sci., 30:261–307, 2020.
BibTeX
DOI
arXiv
-
Adaptive Uzawa algorithm for the Stokes equation.
G. Di Fratta, T. Führer, G. Gantner, and D. Praetorius.
ESAIM Math. Model. Numer. Anal., 53(6):1841–1870, 2019.
BibTeX
DOI
arXiv
-
Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods.
T. Führer, G. Gantner, D. Praetorius, and S. Schimanko.
Comput. Methods Appl. Mech. Engrg., 351:571–598, 2019.
BibTeX
DOI
arXiv
-
Rate optimal adaptive FEM with inexact solver for nonlinear operators.
G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner.
IMA J. Numer. Anal., 38(4):1797–1831, 2018.
BibTeX
DOI
arXiv
-
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 136(1):147–182, 2017.
BibTeX
DOI
arXiv
-
Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines.
G. Gantner, D. Haberlik, and D. Praetorius.
Math. Models Methods Appl. Sci., 27(14):2631–2674, 2017.
BibTeX
DOI
arXiv
-
Adaptive boundary element methods for optimal convergence of point errors.
M. Feischl, T. Führer, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 132(3):541–567, 2016.
BibTeX
DOI
preprint
-
Adaptive 2D IGA boundary element methods.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Eng. Anal. Bound. Elem., 62:141–153, 2016.
BibTeX
DOI
arXiv
-
Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, and D. Praetorius.
Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015.
BibTeX
DOI
arXiv
Proceedings
-
Rate optimal adaptive FEM with inexact solver for strongly monotone operators.
G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner.
In Oberwolfach Workshop on Adaptive Algorithms, 2537–2540. 2016.
BibTeX
DOI
-
A posteriori error estimation for adaptive IGA boundary element methods.
M. Feischl, G. Gantner, and D. Praetorius.
In 11th World Congress on Computational Mechanics (WCCM), 2421–2432. 2014.
BibTeX
PDF
-
Method to assess the load shifting potential by using buildings as a thermal storage.
F. Judex, M. Brychta, G. Gantner, and R. Braun.
In 2nd Central European Symposium on Building Physics (CESBP), 565–570. 2013.
BibTeX
PDF
Theses
-
Optimal adaptivity for splines in finite and boundary element methods.
G. Gantner.
PhD thesis, Institute for Analysis and Scientific Computing, TU Wien, 2017.
BibTeX
PDF
-
Adaptive isogeometric BEM.
G. Gantner.
Master's thesis, Institute for Analysis and Scientific Computing, TU Wien, 2014.
BibTeX
PDF