Skip to main content

Research Group of Prof. Dr. Gregor Gantner

Contact Information

Address:
Institut für Numerische Simulation
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Phone: +49 228 73--69817
Office: FHA7 3.032
E-Mail: ed tod nnob-inu tod sni ta rentnaga tod b@foo tod de

Job Offer

There is an open PhD (for 3 years) or postdoc (for 2 years) position on the design, numerical (error) analysis, and implementation of adaptive methods for nonlinear PDEs in my workgroup at the University of Bonn to be filled as soon as possible. The position is funded by the joint ANR-DFG project “Robust adaptivity for nonlinear partial differential equations” in collaboration with Martin Vohralík (Inria Paris). Please do not hesitate to contact me in case of questions.

Research Interests

  • Numerical treatment of partial differential equations
  • Finite element methods (FEM)
  • Least-squares FEM
  • Boundary element methods (BEM)
  • Space-time methods
  • Isogeometric analysis (IGA)
  • A posteriori error analysis
  • Adaptive mesh-refining strategies
  • Convergence and optimality of adaptive algorithms

Short Curriculum Vitae

since 11/2023 Professor for Mathematics (Bonn Junior Fellow), University of Bonn, Germany
11/2022-10/2023 (tenured) Inria Starting Faculty Position, Inria Paris, France
02/2022-10/2022Postdoc at the Institute for Analysis and Scientific Computing, TU Wien, Austria
11/2019-01/2022Postdoc at the Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Netherlands
12/2017-10/2019Postdoc at the Institute for Analysis and Scientific Computing, TU Wien, Austria
08/2014-11/2017PhD student in Technical Mathematics, supervised by Dirk Praetorius, TU Wien, Austria
06/2014Diploma in Technical Mathematics, TU Wien, Austria
05/1990born in Hollabrunn, Austria

Awards

01/2020-12/2022 Member of GAMM juniors
07/2019Study Prize 2019 of the Austrian Mathematical Society for the best dissertation thesis
06/2019Best Lecture Award 2019 of TU Wien
10/2018Best Paper Award 2017 of the Faculty for Mathematics and Geoinformation (TU Wien)
10/2018Promotio sub auspiciis Praesidentis rei publicae
04/2018 Finalist for the ECCOMAS PhD Award for the best theses on Computational Methods in Applied Sciences and Engineering in 2017
03/2018Dr.-Klaus-Körper Prize 2018 of GAMM for the best dissertation theses of 2017 in the fields of Applied Mathematics and Mechanics

Teaching

Winter semester 2024/25

Summer semester 2024

Winter semester 2023/24

See teaching activities of the whole group.

Research Projects

Current

Robust adaptivity for nonlinear partial differential equations

French-German ANR-DFG project.

Show description.

Completed

Optimal adaptivity for space-time methods

Project J 4379-N, FWF Erwin Schrödinger Fellowship.

Show description. Homepage.

See all projects of the group.

Publications

Software

  1. IGABEM2D. G. Gantner, D. Praetorius, and S. Schimanko. zenodo:6282997, 2022. BibTeX DOI
  2. Fast solutions (for the first-passage distribution of diffusion models with space-time-dependent drift functions). U. Boehm, S. Cox, G. Gantner, and R. Stevenson. osf.io/xv674/, 2021. BibTeX DOI
  3. Implementation of: Adaptive space-time BEM for the heat equation. G. Gantner and R. van Venetië. zenodo:5165042, 2021. BibTeX DOI

Preprints

  1. Aubin–Nitsche-type estimates for space-time FOSLS for parabolic PDEs. T. Führer and G. Gantner. 2024. BibTeX arXiv
  2. Space-time FEM-BEM couplings for parabolic transmission problems. T. Führer, G. Gantner, and M. Karkulik. 2024. BibTeX arXiv
  3. Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems. G. Gantner and M. Ruggeri. 2024. BibTeX arXiv

Articles

  1. Improved rates for a space-time FOSLS of parabolic PDEs. G. Gantner and R. Stevenson. Numer. Math., 156:133–157, 2024. BibTeX DOI arXiv
  2. Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis. G. Gantner and M. Vohralík. Math. Models Methods Appl. Sci., 34(3):477–522, 2024. BibTeX DOI arXiv
  3. Goal-oriented adaptive finite element methods with optimal computational complexity. R. Becker, G. Gantner, M. Innerberger, and D. Praetorius. Numer. Math., 153(1):111–140, 2023. BibTeX DOI arXiv
  4. Applications of a space-time FOSLS formulation for parabolic PDEs. G. Gantner and R. Stevenson. IMA J. Numer. Anal., 44(1):58–82, 2023. BibTeX DOI arXiv
  5. Efficient numerical approximation of a non-regular Fokker–Planck equation associated with first-passage time distributions. U. Boehm, S. Cox, G. Gantner, and R. Stevenson. BIT, 62:1355–1382, 2022. BibTeX DOI arXiv
  6. Mathematical foundations of adaptive isogeometric analysis. A. Buffa, G. Gantner, C. Giannelli, D. Praetorius, and R. Vázquez. Arch. Comput. Methods Eng., 29:4479–4555, 2022. BibTeX DOI arXiv
  7. Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations. G. Gantner and D. Praetorius. Appl. Anal., 101(6):2085–2118, 2022. BibTeX DOI arXiv
  8. Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations. G. Gantner and D. Praetorius. Comput. Math. Appl., 117:74–96, 2022. BibTeX DOI arXiv
  9. Plain convergence of adaptive algorithms without exploiting reliability and efficiency. G. Gantner and D. Praetorius. IMA J. Numer. Anal., 42(2):1434–1453, 2022. BibTeX DOI arXiv
  10. Stable implementation of adaptive IGABEM in 2D in MATLAB. G. Gantner, D. Praetorius, and S. Schimanko. Comput. Methods Appl. Math., 22(3):563–590, 2022. BibTeX DOI arXiv
  11. A well-posed first order system least squares formulation of the instationary Stokes equations. G. Gantner and R. Stevenson. SIAM J. Numer. Anal., 60(3):1607–1629, 2022. BibTeX DOI arXiv
  12. Adaptive space-time BEM for the heat equation. G. Gantner and R. van Venetië. Comput. Math. Appl., 107:117–131, 2022. BibTeX DOI arXiv
  13. Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries. U. Boehm, S. Cox, G. Gantner, and R. Stevenson. J. Math. Psych., 105:102613, 2021. BibTeX DOI preprint
  14. Rate optimality of adaptive finite element methods with respect to the overall computational costs. G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko. Math. Comp, 90:2011–2040, 2021. BibTeX DOI arXiv
  15. Further results on a space-time FOSLS formulation of parabolic PDEs. G. Gantner and R. Stevenson. ESAIM Math. Model. Numer. Anal., 55(1):283–299, 2021. BibTeX DOI arXiv
  16. Optimal convergence behavior of adaptive FEM driven by simple (hh/2)(h- h/ 2)-type error estimators. C. Erath, G. Gantner, and D. Praetorius. Comput. Math. Appl., 79(3):623–642, 2020. BibTeX DOI arXiv
  17. Adaptive IGAFEM with optimal convergence rates: T-splines. G. Gantner and D. Praetorius. Comput. Aided Geom. Design, 81:101906, 2020. BibTeX DOI arXiv
  18. Adaptive isogeometric boundary element methods with local smoothness control. G. Gantner, D. Praetorius, and S. Schimanko. Math. Models Methods Appl. Sci., 30:261–307, 2020. BibTeX DOI arXiv
  19. Adaptive Uzawa algorithm for the Stokes equation. G. Di Fratta, T. Führer, G. Gantner, and D. Praetorius. ESAIM Math. Model. Numer. Anal., 53(6):1841–1870, 2019. BibTeX DOI arXiv
  20. Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods. T. Führer, G. Gantner, D. Praetorius, and S. Schimanko. Comput. Methods Appl. Mech. Engrg., 351:571–598, 2019. BibTeX DOI arXiv
  21. Rate optimal adaptive FEM with inexact solver for nonlinear operators. G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. IMA J. Numer. Anal., 38(4):1797–1831, 2018. BibTeX DOI arXiv
  22. Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Numer. Math., 136(1):147–182, 2017. BibTeX DOI arXiv
  23. Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines. G. Gantner, D. Haberlik, and D. Praetorius. Math. Models Methods Appl. Sci., 27(14):2631–2674, 2017. BibTeX DOI arXiv
  24. Adaptive boundary element methods for optimal convergence of point errors. M. Feischl, T. Führer, G. Gantner, A. Haberl, and D. Praetorius. Numer. Math., 132(3):541–567, 2016. BibTeX DOI preprint
  25. Adaptive 2D IGA boundary element methods. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Eng. Anal. Bound. Elem., 62:141–153, 2016. BibTeX DOI arXiv
  26. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, and D. Praetorius. Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015. BibTeX DOI arXiv

Proceedings

  1. Rate optimal adaptive FEM with inexact solver for strongly monotone operators. G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. In Oberwolfach Workshop on Adaptive Algorithms, 2537–2540. 2016. BibTeX DOI
  2. A posteriori error estimation for adaptive IGA boundary element methods. M. Feischl, G. Gantner, and D. Praetorius. In 11th World Congress on Computational Mechanics (WCCM), 2421–2432. 2014. BibTeX PDF
  3. Method to assess the load shifting potential by using buildings as a thermal storage. F. Judex, M. Brychta, G. Gantner, and R. Braun. In 2nd Central European Symposium on Building Physics (CESBP), 565–570. 2013. BibTeX PDF

Theses

  1. Optimal adaptivity for splines in finite and boundary element methods. G. Gantner. PhD thesis, Institute for Analysis and Scientific Computing, TU Wien, 2017. BibTeX PDF
  2. Adaptive isogeometric BEM. G. Gantner. Master's thesis, Institute for Analysis and Scientific Computing, TU Wien, 2014. BibTeX PDF