© Universität Bonn/ Bernadett Yehdou
Research Interests
- Numerical treatment of partial differential equations
- Finite element methods (FEM)
- Least-squares FEM
- Boundary element methods (BEM)
- Space-time methods
- Isogeometric analysis (IGA)
- A posteriori error analysis
- Adaptive mesh-refining strategies
- Convergence and optimality of adaptive algorithms
Short Curriculum Vitae
since 11/2023 | Professor for Mathematics (Bonn Junior Fellow), University of Bonn, Germany |
11/2022-10/2023 | (tenured) Inria Starting Faculty Position, Inria Paris, France |
02/2022-10/2022 | Postdoc at the Institute for Analysis and Scientific Computing, TU Wien, Austria |
11/2019-01/2022 | Postdoc at the Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Netherlands |
12/2017-10/2019 | Postdoc at the Institute for Analysis and Scientific Computing, TU Wien, Austria |
08/2014-11/2017 | PhD student in Technical Mathematics, supervised by Dirk Praetorius, TU Wien, Austria |
06/2014 | Diploma in Technical Mathematics, TU Wien, Austria |
05/1990 | born in Hollabrunn, Austria |
Awards
Teaching
See teaching activities of the whole group.
Completed Research Projects
See all projects of the group.
Publications
Software
-
IGABEM2D.
G. Gantner, D. Praetorius, and S. Schimanko.
zenodo:6282997, 2022.
BibTeX
DOI
-
Fast solutions (for the first-passage distribution of diffusion models with space-time-dependent drift functions).
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
osf.io/xv674/, 2021.
BibTeX
DOI
-
Implementation of: Adaptive space-time BEM for the heat equation.
G. Gantner and R. van Venetië.
zenodo:5165042, 2021.
BibTeX
DOI
Preprints
-
Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems.
G. Gantner and M. Ruggeri.
2024.
BibTeX
arXiv
Articles
-
Improved rates for a space-time FOSLS of parabolic PDEs.
G. Gantner and R. Stevenson.
Numer. Math., 156:133–157, 2024.
BibTeX
DOI
arXiv
-
Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis.
G. Gantner and M. Vohralík.
Math. Models Methods Appl. Sci., 34(3):477–522, 2024.
BibTeX
DOI
arXiv
-
Goal-oriented adaptive finite element methods with optimal computational complexity.
R. Becker, G. Gantner, M. Innerberger, and D. Praetorius.
Numer. Math., 153(1):111–140, 2023.
BibTeX
DOI
arXiv
-
Applications of a space-time FOSLS formulation for parabolic PDEs.
G. Gantner and R. Stevenson.
IMA J. Numer. Anal., 44(1):58–82, 2023.
BibTeX
DOI
arXiv
-
Efficient numerical approximation of a non-regular Fokker–Planck equation associated with first-passage time distributions.
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
BIT, 62:1355–1382, 2022.
BibTeX
DOI
arXiv
-
Mathematical foundations of adaptive isogeometric analysis.
A. Buffa, G. Gantner, C. Giannelli, D. Praetorius, and R. Vázquez.
Arch. Comput. Methods Eng., 29:4479–4555, 2022.
BibTeX
DOI
arXiv
-
Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations.
G. Gantner and D. Praetorius.
Appl. Anal., 101(6):2085–2118, 2022.
BibTeX
DOI
arXiv
-
Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations.
G. Gantner and D. Praetorius.
Comput. Math. Appl., 117:74–96, 2022.
BibTeX
DOI
arXiv
-
Plain convergence of adaptive algorithms without exploiting reliability and efficiency.
G. Gantner and D. Praetorius.
IMA J. Numer. Anal., 42(2):1434–1453, 2022.
BibTeX
DOI
arXiv
-
Stable implementation of adaptive IGABEM in 2D in MATLAB.
G. Gantner, D. Praetorius, and S. Schimanko.
Comput. Methods Appl. Math., 22(3):563–590, 2022.
BibTeX
DOI
arXiv
-
A well-posed first order system least squares formulation of the instationary Stokes equations.
G. Gantner and R. Stevenson.
SIAM J. Numer. Anal., 60(3):1607–1629, 2022.
BibTeX
DOI
arXiv
-
Adaptive space-time BEM for the heat equation.
G. Gantner and R. van Venetië.
Comput. Math. Appl., 107:117–131, 2022.
BibTeX
DOI
arXiv
-
Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries.
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
J. Math. Psych., 105:102613, 2021.
BibTeX
DOI
preprint
-
Rate optimality of adaptive finite element methods with respect to the overall computational costs.
G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko.
Math. Comp, 90:2011–2040, 2021.
BibTeX
DOI
arXiv
-
Further results on a space-time FOSLS formulation of parabolic PDEs.
G. Gantner and R. Stevenson.
ESAIM Math. Model. Numer. Anal., 55(1):283–299, 2021.
BibTeX
DOI
arXiv
-
Optimal convergence behavior of adaptive FEM driven by simple (h−h/2)-type error estimators.
C. Erath, G. Gantner, and D. Praetorius.
Comput. Math. Appl., 79(3):623–642, 2020.
BibTeX
DOI
arXiv
-
Adaptive IGAFEM with optimal convergence rates: T-splines.
G. Gantner and D. Praetorius.
Comput. Aided Geom. Design, 81:101906, 2020.
BibTeX
DOI
arXiv
-
Adaptive isogeometric boundary element methods with local smoothness control.
G. Gantner, D. Praetorius, and S. Schimanko.
Math. Models Methods Appl. Sci., 30:261–307, 2020.
BibTeX
DOI
arXiv
-
Adaptive Uzawa algorithm for the Stokes equation.
G. Di Fratta, T. Führer, G. Gantner, and D. Praetorius.
ESAIM Math. Model. Numer. Anal., 53(6):1841–1870, 2019.
BibTeX
DOI
arXiv
-
Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods.
T. Führer, G. Gantner, D. Praetorius, and S. Schimanko.
Comput. Methods Appl. Mech. Engrg., 351:571–598, 2019.
BibTeX
DOI
arXiv
-
Rate optimal adaptive FEM with inexact solver for nonlinear operators.
G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner.
IMA J. Numer. Anal., 38(4):1797–1831, 2018.
BibTeX
DOI
arXiv
-
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 136(1):147–182, 2017.
BibTeX
DOI
arXiv
-
Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines.
G. Gantner, D. Haberlik, and D. Praetorius.
Math. Models Methods Appl. Sci., 27(14):2631–2674, 2017.
BibTeX
DOI
arXiv
-
Adaptive boundary element methods for optimal convergence of point errors.
M. Feischl, T. Führer, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 132(3):541–567, 2016.
BibTeX
DOI
preprint
-
Adaptive 2D IGA boundary element methods.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Eng. Anal. Bound. Elem., 62:141–153, 2016.
BibTeX
DOI
arXiv
-
Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, and D. Praetorius.
Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015.
BibTeX
DOI
arXiv
Proceedings
-
Rate optimal adaptive FEM with inexact solver for strongly monotone operators.
G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner.
In Oberwolfach Workshop on Adaptive Algorithms, 2537–2540. 2016.
BibTeX
DOI
-
A posteriori error estimation for adaptive IGA boundary element methods.
M. Feischl, G. Gantner, and D. Praetorius.
In 11th World Congress on Computational Mechanics (WCCM), 2421–2432. 2014.
BibTeX
PDF
-
Method to assess the load shifting potential by using buildings as a thermal storage.
F. Judex, M. Brychta, G. Gantner, and R. Braun.
In 2nd Central European Symposium on Building Physics (CESBP), 565–570. 2013.
BibTeX
PDF
Theses
-
Optimal adaptivity for splines in finite and boundary element methods.
G. Gantner.
PhD thesis, Institute for Analysis and Scientific Computing, TU Wien, 2017.
BibTeX
PDF
-
Adaptive isogeometric BEM.
G. Gantner.
Master's thesis, Institute for Analysis and Scientific Computing, TU Wien, 2014.
BibTeX
PDF