Teaching
See teaching activities of the whole group.
Publications
Articles
-
A symmetric interior penalty method for an elliptic distributed optimal control problem with pointwise state constraints.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
Comput. Methods Appl. Math., 23(3):565–589, 2023.
BibTeX
DOI
-
Adaptive virtual element methods with equilibrated fluxes.
F. Dassi, J. Gedicke, and L. Mascotto.
Applied Numerical Mathematics, 173:249–278, 2022.
BibTeX
DOI
arXiv
-
A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems.
J. Gedicke, S. Geevers, I. Perugia, and J. Schöberl.
SIAM J. Numer. Anal., 59(4):2237–2253, 2021.
BibTeX
DOI
arXiv
-
P1 finite element methods for an elliptic optimal control problem with pointwise state constraints.
S. C. Brenner, J. Gedicke, and L.-y. Sung.
IMA J. Numer. Anal., 40(1):1–28, 2020.
BibTeX
DOI
-
An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems.
J. Gedicke, S. Geevers, and I. Perugia.
J. Sci. Comput., 83(3):Paper No. 58, 23 pp., 2020.
BibTeX
DOI
arXiv
-
Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems.
J. Gedicke and A. Khan.
Numer. Math., 144(3):585–614, 2020.
BibTeX
DOI
arXiv
-
Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM.
C. Carstensen, D. Gallistl, and J. Gedicke.
Numer. Math., 142(2):205–234, 2019.
BibTeX
DOI
-
Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation.
S. Congreve, J. Gedicke, and I. Perugia.
SIAM J. Sci. Comput., 41(2):A1121–A1147, 2019.
BibTeX
DOI
arXiv
-
Benchmark computation of eigenvalues with large defect for non-self-adjoint elliptic differential operators.
R. Gasser, J. Gedicke, and S. Sauter.
SIAM J. Sci. Comput., 41(6):A3938–A3953, 2019.
BibTeX
DOI
arXiv
-
C0 interior penalty methods for an elliptic distributed optimal control problem on nonconvex polygonal domains with pointwise state constraints.
S. C. Brenner, J. Gedicke, and L.-y. Sung.
SIAM J. Numer. Anal., 56(3):1758–1785, 2018.
BibTeX
PDF
DOI
-
Numerical homogenization of heterogeneous fractional Laplacians.
D. L. Brown, J. Gedicke, and D. Peterseim.
Multiscale Model. Simul., 16(3):1305–1332, 2018.
BibTeX
DOI
arXiv
-
Arnold-Winther mixed finite elements for Stokes eigenvalue problems.
J. Gedicke and A. Khan.
SIAM J. Sci. Comput., 40(5):A3449–A3469, 2018.
BibTeX
DOI
arXiv
-
Hodge decomposition for two-dimensional time-harmonic Maxwell's equation: impedance boundary condition.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
Math. Methods Appl. Sci., 40(2):370–390, 2017.
BibTeX
PDF
DOI
-
An a posteriori analysis of C0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates.
S. C. Brenner, J. Gedicke, L.-Y. Sung, and Y. Zhang.
SIAM J. Numer. Anal., 55(1):87–108, 2017.
BibTeX
PDF
DOI
-
An adaptive P1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
J. Sci. Comput., 68(2):848–863, 2016.
BibTeX
PDF
DOI
-
Justification of the saturation assumption.
C. Carstensen, D. Gallistl, and J. Gedicke.
Numer. Math., 134(1):1–25, 2016.
BibTeX
PDF
DOI
-
Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity.
C. Carstensen and J. Gedicke.
Comput. Methods Appl. Mech. Engrg., 300:245–264, 2016.
BibTeX
PDF
DOI
-
An adaptive finite element method with asymptotic saturation for eigenvalue problems.
C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar.
Numer. Math., 128(4):615–634, 2014.
BibTeX
PDF
DOI
-
Guaranteed lower bounds for eigenvalues.
C. Carstensen and J. Gedicke.
Math. Comp., 83(290):2605–2629, 2014.
BibTeX
PDF
DOI
-
A posteriori error estimators for convection-diffusion eigenvalue problems.
J. Gedicke and C. Carstensen.
Comput. Methods Appl. Mech. Engrg., 268:160–177, 2014.
BibTeX
PDF
DOI
-
An adaptive P1 finite element method for two-dimensional Maxwell's equations.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
J. Sci. Comput., 55(3):738–754, 2013.
BibTeX
PDF
DOI
-
An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity.
C. Carstensen and J. Gedicke.
SIAM J. Numer. Anal., 50(3):1029–1057, 2012.
BibTeX
PDF
DOI
-
Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem.
C. Carstensen, J. Gedicke, and E.-J. Park.
SIAM J. Sci. Comput., 34(4):A2267–A2287, 2012.
BibTeX
PDF
DOI
-
Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods.
C. Carstensen, J. Gedicke, and D. Rim.
J. Comput. Math., 30(4):337–353, 2012.
BibTeX
PDF
DOI
-
Computational competition of symmetric mixed FEM in linear elasticity.
C. Carstensen, M. Eigel, and J. Gedicke.
Comput. Methods Appl. Mech. Engrg., 200(41-44):2903–2915, 2011.
BibTeX
PDF
DOI
-
An adaptive homotopy approach for non-selfadjoint eigenvalue problems.
C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar.
Numer. Math., 119(3):557–583, 2011.
BibTeX
PDF
DOI
-
An oscillation-free adaptive FEM for symmetric eigenvalue problems.
C. Carstensen and J. Gedicke.
Numer. Math., 118(3):401–427, 2011.
BibTeX
PDF
DOI
Proceedings
-
Some remarks on the a posteriori error analysis of the mixed laplace eigenvalue problem.
F. Bertrand, D. Boffi, J. Gedicke, and A. Khan.
In WCCM-ECCOMAS2020, volume 700 of Numerical Methods and Algorithms in Science and Engineering, pages 1–10.
Scipedia, 2021.
BibTeX
DOI
-
Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods.
S. Congreve, J. Gedicke, and I. Perugia.
In Numerical mathematics and advanced applications—ENUMATH 2017, volume 126 of Lect. Notes Comput. Sci. Eng., pages 493–500.
Springer, Cham, 2019.
BibTeX
DOI
arXiv
-
A posteriori error analysis for eigenvalue problems.
C. Carstensen, J. Gedicke, and I. Livshits.
In Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, volume 7 of PAMM, pages 1026203–1026204.
2007.
BibTeX
DOI