Skip to main content

Research Group of Prof. Dr. Joscha Gedicke

Contact Information

Address:
Institut für Numerische Simulation
Endenicher Allee 19b
53115 Bonn
Phone: +49 228 73--69835
Office: EA19b 3.032
E-Mail: ed tod nnob-inu tod sni ta ekcidega tod b@foo tod de

Teaching

Winter semester 2019/20

See teaching activities of the whole group.

Publications

  1. P1P_1 finite element methods for an elliptic optimal control problem with pointwise state constraints. S. C. Brenner, J. Gedicke, and L.-y. Sung. IMA J. Numer. Anal., published online. BibTeX DOI
  2. Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM. C. Carstensen, D. Gallistl, and J. Gedicke. Numer. Math., 142(2):205–234, 2019. BibTeX DOI
  3. Robust adaptive hphp discontinuous Galerkin finite element methods for the Helmholtz equation. S. Congreve, J. Gedicke, and I. Perugia. SIAM J. Sci. Comput., 41(2):A1121–A1147, 2019. BibTeX DOI
  4. An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems. S. Geevers, J. Gedicke and I. Perugia. arXiv preprint 1909.01853, 2019. BibTeX arXiv
  5. Benchmark computation of eigenvalues with large defect for non-selfadjoint elliptic differential operators. J. Gedicke, R. Gasser and S. Sauter. arXiv preprint 1902.02114, 2019. BibTeX arXiv
  6. C0C^0 interior penalty methods for an elliptic distributed optimal control problem on nonconvex polygonal domains with pointwise state constraints. S. C. Brenner, J. Gedicke, and L.-y. Sung. SIAM J. Numer. Anal., 56(3):1758–1785, 2018. BibTeX DOI
  7. Upscaling singular sources in weighted sobolev spaces by sub-grid corrections. D.L. Brown and J. Gedicke. arXiv preprint 1802.02460, 2018. BibTeX arXiv
  8. Numerical homogenization of heterogeneous fractional Laplacians. D. L. Brown, J. Gedicke, and D. Peterseim. Multiscale Model. Simul., 16(3):1305–1332, 2018. BibTeX DOI
  9. Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems. J. Gedicke and A. Khan. arXiv preprint 1805.08981, 2018. BibTeX arXiv
  10. Arnold-Winther mixed finite elements for Stokes eigenvalue problems. J. Gedicke and A. Khan. SIAM J. Sci. Comput., 40(5):A3449–A3469, 2018. BibTeX DOI
  11. Hodge decomposition for two-dimensional time-harmonic Maxwell's equation: impedance boundary condition. S. C. Brenner, J. Gedicke, and L.-Y. Sung. Math. Methods Appl. Sci., 40(2):370–390, 2017. BibTeX DOI
  12. An a posteriori analysis of C0C^0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates. S. C. Brenner, J. Gedicke, L.-Y. Sung, and Y. Zhang. SIAM J. Numer. Anal., 55(1):87–108, 2017. BibTeX DOI
  13. An adaptive P1P_1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions. S. C. Brenner, J. Gedicke, and L.-Y. Sung. J. Sci. Comput., 68(2):848–863, 2016. BibTeX DOI
  14. Justification of the saturation assumption. C. Carstensen, D. Gallistl, and J. Gedicke. Numer. Math., 134(1):1–25, 2016. BibTeX DOI
  15. Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity. C. Carstensen and J. Gedicke. Comput. Methods Appl. Mech. Engrg., 300:245–264, 2016. BibTeX DOI
  16. An adaptive finite element method with asymptotic saturation for eigenvalue problems. C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar. Numer. Math., 128(4):615–634, 2014. BibTeX DOI
  17. Guaranteed lower bounds for eigenvalues. C. Carstensen and J. Gedicke. Math. Comp., 83(290):2605–2629, 2014. BibTeX DOI
  18. A posteriori error estimators for convection-diffusion eigenvalue problems. J. Gedicke and C. Carstensen. Comput. Methods Appl. Mech. Engrg., 268:160–177, 2014. BibTeX DOI
  19. An adaptive P1P_1 finite element method for two-dimensional Maxwell's equations. S. C. Brenner, J. Gedicke, and L.-Y. Sung. J. Sci. Comput., 55(3):738–754, 2013. BibTeX DOI
  20. An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. C. Carstensen and J. Gedicke. SIAM J. Numer. Anal., 50(3):1029–1057, 2012. BibTeX DOI
  21. Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem. C. Carstensen, J. Gedicke, and E.-J. Park. SIAM J. Sci. Comput., 34(4):A2267–A2287, 2012. BibTeX DOI
  22. Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. C. Carstensen, J. Gedicke, and D. Rim. J. Comput. Math., 30(4):337–353, 2012. BibTeX DOI
  23. Computational competition of symmetric mixed FEM in linear elasticity. C. Carstensen, M. Eigel, and J. Gedicke. Comput. Methods Appl. Mech. Engrg., 200(41-44):2903–2915, 2011. BibTeX DOI
  24. An adaptive homotopy approach for non-selfadjoint eigenvalue problems. C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar. Numer. Math., 119(3):557–583, 2011. BibTeX DOI
  25. An oscillation-free adaptive FEM for symmetric eigenvalue problems. C. Carstensen and J. Gedicke. Numer. Math., 118(3):401–427, 2011. BibTeX DOI