Skip to main content

Research Group of Prof. Dr. Joscha Gedicke

Contact Information

Address:
Institut für Numerische Simulation
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Phone: +49 228 73-69835
Office: FHA7 3.032
E-Mail: ed tod nnob-inu tod sni ta ekcidega tod b@foo tod de

Teaching

Winter semester 2022/23

Summer semester 2022

See teaching activities of the whole group.

Publications

Preprints

  1. Adaptive virtual elements based on hybridized, reliable, and efficient flux reconstructions. F. Dassi, J. Gedicke, and L. Mascotto. arXiv preprint 2107.03716 [math.NA], 2021. BibTeX arXiv
  2. Upscaling singular sources in weighted sobolev spaces by sub-grid corrections. D.L. Brown and J. Gedicke. arXiv preprint 1802.02460 [math.NA], 2018. BibTeX arXiv

Articles

  1. Adaptive virtual element methods with equilibrated fluxes. F. Dassi, J. Gedicke, and L. Mascotto. Applied Numerical Mathematics, 173:249–278, 2022. BibTeX DOI arXiv
  2. A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems. J. Gedicke, S. Geevers, I. Perugia, and J. Schöberl. SIAM J. Numer. Anal., 59(4):2237–2253, 2021. BibTeX DOI
  3. P1P_1 finite element methods for an elliptic optimal control problem with pointwise state constraints. S. C. Brenner, J. Gedicke, and L.-y. Sung. IMA J. Numer. Anal., 40(1):1–28, 2020. BibTeX DOI
  4. An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems. J. Gedicke, S. Geevers, and I. Perugia. J. Sci. Comput., 83(3):Paper No. 58, 23 pp., 2020. BibTeX DOI arXiv OpenAccess
  5. Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems. J. Gedicke and A. Khan. Numer. Math., 144(3):585–614, 2020. BibTeX DOI arXiv Open Access
  6. Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM. C. Carstensen, D. Gallistl, and J. Gedicke. Numer. Math., 142(2):205–234, 2019. BibTeX DOI Open Access
  7. Robust adaptive hphp discontinuous Galerkin finite element methods for the Helmholtz equation. S. Congreve, J. Gedicke, and I. Perugia. SIAM J. Sci. Comput., 41(2):A1121–A1147, 2019. BibTeX DOI arXiv
  8. Benchmark computation of eigenvalues with large defect for non-self-adjoint elliptic differential operators. R. Gasser, J. Gedicke, and S. Sauter. SIAM J. Sci. Comput., 41(6):A3938–A3953, 2019. BibTeX DOI arXiv
  9. C0C^0 interior penalty methods for an elliptic distributed optimal control problem on nonconvex polygonal domains with pointwise state constraints. S. C. Brenner, J. Gedicke, and L.-y. Sung. SIAM J. Numer. Anal., 56(3):1758–1785, 2018. BibTeX PDF DOI
  10. Numerical homogenization of heterogeneous fractional Laplacians. D. L. Brown, J. Gedicke, and D. Peterseim. Multiscale Model. Simul., 16(3):1305–1332, 2018. BibTeX DOI arXiv
  11. Arnold-Winther mixed finite elements for Stokes eigenvalue problems. J. Gedicke and A. Khan. SIAM J. Sci. Comput., 40(5):A3449–A3469, 2018. BibTeX DOI arXiv
  12. Hodge decomposition for two-dimensional time-harmonic Maxwell's equation: impedance boundary condition. S. C. Brenner, J. Gedicke, and L.-Y. Sung. Math. Methods Appl. Sci., 40(2):370–390, 2017. BibTeX PDF DOI
  13. An a posteriori analysis of C0C^0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates. S. C. Brenner, J. Gedicke, L.-Y. Sung, and Y. Zhang. SIAM J. Numer. Anal., 55(1):87–108, 2017. BibTeX PDF DOI
  14. An adaptive P1P_1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions. S. C. Brenner, J. Gedicke, and L.-Y. Sung. J. Sci. Comput., 68(2):848–863, 2016. BibTeX PDF DOI
  15. Justification of the saturation assumption. C. Carstensen, D. Gallistl, and J. Gedicke. Numer. Math., 134(1):1–25, 2016. BibTeX PDF DOI
  16. Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity. C. Carstensen and J. Gedicke. Comput. Methods Appl. Mech. Engrg., 300:245–264, 2016. BibTeX PDF DOI
  17. An adaptive finite element method with asymptotic saturation for eigenvalue problems. C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar. Numer. Math., 128(4):615–634, 2014. BibTeX PDF DOI
  18. Guaranteed lower bounds for eigenvalues. C. Carstensen and J. Gedicke. Math. Comp., 83(290):2605–2629, 2014. BibTeX PDF DOI
  19. A posteriori error estimators for convection-diffusion eigenvalue problems. J. Gedicke and C. Carstensen. Comput. Methods Appl. Mech. Engrg., 268:160–177, 2014. BibTeX PDF DOI
  20. An adaptive P1P_1 finite element method for two-dimensional Maxwell's equations. S. C. Brenner, J. Gedicke, and L.-Y. Sung. J. Sci. Comput., 55(3):738–754, 2013. BibTeX PDF DOI
  21. An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. C. Carstensen and J. Gedicke. SIAM J. Numer. Anal., 50(3):1029–1057, 2012. BibTeX PDF DOI
  22. Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem. C. Carstensen, J. Gedicke, and E.-J. Park. SIAM J. Sci. Comput., 34(4):A2267–A2287, 2012. BibTeX PDF DOI
  23. Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. C. Carstensen, J. Gedicke, and D. Rim. J. Comput. Math., 30(4):337–353, 2012. BibTeX PDF DOI
  24. Computational competition of symmetric mixed FEM in linear elasticity. C. Carstensen, M. Eigel, and J. Gedicke. Comput. Methods Appl. Mech. Engrg., 200(41-44):2903–2915, 2011. BibTeX PDF DOI
  25. An adaptive homotopy approach for non-selfadjoint eigenvalue problems. C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar. Numer. Math., 119(3):557–583, 2011. BibTeX PDF DOI
  26. An oscillation-free adaptive FEM for symmetric eigenvalue problems. C. Carstensen and J. Gedicke. Numer. Math., 118(3):401–427, 2011. BibTeX PDF DOI