Skip to main content

Research Group of Prof. Dr. Joscha Gedicke

Contact Information

Address:
Institut für Numerische Simulation
Endenicher Allee 19b
53115 Bonn
Phone: +49 228 73--69835
Office: EA19b 3.032
E-Mail: ed tod nnob-inu tod sni ta ekcidega tod b@foo tod de

Teaching

Winter semester 2020/21

Summer semester 2020

See teaching activities of the whole group.

Publications

Preprints

  1. Adaptive virtual element methods with equilibrated fluxes. F. Dassi, J. Gedicke, and L. Mascotto. arXiv preprint 2004.11220 [math.NA], 2020. BibTeX arXiv
  2. A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems. J. Gedicke, S. Geevers, I. Perugia, and J. Schöberl. arXiv preprint 2004.08323 [math.NA], 2020. BibTeX arXiv
  3. Upscaling singular sources in weighted sobolev spaces by sub-grid corrections. D.L. Brown and J. Gedicke. arXiv preprint 1802.02460 [math.NA], 2018. BibTeX arXiv

Articles

  1. An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems. J. Gedicke, S. Geevers, and I. Perugia. J. Sci. Comput., online, 2020. BibTeX DOI arXiv OpenAccess
  2. P1P_1 finite element methods for an elliptic optimal control problem with pointwise state constraints. S. C. Brenner, J. Gedicke, and L.-y. Sung. IMA J. Numer. Anal., 40(1):1–28, 2020. BibTeX DOI
  3. Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems. J. Gedicke and A. Khan. Numer. Math., 144(3):585–614, 2020. BibTeX DOI arXiv Open Access
  4. Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM. C. Carstensen, D. Gallistl, and J. Gedicke. Numer. Math., 142(2):205–234, 2019. BibTeX DOI Open Access
  5. Robust adaptive hphp discontinuous Galerkin finite element methods for the Helmholtz equation. S. Congreve, J. Gedicke, and I. Perugia. SIAM J. Sci. Comput., 41(2):A1121–A1147, 2019. BibTeX DOI arXiv
  6. Benchmark computation of eigenvalues with large defect for non-self-adjoint elliptic differential operators. R. Gasser, J. Gedicke, and S. Sauter. SIAM J. Sci. Comput., 41(6):A3938–A3953, 2019. BibTeX DOI arXiv
  7. C0C^0 interior penalty methods for an elliptic distributed optimal control problem on nonconvex polygonal domains with pointwise state constraints. S. C. Brenner, J. Gedicke, and L.-y. Sung. SIAM J. Numer. Anal., 56(3):1758–1785, 2018. BibTeX PDF DOI
  8. Numerical homogenization of heterogeneous fractional Laplacians. D. L. Brown, J. Gedicke, and D. Peterseim. Multiscale Model. Simul., 16(3):1305–1332, 2018. BibTeX DOI arXiv
  9. Arnold-Winther mixed finite elements for Stokes eigenvalue problems. J. Gedicke and A. Khan. SIAM J. Sci. Comput., 40(5):A3449–A3469, 2018. BibTeX DOI arXiv
  10. Hodge decomposition for two-dimensional time-harmonic Maxwell's equation: impedance boundary condition. S. C. Brenner, J. Gedicke, and L.-Y. Sung. Math. Methods Appl. Sci., 40(2):370–390, 2017. BibTeX PDF DOI
  11. An a posteriori analysis of C0C^0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates. S. C. Brenner, J. Gedicke, L.-Y. Sung, and Y. Zhang. SIAM J. Numer. Anal., 55(1):87–108, 2017. BibTeX PDF DOI
  12. An adaptive P1P_1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions. S. C. Brenner, J. Gedicke, and L.-Y. Sung. J. Sci. Comput., 68(2):848–863, 2016. BibTeX PDF DOI
  13. Justification of the saturation assumption. C. Carstensen, D. Gallistl, and J. Gedicke. Numer. Math., 134(1):1–25, 2016. BibTeX PDF DOI
  14. Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity. C. Carstensen and J. Gedicke. Comput. Methods Appl. Mech. Engrg., 300:245–264, 2016. BibTeX PDF DOI
  15. An adaptive finite element method with asymptotic saturation for eigenvalue problems. C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar. Numer. Math., 128(4):615–634, 2014. BibTeX PDF DOI
  16. Guaranteed lower bounds for eigenvalues. C. Carstensen and J. Gedicke. Math. Comp., 83(290):2605–2629, 2014. BibTeX PDF DOI
  17. A posteriori error estimators for convection-diffusion eigenvalue problems. J. Gedicke and C. Carstensen. Comput. Methods Appl. Mech. Engrg., 268:160–177, 2014. BibTeX PDF DOI
  18. An adaptive P1P_1 finite element method for two-dimensional Maxwell's equations. S. C. Brenner, J. Gedicke, and L.-Y. Sung. J. Sci. Comput., 55(3):738–754, 2013. BibTeX PDF DOI
  19. An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. C. Carstensen and J. Gedicke. SIAM J. Numer. Anal., 50(3):1029–1057, 2012. BibTeX PDF DOI
  20. Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem. C. Carstensen, J. Gedicke, and E.-J. Park. SIAM J. Sci. Comput., 34(4):A2267–A2287, 2012. BibTeX PDF DOI
  21. Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. C. Carstensen, J. Gedicke, and D. Rim. J. Comput. Math., 30(4):337–353, 2012. BibTeX PDF DOI
  22. Computational competition of symmetric mixed FEM in linear elasticity. C. Carstensen, M. Eigel, and J. Gedicke. Comput. Methods Appl. Mech. Engrg., 200(41-44):2903–2915, 2011. BibTeX PDF DOI
  23. An adaptive homotopy approach for non-selfadjoint eigenvalue problems. C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar. Numer. Math., 119(3):557–583, 2011. BibTeX PDF DOI
  24. An oscillation-free adaptive FEM for symmetric eigenvalue problems. C. Carstensen and J. Gedicke. Numer. Math., 118(3):401–427, 2011. BibTeX PDF DOI