Skip to main content

Research Group of Prof. Dr. Jürgen Dölz

Contact Information

Address:
Room 3.031
Institut für Numerische Simulation
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Phone: +49 228 73-69834
E-Mail: ed tod nnob-inu tod sni ta zleoda tod b@foo tod de

Teaching

Winter semester 2024/25

See teaching activities of the whole group.

Research Projects

Current

Data-driven modelling of electromagnetic resonators with uncertain shape

Project 501419255, DFG.

Precise Perturbative Computations from Quadrature Rules

Project B04, CRC 1639 NuMeriQS.

Uncertainty Quantification in Computational Chemistry

Project A03, CRC 1639 NuMeriQS.

Completed

Bembel: The Boundary Element Based Engineering Library

Project 443179833, DFG.

Homepage.

H-Matrix Techniques and Uncertainty Quantification in Electromagnetism

Project 174987, SNSF Early Mobility.

Homepage.

See all projects of the group.

Publications

Preprints

  1. A low-frequency-stable higher-order spline-based integral equation method. M. Nolte, R. Torchio, S. Schöps, J. Dölz, F. Wolf, and A. E. Ruehli. 2024. BibTeX DOI arXiv
  2. Data sparse multilevel covariance estimation in optimal complexity. J. Dölz. 2023. BibTeX DOI arXiv
  3. pp-multilevel Monte Carlo for acoustic scattering from large deviation rough random surfaces. J. Dölz, W. Huang, and M. Multerer. 2023. BibTeX DOI arXiv

Journal Articles

  1. Shape uncertainty quantification of Maxwell eigenvalues and -modes with application to TESLA cavities. J. Dölz, D. Ebert, S. Schöps, and A. Ziegler. Computer Methods in Applied Mechanics and Engineering, 428:117108, August 2024. BibTeX DOI
  2. Solving acoustic scattering problems by the isogeometric boundary element method. J. Dölz, H. Harbrecht, and M. Multerer. Engineering with Computers, July 2024. BibTeX DOI
  3. On uncertainty quantification of eigenvalues and eigenspaces with higher multiplicity. J. Dölz and D. Ebert. SIAM Journal on Numerical Analysis, 62(1):422–451, February 2024. BibTeX DOI arXiv
  4. Parametric shape holomorphy of boundary integral operators with applications. J. Dölz and F. Henríquez. SIAM Journal on Mathematical Analysisv (to appear), 2024. BibTeX DOI arXiv
  5. Quantum Cluster Equilibrium Theory for Multicomponent Liquids. T. Frömbdgen, K. Drysch, P. Zaby, J. Dölz, J. Ingenmey, and B. Kirchner". Journal of Chemical Theory and Computation, pages acs.jctc.3c00799, 2024. BibTeX DOI
  6. Uncertainty quantification of phase transition quantities from cluster weighting calculations. J. Blasius, P. Zaby, J. Dölz, and B. Kirchner. The Journal of Chemical Physics, 157(1):014505, 2022. BibTeX DOI
  7. Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. J. Dölz, H. Harbrecht, C. Jerez-Hanckes, and M. Multerer. Computer Methods in Applied Mechanics and Engineering, 388:114242, 2022. BibTeX DOI arXiv
  8. On Robustly Convergent and Efficient Iterative Methods for Anisotropic Radiative Transfer. J. Dölz, O. Palii, and M. Schlottbom. Journal of Scientific Computing, 90(3):94, 2022. BibTeX DOI
  9. A model reduction approach for inverse problems with operator valued data. J. Dölz, H. Egger, and M. Schlottbom. Numerische Mathematik, 148(4):889–917, August 2021. BibTeX DOI arXiv
  10. A fast and oblivious matrix compression algorithm for Volterra integral operators. J. Dölz, H. Egger, and V. Shashkov. Advances in Computational Mathematics, 47(6):81, December 2021. BibTeX DOI arXiv
  11. Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez, and F. Wolf. Numerische Mathematik, 144(1):201–236, January 2020. BibTeX DOI
  12. A Higher Order Perturbation Approach for Electromagnetic Scattering Problems on Random Domains. J. Dölz. SIAM/ASA Journal on Uncertainty Quantification, 8(2):748–774, January 2020. BibTeX DOI arXiv
  13. A convolution quadrature method for Maxwell's equations in dispersive media. J. Dölz, H. Egger, and V. Shashkov. Proceedings SCEE 2020, accepted, April 2020. BibTeX arXiv
  14. Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation. J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps, and F. Wolf. SoftwareX, 11:100476, January 2020. BibTeX DOI
  15. A Numerical Comparison of an Isogeometric and a Parametric Higher Order Raviart–Thomas Approach to the Electric Field Integral Equation. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. IEEE Transactions on Antennas and Propagation, 68(1):593–597, January 2020. BibTeX DOI
  16. On the Best Approximation of the Hierarchical Matrix Product. J. Dölz, H. Harbrecht, and M. Multerer. SIAM Journal on Matrix Analysis and Applications, 40(1):147–174, January 2019. BibTeX DOI
  17. Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. SIAM Journal on Scientific Computing, 41(5):B983–B1010, January 2019. BibTeX DOI
  18. Error-Controlled Model Approximation for Gaussian Process Morphable Models. J. Dölz and T. Gerig, M. Lüthi, and T. Harbrecht and T. Vetter. Journal of Mathematical Imaging and Vision, 61(4):443–457, May 2019. BibTeX DOI
  19. Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains. J. Dölz and H. Harbrecht. Journal of Computational Physics, 371:506–527, 2018. BibTeX
  20. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. Computer Methods in Applied Mechanics and Engineering, 330(Supplement C):83–101, 2018. BibTeX
  21. H\mathcal {H}-Matrix Based Second Moment Analysis for Rough Random Fields and Finite Element Discretizations. J. Dölz, H. Harbrecht, and M. D. Peters. SIAM Journal on Scientific Computing, 39(4):B618–B639, January 2017. BibTeX DOI
  22. Covariance regularity and H\mathcal {H}-matrix approximation for rough random fields. J. Dölz, H. Harbrecht, and Ch. Schwab. Numerische Mathematik, 135(4):1045–1071, April 2017. BibTeX DOI
  23. An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces. J. Dölz, H. Harbrecht, and M. Peters. International Journal for Numerical Methods in Engineering, 108(13):1705–1728, 2016. BibTeX DOI
  24. H\mathcal {H}-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation. J. Dölz, H. Harbrecht, and M. Peters. Journal of Scientific Computing, 65(1):387–410, October 2015. BibTeX DOI

Miscellaneous

  1. Recent advances of isogeometric boundary element methods for electromagnetic scattering problems. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. Oberwolfach Reports, 2020. BibTeX DOI
  2. An Overview of Isogeometric Boundary Element Methods for Acoustic and Electromagnetic Scattering Problems. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. PAMM, 18(1):e201800100, 2018. BibTeX DOI