Skip to main content

Research Group of Prof. Dr. Jürgen Dölz

Contact Information

Address:
Institut für Numerische Simulation
Endenicher Allee 19b
53115 Bonn
E-Mail: ed tod nnob-inu tod sni ta zleoda tod b@foo tod de

I have a PhD position available. See the announcement in English / German.

Teaching

Winter semester 2020/21

See teaching activities of the whole group.

Current Research Projects

See all projects of the group.

Publications

Preprints

  1. A model reduction approach for inverse problems with operator valued data. J. Dölz, H. Egger, and M. Schlottbom. arXiv:2004.11827 [cs, math], April 2020. BibTeX arXiv
  2. A convolution quadrature method for Maxwell's equations in dispersive media. J. Dölz, H. Egger, and V. Shashkov. arXiv:2004.00359 [cs, math], April 2020. BibTeX arXiv

Journal Articles

  1. Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez, and F. Wolf. Numerische Mathematik, 144(1):201–236, January 2020. BibTeX DOI
  2. A Higher Order Perturbation Approach for Electromagnetic Scattering Problems on Random Domains. J. Dölz. SIAM/ASA Journal on Uncertainty Quantification, 8(2):748–774, January 2020. BibTeX DOI arXiv
  3. Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation. J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps, and F. Wolf. SoftwareX, 11:100476, January 2020. BibTeX DOI
  4. A Numerical Comparison of an Isogeometric and a Parametric Higher Order Raviart–Thomas Approach to the Electric Field Integral Equation. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. IEEE Transactions on Antennas and Propagation, 68(1):593–597, January 2020. BibTeX DOI
  5. On the Best Approximation of the Hierarchical Matrix Product. J. Dölz, H. Harbrecht, and M. Multerer. SIAM Journal on Matrix Analysis and Applications, 40(1):147–174, January 2019. BibTeX DOI
  6. Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. SIAM Journal on Scientific Computing, 41(5):B983–B1010, January 2019. BibTeX DOI
  7. Error-Controlled Model Approximation for Gaussian Process Morphable Models. J. Dölz and T. Gerig, M. Lüthi, and T. Harbrecht and T. Vetter. Journal of Mathematical Imaging and Vision, 61(4):443–457, May 2019. BibTeX DOI
  8. Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains. J. Dölz and H. Harbrecht. Journal of Computational Physics, 371:506–527, 2018. BibTeX
  9. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. Computer Methods in Applied Mechanics and Engineering, 330(Supplement C):83–101, 2018. BibTeX
  10. H\mathcal {H}-Matrix Based Second Moment Analysis for Rough Random Fields and Finite Element Discretizations. J. Dölz, H. Harbrecht, and M. D. Peters. SIAM Journal on Scientific Computing, 39(4):B618–B639, January 2017. BibTeX DOI
  11. Covariance regularity and H\mathcal {H}-matrix approximation for rough random fields. J. Dölz, H. Harbrecht, and Ch. Schwab. Numerische Mathematik, 135(4):1045–1071, April 2017. BibTeX DOI
  12. An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces. J. Dölz, H. Harbrecht, and M. Peters. International Journal for Numerical Methods in Engineering, 108(13):1705–1728, 2016. BibTeX DOI
  13. H\mathcal {H}-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation. J. Dölz, H. Harbrecht, and M. Peters. Journal of Scientific Computing, 65(1):387–410, October 2015. BibTeX DOI

Miscellaneous

  1. An Overview of Isogeometric Boundary Element Methods for Acoustic and Electromagnetic Scattering Problems. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. PAMM, 18(1):e201800100, 2018. BibTeX DOI