Teaching
See teaching activities of the whole group.
Research Projects
Current
Data-driven modelling of electromagnetic resonators with uncertain shape
Project 501419255,
DFG.
Precise Perturbative Computations from Quadrature Rules
Project B04,
CRC 1639 NuMeriQS.
Uncertainty Quantification in Computational Chemistry
Project A03,
CRC 1639 NuMeriQS.
Completed
Bembel: The Boundary Element Based Engineering Library
Project 443179833,
DFG.
Homepage.
H-Matrix Techniques and Uncertainty Quantification in Electromagnetism
Project 174987,
SNSF Early Mobility.
Homepage.
See all projects of the group.
Publications
Preprints
-
A low-frequency-stable higher-order spline-based integral equation method.
M. Nolte, R. Torchio, S. Schöps, J. Dölz, F. Wolf, and A. E. Ruehli.
2024.
BibTeX
DOI
arXiv
-
Data sparse multilevel covariance estimation in optimal complexity.
J. Dölz.
2023.
BibTeX
DOI
arXiv
-
p-multilevel Monte Carlo for acoustic scattering from large deviation rough random surfaces.
J. Dölz, W. Huang, and M. Multerer.
2023.
BibTeX
DOI
arXiv
Journal Articles
-
Shape uncertainty quantification of Maxwell eigenvalues and -modes with application to TESLA cavities.
J. Dölz, D. Ebert, S. Schöps, and A. Ziegler.
Computer Methods in Applied Mechanics and Engineering, 428:117108, August 2024.
BibTeX
DOI
-
Solving acoustic scattering problems by the isogeometric boundary element method.
J. Dölz, H. Harbrecht, and M. Multerer.
Engineering with Computers, July 2024.
BibTeX
DOI
-
Parametric Shape Holomorphy of Boundary Integral Operators with Applications.
J. Dölz and F. Henríquez.
SIAM Journal on Mathematical Analysis, 56(5):6731–6767, October 2024.
BibTeX
DOI
arXiv
-
On uncertainty quantification of eigenvalues and eigenspaces with higher multiplicity.
J. Dölz and D. Ebert.
SIAM Journal on Numerical Analysis, 62(1):422–451, February 2024.
BibTeX
DOI
arXiv
-
Quantum Cluster Equilibrium Theory for Multicomponent Liquids.
T. Frömbdgen, K. Drysch, P. Zaby, J. Dölz, J. Ingenmey, and B. Kirchner".
Journal of Chemical Theory and Computation, pages acs.jctc.3c00799, 2024.
BibTeX
DOI
-
Uncertainty quantification of phase transition quantities from cluster weighting calculations.
J. Blasius, P. Zaby, J. Dölz, and B. Kirchner.
The Journal of Chemical Physics, 157(1):014505, 2022.
BibTeX
DOI
-
Isogeometric multilevel quadrature for forward and inverse random acoustic scattering.
J. Dölz, H. Harbrecht, C. Jerez-Hanckes, and M. Multerer.
Computer Methods in Applied Mechanics and Engineering, 388:114242, 2022.
BibTeX
DOI
arXiv
-
On Robustly Convergent and Efficient Iterative Methods for Anisotropic Radiative Transfer.
J. Dölz, O. Palii, and M. Schlottbom.
Journal of Scientific Computing, 90(3):94, 2022.
BibTeX
DOI
-
A model reduction approach for inverse problems with operator valued data.
J. Dölz, H. Egger, and M. Schlottbom.
Numerische Mathematik, 148(4):889–917, August 2021.
BibTeX
DOI
arXiv
-
A fast and oblivious matrix compression algorithm for Volterra integral operators.
J. Dölz, H. Egger, and V. Shashkov.
Advances in Computational Mathematics, 47(6):81, December 2021.
BibTeX
DOI
arXiv
-
Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis.
A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez, and F. Wolf.
Numerische Mathematik, 144(1):201–236, January 2020.
BibTeX
DOI
-
A Higher Order Perturbation Approach for Electromagnetic Scattering Problems on Random Domains.
J. Dölz.
SIAM/ASA Journal on Uncertainty Quantification, 8(2):748–774, January 2020.
BibTeX
DOI
arXiv
-
A convolution quadrature method for Maxwell's equations in dispersive media.
J. Dölz, H. Egger, and V. Shashkov.
Proceedings SCEE 2020, accepted, April 2020.
BibTeX
arXiv
-
Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation.
J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps, and F. Wolf.
SoftwareX, 11:100476, January 2020.
BibTeX
DOI
-
A Numerical Comparison of an Isogeometric and a Parametric Higher Order Raviart–Thomas Approach to the Electric Field Integral Equation.
J. Dölz, S. Kurz, S. Schöps, and F. Wolf.
IEEE Transactions on Antennas and Propagation, 68(1):593–597, January 2020.
BibTeX
DOI
-
On the Best Approximation of the Hierarchical Matrix Product.
J. Dölz, H. Harbrecht, and M. Multerer.
SIAM Journal on Matrix Analysis and Applications, 40(1):147–174, January 2019.
BibTeX
DOI
-
Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples.
J. Dölz, S. Kurz, S. Schöps, and F. Wolf.
SIAM Journal on Scientific Computing, 41(5):B983–B1010, January 2019.
BibTeX
DOI
-
Error-Controlled Model Approximation for Gaussian Process Morphable Models.
J. Dölz and T. Gerig, M. Lüthi, and T. Harbrecht and T. Vetter.
Journal of Mathematical Imaging and Vision, 61(4):443–457, May 2019.
BibTeX
DOI
-
Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains.
J. Dölz and H. Harbrecht.
Journal of Computational Physics, 371:506–527, 2018.
BibTeX
-
A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems.
J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf.
Computer Methods in Applied Mechanics and Engineering, 330(Supplement C):83–101, 2018.
BibTeX
-
An Overview of Isogeometric Boundary Element Methods for Acoustic and Electromagnetic Scattering Problems.
J. Dölz, S. Kurz, S. Schöps, and F. Wolf.
PAMM, 18(1):e201800100, 2018.
BibTeX
DOI
-
H-Matrix Based Second Moment Analysis for Rough Random Fields and Finite Element Discretizations.
J. Dölz, H. Harbrecht, and M. D. Peters.
SIAM Journal on Scientific Computing, 39(4):B618–B639, January 2017.
BibTeX
DOI
-
Covariance regularity and H-matrix approximation for rough random fields.
J. Dölz, H. Harbrecht, and Ch. Schwab.
Numerische Mathematik, 135(4):1045–1071, April 2017.
BibTeX
DOI
-
An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces.
J. Dölz, H. Harbrecht, and M. Peters.
International Journal for Numerical Methods in Engineering, 108(13):1705–1728, 2016.
BibTeX
DOI
-
H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation.
J. Dölz, H. Harbrecht, and M. Peters.
Journal of Scientific Computing, 65(1):387–410, October 2015.
BibTeX
DOI
Miscellaneous
-
Recent advances of isogeometric boundary element methods for electromagnetic scattering problems.
J. Dölz, S. Kurz, S. Schöps, and F. Wolf.
Oberwolfach Reports, 2020.
BibTeX
DOI