Skip to main content

Research Group of Prof. Dr. Jürgen Dölz

Publications of this group

Preprints

  1. On robustly convergent and efficient iterative methods for anisotropic radiative transfer. J. Dölz, O. Palii, and M. Schlottbom. arXiv:2102.09038 [cs, math], 2021. BibTeX arXiv
  2. Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. J. Dölz, H. Harbrecht, C. Jerez-Hanckes, and M. Multerer. arXiv:2010.14613, 2020. BibTeX arXiv

Journal Articles

  1. A model reduction approach for inverse problems with operator valued data. J. Dölz, H. Egger, and M. Schlottbom. Numerische Mathematik, 148(4):889–917, August 2021. BibTeX DOI arXiv
  2. A fast and oblivious matrix compression algorithm for Volterra integral operators. J. Dölz, H. Egger, and V. Shashkov. to appear in Advances in Computational Mathematics, 2021. BibTeX arXiv
  3. Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez, and F. Wolf. Numerische Mathematik, 144(1):201–236, January 2020. BibTeX DOI
  4. A Higher Order Perturbation Approach for Electromagnetic Scattering Problems on Random Domains. J. Dölz. SIAM/ASA Journal on Uncertainty Quantification, 8(2):748–774, January 2020. BibTeX DOI arXiv
  5. A convolution quadrature method for Maxwell's equations in dispersive media. J. Dölz, H. Egger, and V. Shashkov. Proceedings SCEE 2020, accepted, April 2020. BibTeX arXiv
  6. Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation. J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps, and F. Wolf. SoftwareX, 11:100476, January 2020. BibTeX DOI
  7. A Numerical Comparison of an Isogeometric and a Parametric Higher Order Raviart–Thomas Approach to the Electric Field Integral Equation. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. IEEE Transactions on Antennas and Propagation, 68(1):593–597, January 2020. BibTeX DOI
  8. On the Best Approximation of the Hierarchical Matrix Product. J. Dölz, H. Harbrecht, and M. Multerer. SIAM Journal on Matrix Analysis and Applications, 40(1):147–174, January 2019. BibTeX DOI
  9. Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. SIAM Journal on Scientific Computing, 41(5):B983–B1010, January 2019. BibTeX DOI
  10. Error-Controlled Model Approximation for Gaussian Process Morphable Models. J. Dölz and T. Gerig, M. Lüthi, and T. Harbrecht and T. Vetter. Journal of Mathematical Imaging and Vision, 61(4):443–457, May 2019. BibTeX DOI
  11. Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains. J. Dölz and H. Harbrecht. Journal of Computational Physics, 371:506–527, 2018. BibTeX
  12. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. Computer Methods in Applied Mechanics and Engineering, 330(Supplement C):83–101, 2018. BibTeX
  13. H\mathcal {H}-Matrix Based Second Moment Analysis for Rough Random Fields and Finite Element Discretizations. J. Dölz, H. Harbrecht, and M. D. Peters. SIAM Journal on Scientific Computing, 39(4):B618–B639, January 2017. BibTeX DOI
  14. Covariance regularity and H\mathcal {H}-matrix approximation for rough random fields. J. Dölz, H. Harbrecht, and Ch. Schwab. Numerische Mathematik, 135(4):1045–1071, April 2017. BibTeX DOI
  15. An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces. J. Dölz, H. Harbrecht, and M. Peters. International Journal for Numerical Methods in Engineering, 108(13):1705–1728, 2016. BibTeX DOI
  16. H\mathcal {H}-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation. J. Dölz, H. Harbrecht, and M. Peters. Journal of Scientific Computing, 65(1):387–410, October 2015. BibTeX DOI

Miscellaneous

  1. Recent advances of isogeometric boundary element methods for electromagnetic scattering problems. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. Oberwolfach Reports, 2020. BibTeX DOI
  2. An Overview of Isogeometric Boundary Element Methods for Acoustic and Electromagnetic Scattering Problems. J. Dölz, S. Kurz, S. Schöps, and F. Wolf. PAMM, 18(1):e201800100, 2018. BibTeX DOI