Skip to main content

Research Group of Prof. Dr. Barbara Verfürth

Contact Information

Institut für Numerische Simulation
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Phone: +49 228 73-69833
Office: FHA7 3.030
E-Mail: ed tod nnob-inu tod sni ta htreufreva tod b@foo tod de

Research interests

  • numerical methods for PDEs
  • multiscale (finite element) methods
  • numerical homogenization
  • (time-harmonic) wave propagation, Helmholtz and Maxwell equations
  • quasilinear PDEs


Winter semester 2022/23

See teaching activities of the whole group.



  1. Fully discrete Heterogeneous Multiscale Method for parabolic problems with multiple spatial and temporal scales. D. Eckhardt and B. Verfürth. arXiv preprint 2210.04536, 2022. BibTeX arXiv
  2. Higher-order finite element methods for the nonlinear Helmholtz equation. B. Verfürth. arXiv preprint 2208.11027, 2022. BibTeX arXiv


  1. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces. P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl. Opt. Express, 30(25):45832–45847, 2022. BibTeX DOI preprint
  2. Numerical Upscaling for Wave Equations with Time-Dependent Multiscale Coefficients. B. Maier and B. Verfürth. Multiscale Model. Simul., 20(4):1169–1190, 2022. BibTeX DOI arXiv
  3. Multiscale scattering in nonlinear Kerr-type media. R. Maier and B. Verfürth. Math. Comp., 91(336):1655–1685, 2022. BibTeX DOI
  4. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. R. Mandel, Z. Moitier, and B. Verfürth. C. R. Math. Acad. Sci. Paris, 360:513–538, 2022. BibTeX DOI
  5. An offline-online strategy for multiscale problems with random defects. A. Målqvist and B. Verfürth. ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022. BibTeX DOI
  6. Numerical homogenization for nonlinear strongly monotone problems. B. Verfürth. IMA J. Numer. Anal., 42(2):1313–1338, 2022. BibTeX DOI
  7. A multiscale method for heterogeneous bulk-surface coupling. R. Altmann and B. Verfürth. Multiscale Model. Simul., 19(1):374–400, 2021. BibTeX DOI
  8. A generalized finite element method for problems with sign-changing coefficients. T. Chaumont-Frelet and B. Verfürth. ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021. BibTeX DOI
  9. A diffuse modeling approach for embedded interfaces in linear elasticity. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. GAMM-Mitt., 43(1):e202000001, 16, 2020. BibTeX DOI
  10. Mathematical analysis of transmission properties of electromagnetic meta-materials. M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth. Netw. Heterog. Media, 15(1):29–56, 2020. BibTeX DOI
  11. Computational high frequency scattering from high-contrast heterogeneous media. D. Peterseim and B. Verfürth. Math. Comp., 89(326):2649–2674, 2020. BibTeX DOI
  12. Heterogeneous multiscale method for the Maxwell equations with high contrast. B. Verfürth. ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019. BibTeX DOI
  13. Numerical homogenization of H(curl){\bf {H}}(\rm curl)-problems. D. Gallistl, P. Henning, and B. Verfürth. SIAM J. Numer. Anal., 56(3):1570–1596, 2018. BibTeX DOI
  14. A new heterogeneous multiscale method for the Helmholtz equation with high contrast. M. Ohlberger and B. Verfürth. Multiscale Model. Simul., 16(1):385–411, 2018. BibTeX DOI
  15. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. M. Ohlberger and B. Verfürth. AIMS Mathematics, 2(3):458–478, 2017. BibTeX DOI
  16. A new heterogeneous multiscale method for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. SIAM J. Numer. Anal., 54(6):3493–3522, 2016. BibTeX DOI

Conference Proceedings

  1. From domain decomposition to homogenization theory. D. Peterseim, D. Varga, and B. Verfürth. In Domain decomposition methods in science and engineering XXV, volume 138 of Lect. Notes Comput. Sci. Eng., pages 29–40. Springer, Cham, 2020. BibTeX DOI
  2. Computational multiscale method for nonlinear monotone elliptic equations. B. Verfürth. In Oberwolfach Reports, number 35. 2019. BibTeX PDF
  3. Numerical homogenization for indefinite H(curl)-problems. B. Verfürth. In Proceedings of Equadiff 2017 conference, 137–146. 2017. BibTeX URL
  4. Analysis of multiscale methods for time-harmonic maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. In Proc. Appl. Math. Mech., volume 16, 559–560. 2016. BibTeX DOI


  1. Numerical multiscale methods for Maxwell's equations in heterogeneous media. B. Verfürth. PhD thesis, WWU Münster, 2018. BibTeX PDF