Research interests
- numerical methods for PDEs
- multiscale (finite element) methods
- numerical homogenization
- (time-harmonic) wave propagation, Helmholtz and Maxwell equations
- quasilinear PDEs
Teaching
See teaching activities of the whole group.
Publications
Preprints
-
Fully discrete Heterogeneous Multiscale Method for parabolic problems with multiple spatial and temporal scales.
D. Eckhardt and B. Verfürth.
arXiv preprint 2210.04536, 2022.
BibTeX
arXiv
-
Higher-order finite element methods for the nonlinear Helmholtz equation.
B. Verfürth.
arXiv preprint 2208.11027, 2022.
BibTeX
arXiv
Articles
-
Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces.
P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl.
Opt. Express, 30(25):45832–45847, 2022.
BibTeX
DOI
preprint
-
Numerical Upscaling for Wave Equations with Time-Dependent Multiscale Coefficients.
B. Maier and B. Verfürth.
Multiscale Model. Simul., 20(4):1169–1190, 2022.
BibTeX
DOI
arXiv
-
Multiscale scattering in nonlinear Kerr-type media.
R. Maier and B. Verfürth.
Math. Comp., 91(336):1655–1685, 2022.
BibTeX
DOI
-
Nonlinear Helmholtz equations with sign-changing diffusion coefficient.
R. Mandel, Z. Moitier, and B. Verfürth.
C. R. Math. Acad. Sci. Paris, 360:513–538, 2022.
BibTeX
DOI
-
An offline-online strategy for multiscale problems with random defects.
A. Målqvist and B. Verfürth.
ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022.
BibTeX
DOI
-
Numerical homogenization for nonlinear strongly monotone problems.
B. Verfürth.
IMA J. Numer. Anal., 42(2):1313–1338, 2022.
BibTeX
DOI
-
A multiscale method for heterogeneous bulk-surface coupling.
R. Altmann and B. Verfürth.
Multiscale Model. Simul., 19(1):374–400, 2021.
BibTeX
DOI
-
A generalized finite element method for problems with sign-changing coefficients.
T. Chaumont-Frelet and B. Verfürth.
ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021.
BibTeX
DOI
-
A diffuse modeling approach for embedded interfaces in linear elasticity.
P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner.
GAMM-Mitt., 43(1):e202000001, 16, 2020.
BibTeX
DOI
-
Mathematical analysis of transmission properties of electromagnetic meta-materials.
M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth.
Netw. Heterog. Media, 15(1):29–56, 2020.
BibTeX
DOI
-
Computational high frequency scattering from high-contrast heterogeneous media.
D. Peterseim and B. Verfürth.
Math. Comp., 89(326):2649–2674, 2020.
BibTeX
DOI
-
Heterogeneous multiscale method for the Maxwell equations with high contrast.
B. Verfürth.
ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019.
BibTeX
DOI
-
Numerical homogenization of H(curl)-problems.
D. Gallistl, P. Henning, and B. Verfürth.
SIAM J. Numer. Anal., 56(3):1570–1596, 2018.
BibTeX
DOI
-
A new heterogeneous multiscale method for the Helmholtz equation with high contrast.
M. Ohlberger and B. Verfürth.
Multiscale Model. Simul., 16(1):385–411, 2018.
BibTeX
DOI
-
Localized Orthogonal Decomposition for two-scale Helmholtz-type problems.
M. Ohlberger and B. Verfürth.
AIMS Mathematics, 2(3):458–478, 2017.
BibTeX
DOI
-
A new heterogeneous multiscale method for time-harmonic Maxwell's equations.
P. Henning, M. Ohlberger, and B. Verfürth.
SIAM J. Numer. Anal., 54(6):3493–3522, 2016.
BibTeX
DOI
Conference Proceedings
-
From domain decomposition to homogenization theory.
D. Peterseim, D. Varga, and B. Verfürth.
In Domain decomposition methods in science and engineering XXV, volume 138 of Lect. Notes Comput. Sci. Eng., pages 29–40.
Springer, Cham, 2020.
BibTeX
DOI
-
Computational multiscale method for nonlinear monotone elliptic equations.
B. Verfürth.
In Oberwolfach Reports, number 35.
2019.
BibTeX
PDF
-
Numerical homogenization for indefinite H(curl)-problems.
B. Verfürth.
In Proceedings of Equadiff 2017 conference, 137–146. 2017.
BibTeX
URL
-
Analysis of multiscale methods for time-harmonic maxwell's equations.
P. Henning, M. Ohlberger, and B. Verfürth.
In Proc. Appl. Math. Mech., volume 16, 559–560. 2016.
BibTeX
DOI
Theses
-
Numerical multiscale methods for Maxwell's equations in heterogeneous media.
B. Verfürth.
PhD thesis, WWU Münster, 2018.
BibTeX
PDF