Skip to main content

Research Group of Prof. Dr. Barbara Verfürth

Publications of this group

  1. Statistical variational data assimilation. A. Benaceur and B. Verfürth. arXiv preprint 2305.04734, 2023. BibTeX arXiv
  2. Wave propagation in high-contrast media: periodic and beyond. É. Fressart and B. Verfürth. arXiv preprint 2303.15151, 2023. BibTeX arXiv
  3. Fully discrete Heterogeneous Multiscale Method for parabolic problems with multiple spatial and temporal scales. D. Eckhardt and B. Verfürth. arXiv preprint 2210.04536, 2022. accepter for publication in BIT. BibTeX arXiv
  4. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces. P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl. Opt. Express, 30(25):45832–45847, 2022. BibTeX DOI preprint
  5. Numerical Upscaling for Wave Equations with Time-Dependent Multiscale Coefficients. B. Maier and B. Verfürth. Multiscale Model. Simul., 20(4):1169–1190, 2022. BibTeX DOI arXiv
  6. Multiscale scattering in nonlinear Kerr-type media. R. Maier and B. Verfürth. Math. Comp., 91(336):1655–1685, 2022. BibTeX DOI
  7. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. R. Mandel, Z. Moitier, and B. Verfürth. C. R. Math. Acad. Sci. Paris, 360:513–538, 2022. BibTeX DOI
  8. An offline-online strategy for multiscale problems with random defects. A. Målqvist and B. Verfürth. ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022. BibTeX DOI
  9. Higher-order finite element methods for the nonlinear Helmholtz equation. B. Verfürth. arXiv preprint 2208.11027, 2022. BibTeX arXiv
  10. Numerical homogenization for nonlinear strongly monotone problems. B. Verfürth. IMA J. Numer. Anal., 42(2):1313–1338, 2022. BibTeX DOI
  11. A multiscale method for heterogeneous bulk-surface coupling. R. Altmann and B. Verfürth. Multiscale Model. Simul., 19(1):374–400, 2021. BibTeX DOI
  12. A generalized finite element method for problems with sign-changing coefficients. T. Chaumont-Frelet and B. Verfürth. ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021. BibTeX DOI
  13. A diffuse modeling approach for embedded interfaces in linear elasticity. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. GAMM-Mitt., 43(1):e202000001, 16, 2020. BibTeX DOI
  14. Mathematical analysis of transmission properties of electromagnetic meta-materials. M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth. Netw. Heterog. Media, 15(1):29–56, 2020. BibTeX DOI
  15. From domain decomposition to homogenization theory. D. Peterseim, D. Varga, and B. Verfürth. In Domain decomposition methods in science and engineering XXV, volume 138 of Lect. Notes Comput. Sci. Eng., pages 29–40. Springer, Cham, 2020. BibTeX DOI
  16. Computational high frequency scattering from high-contrast heterogeneous media. D. Peterseim and B. Verfürth. Math. Comp., 89(326):2649–2674, 2020. BibTeX DOI
  17. Computational multiscale method for nonlinear monotone elliptic equations. B. Verfürth. In Oberwolfach Reports, number 35. 2019. BibTeX PDF
  18. Heterogeneous multiscale method for the Maxwell equations with high contrast. B. Verfürth. ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019. BibTeX DOI
  19. Numerical homogenization of H(curl){\bf {H}}(\rm curl)-problems. D. Gallistl, P. Henning, and B. Verfürth. SIAM J. Numer. Anal., 56(3):1570–1596, 2018. BibTeX DOI
  20. A new heterogeneous multiscale method for the Helmholtz equation with high contrast. M. Ohlberger and B. Verfürth. Multiscale Model. Simul., 16(1):385–411, 2018. BibTeX DOI
  21. Numerical multiscale methods for Maxwell's equations in heterogeneous media. B. Verfürth. PhD thesis, WWU Münster, 2018. BibTeX PDF
  22. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. M. Ohlberger and B. Verfürth. AIMS Mathematics, 2(3):458–478, 2017. BibTeX DOI
  23. Numerical homogenization for indefinite H(curl)-problems. B. Verfürth. In Proceedings of Equadiff 2017 conference, 137–146. 2017. BibTeX URL
  24. Analysis of multiscale methods for time-harmonic maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. In Proc. Appl. Math. Mech., volume 16, 559–560. 2016. BibTeX DOI
  25. A new heterogeneous multiscale method for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. SIAM J. Numer. Anal., 54(6):3493–3522, 2016. BibTeX DOI