Skip to main content

Research Group of Prof. Dr. Barbara Verfürth

Publications of this group

Preprints

  1. Statistical variational data assimilation. A. Benaceur and B. Verfürth. arXiv preprint 2305.04734, 2023. BibTeX arXiv
  2. Metamaterial applications of TMATSOLVER, an easy-to-use software for simulating multiple wave scattering in two dimensions. S. C. Hawkins, L. G. Bennetts, M. A. Nethercote, M. A. Peter, D. Peterseim, H. J. Putley, and B. Verürth. submitted, preprint avaialable upon reasonable request, 2023. BibTeX

Articles

  1. Wave propagation in high-contrast media: periodic and beyond. É. Fressart and B. Verfürth. Comp. Meth. Appl. Math., 2024. BibTeX DOI
  2. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach. P. Garg, A. G. Lamprianidis, S. Rahman, N. Stefanou, E. Almpanis, N. Papanikolaou, B. Verfürth, and C. Rockstuhl. Opt. Mater. Express, 14(2):549–563, feb 2024. See supplement https://doi.org/10.6084/m9.figshare.24849822.v2. BibTeX DOI
  3. Higher-order finite element methods for the nonlinear Helmholtz equation. B. Verfürth. J. Sci. Comput., 2024. online first. BibTeX DOI arXiv
  4. Numerical multiscale methods for waves in high-contrast media. B. Verfürth. Jahresber. Dtsch. Math.-Ver., pages 37–65, 2024. BibTeX DOI
  5. Uniform LL^\infty -bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation. C. Döding and P. Henning. IMA J. Numer. Anal., 2023. advance publication. BibTeX DOI arXiv
  6. Fully discrete heterogeneous multiscale method for parabolic problems with multiple spatial and temporal scales. D. Eckhardt and B. Verfürth. BIT, 63(2):35, 2023. BibTeX DOI arXiv
  7. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces. P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl. Opt. Express, 30(25):45832–45847, 2022. BibTeX DOI preprint
  8. Numerical Upscaling for Wave Equations with Time-Dependent Multiscale Coefficients. B. Maier and B. Verfürth. Multiscale Model. Simul., 20(4):1169–1190, 2022. BibTeX DOI arXiv
  9. Multiscale scattering in nonlinear Kerr-type media. R. Maier and B. Verfürth. Math. Comp., 91(336):1655–1685, 2022. BibTeX DOI
  10. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. R. Mandel, Z. Moitier, and B. Verfürth. C. R. Math. Acad. Sci. Paris, 360:513–538, 2022. BibTeX DOI
  11. An offline-online strategy for multiscale problems with random defects. A. Målqvist and B. Verfürth. ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022. BibTeX DOI
  12. Numerical homogenization for nonlinear strongly monotone problems. B. Verfürth. IMA J. Numer. Anal., 42(2):1313–1338, 2022. BibTeX DOI
  13. A multiscale method for heterogeneous bulk-surface coupling. R. Altmann and B. Verfürth. Multiscale Model. Simul., 19(1):374–400, 2021. BibTeX DOI
  14. A generalized finite element method for problems with sign-changing coefficients. T. Chaumont-Frelet and B. Verfürth. ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021. BibTeX DOI
  15. A diffuse modeling approach for embedded interfaces in linear elasticity. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. GAMM-Mitt., 43(1):e202000001, 16, 2020. BibTeX DOI
  16. Mathematical analysis of transmission properties of electromagnetic meta-materials. M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth. Netw. Heterog. Media, 15(1):29–56, 2020. BibTeX DOI
  17. Computational high frequency scattering from high-contrast heterogeneous media. D. Peterseim and B. Verfürth. Math. Comp., 89(326):2649–2674, 2020. BibTeX DOI
  18. Heterogeneous multiscale method for the Maxwell equations with high contrast. B. Verfürth. ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019. BibTeX DOI
  19. Numerical homogenization of H(curl){\bf {H}}(\rm curl)-problems. D. Gallistl, P. Henning, and B. Verfürth. SIAM J. Numer. Anal., 56(3):1570–1596, 2018. BibTeX DOI
  20. A new heterogeneous multiscale method for the Helmholtz equation with high contrast. M. Ohlberger and B. Verfürth. Multiscale Model. Simul., 16(1):385–411, 2018. BibTeX DOI
  21. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. M. Ohlberger and B. Verfürth. AIMS Mathematics, 2(3):458–478, 2017. BibTeX DOI
  22. A new heterogeneous multiscale method for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. SIAM J. Numer. Anal., 54(6):3493–3522, 2016. BibTeX DOI

Conference Proceedings

  1. From domain decomposition to homogenization theory. D. Peterseim, D. Varga, and B. Verfürth. In Domain decomposition methods in science and engineering XXV, volume 138 of Lect. Notes Comput. Sci. Eng., pages 29–40. Springer, Cham, 2020. BibTeX DOI
  2. Computational multiscale method for nonlinear monotone elliptic equations. B. Verfürth. In Oberwolfach Reports, number 35. 2019. BibTeX PDF
  3. Numerical homogenization for indefinite H(curl)-problems. B. Verfürth. In Proceedings of Equadiff 2017 conference, 137–146. 2017. BibTeX URL
  4. Analysis of multiscale methods for time-harmonic maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. In Proc. Appl. Math. Mech., volume 16, 559–560. 2016. BibTeX DOI