Skip to main content

Research Group of Prof. Dr. Barbara Verfürth

Publications of this group

Preprints

  1. Algebraic rates of stability for front-type modulated waves in Ginzburg Landau equations. W.-J. Beyn and C. Döding. preprint, 2024. BibTeX arXiv
  2. Vortex-capturing multiscale spaces for the Ginzburg-Landau equation. M. Blum, C. Döding, and P. Henning. preprint, 2024. BibTeX arXiv
  3. Error analysis of an implicit-explicit time discretization scheme for semilinear wave equations with application to multiscale problems. D. Eckhardt, M. Hochbruck, and B. Verfürth. arXiv preprint 2406.19889, 2024. BibTeX arXiv
  4. Statistical Variational Data Assimilation. A. Benaceur and B. Verfürth. arXiv preprint 2305.04734, 2023. BibTeX preprint
  5. Localized orthogonal decomposition methods vs. classical FEM for the Gross-Pitaevskii equation. C. Döding. preprint, 2023. BibTeX arXiv

Journal Articles

  1. A two level approach for simulating Bose-Einstein condensates by localized orthogonal decomposition. C. Döding, P. Henning, and J. Wärnegård. ESAIM Math. Model. Numer. Anal., 2024. to appear (advance publication). BibTeX DOI arXiv
  2. Wave propagation in high-contrast media: periodic and beyond. É. Fressart and B. Verfürth. Comput. Methods Appl. Math., 24(2):337–354, 2024. BibTeX DOI
  3. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach. P. Garg, A. G. Lamprianidis, S. Rahman, N. Stefanou, E. Almpanis, N. Papanikolaou, B. Verfürth, and C. Rockstuhl. Opt. Mater. Express, 14(2):549–563, 2024. See supplement https://doi.org/10.6084/m9.figshare.24849822.v2. BibTeX DOI
  4. Metamaterial applications of TMATSOLVER, an easy-to-use software for simulating multiple wave scattering in two dimensions. S. C. Hawkins, L. G. Bennetts, M. A. Nethercote, M. A. Peter, D. Peterseim, H. J. Putley, and B. Verfürth. Proc. R. Soc. A, 2024. BibTeX DOI
  5. Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation. B. Verfürth. J. Sci. Comput., 98(3):article number 66, 2024. BibTeX DOI
  6. Numerical Multiscale Methods for Waves in High-Contrast Media. B. Verfürth. Jahresber. Dtsch. Math.-Ver., 126(1):37–65, 2024. BibTeX DOI
  7. Uniform LL^\infty -bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation. C. Döding and P. Henning. IMA J. Numer. Anal., 2023. to appear (advance publication). BibTeX DOI arXiv
  8. Fully discrete heterogeneous multiscale method for parabolic problems with multiple spatial and temporal scales. D. Eckhardt and B. Verfürth. BIT, 63(2):Paper No. 35, 26, 2023. BibTeX DOI
  9. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces. P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl. Opt. Express, 30(25):45832–45847, dec 2022. BibTeX DOI
  10. Numerical upscaling for wave equations with time-dependent multiscale coefficients. B. Maier and B. Verfürth. Multiscale Model. Simul., 20(4):1169–1190, 2022. BibTeX DOI
  11. Multiscale scattering in nonlinear Kerr-type media. R. Maier and B. Verfürth. Math. Comp., 91(336):1655–1685, 2022. BibTeX DOI
  12. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. R. Mandel, Zo¨ıs Moitier, and B. Verfürth. C. R. Math. Acad. Sci. Paris, 360:513–538, 2022. BibTeX DOI
  13. An offline-online strategy for multiscale problems with random defects. A. Målqvist and B. Verfürth. ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022. BibTeX DOI
  14. Numerical homogenization for nonlinear strongly monotone problems. B. Verfürth. IMA J. Numer. Anal., 42(2):1313–1338, 2022. BibTeX DOI
  15. A multiscale method for heterogeneous bulk-surface coupling. R. Altmann and B. Verfürth. Multiscale Model. Simul., 19(1):374–400, 2021. BibTeX DOI
  16. A generalized finite element method for problems with sign-changing coefficients. T. Chaumont-Frelet and B. Verfürth. ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021. BibTeX DOI
  17. A diffuse modeling approach for embedded interfaces in linear elasticity. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. GAMM-Mitt., 43(1):e202000001, 16, 2020. BibTeX DOI
  18. Mathematical analysis of transmission properties of electromagnetic meta-materials. M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth. Netw. Heterog. Media, 15(1):29–56, 2020. BibTeX DOI
  19. Computational high frequency scattering from high-contrast heterogeneous media. D. Peterseim and B. Verfürth. Math. Comp., 89(326):2649–2674, 2020. BibTeX DOI
  20. Heterogeneous multiscale method for the Maxwell equations with high contrast. B. Verfürth. ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019. BibTeX DOI
  21. Numerical homogenization of H(curl){\bf {H}}(\rm curl)-problems. D. Gallistl, P. Henning, and B. Verfürth. SIAM J. Numer. Anal., 56(3):1570–1596, 2018. BibTeX DOI
  22. A new heterogeneous multiscale method for the Helmholtz equation with high contrast. M. Ohlberger and B. Verfürth. Multiscale Model. Simul., 16(1):385–411, 2018. BibTeX DOI
  23. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. M. Ohlberger and B. Verfürth. AIMS Math., 2(3):458–478, 2017. BibTeX DOI
  24. A new heterogeneous multiscale method for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. SIAM J. Numer. Anal., 54(6):3493–3522, 2016. BibTeX DOI