Skip to main content

Research Group of Prof. Dr. Barbara Verfürth

Publications of this group

Preprints

  1. Linearized localized orthogonal decomposition for quasilinear nonmonotone elliptic pde. M. Khrais and B. Verfürth. arXiv preprint 2502.13831, 2025. BibTeX arXiv
  2. A multiscale approach to the stationary Ginzburg-Landau equations of superconductivity. C. Döding, B. Dörich, and P. Henning. preprint, 2024. BibTeX arXiv
  3. Error analysis of an implicit-explicit time discretization scheme for semilinear wave equations with application to multiscale problems. D. Eckhardt, M. Hochbruck, and B. Verfürth. arXiv preprint 2406.19889, 2024. BibTeX arXiv
  4. Offline-online approximation of multiscale eigenvalue problems with random defects. D. Kolombage and B. Verfürth. arXiv preprint 2411.19614, 2024. BibTeX arXiv
  5. TEEMLEAP - a new testbed for exploring machine learning in atmospheric prediction for research and education. J. Wilhelm, J. F. Quinting, M. Burba, S. Hollborn, U. Ehret, I. P. Sanchez, S. Lerch, J. Meyer, B. Verfürth, and P. Knippertz. ESS Open Archive, 2024. preprint. BibTeX DOI

Journal Articles

  1. Algebraic rates of stability for front-type modulated waves in Ginzburg Landau equations. W.-J. Beyn and C. Döding. J. Evol. Equ., 25(2):Article No. 31, 2025. BibTeX DOI arXiv
  2. Vortex-capturing multiscale spaces for the Ginzburg-Landau equation. M. Blum, C. Döding, and P. Henning. Multiscale Model. Simul., 23(1):339–373, 2025. BibTeX DOI arXiv
  3. Statistical variational data assimilation. A. Benaceur and B. Verfürth. Comput. Methods Appl. Mech. Engrg., 432:117402, 2024. online first. BibTeX DOI
  4. A two level approach for simulating Bose-Einstein condensates by localized orthogonal decomposition. C. Döding, P. Henning, and J. Wärnegård. ESAIM Math. Model. Numer. Anal., 58(6):2317–2349, 2024. BibTeX DOI arXiv
  5. Wave propagation in high-contrast media: periodic and beyond. É. Fressart and B. Verfürth. Comput. Methods Appl. Math., 24(2):337–354, 2024. BibTeX DOI
  6. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach. P. Garg, A. G. Lamprianidis, S. Rahman, N. Stefanou, E. Almpanis, N. Papanikolaou, B. Verfürth, and C. Rockstuhl. Opt. Mater. Express, 14(2):549–563, 2024. See supplement https://doi.org/10.6084/m9.figshare.24849822.v2. BibTeX DOI
  7. Metamaterial applications of TMATSOLVER, an easy-to-use software for simulating multiple wave scattering in two dimensions. S. C. Hawkins, L. G. Bennetts, M. A. Nethercote, M. A. Peter, D. Peterseim, H. J. Putley, and B. Verfürth. Proc. R. Soc. A, 2024. BibTeX DOI
  8. Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation. B. Verfürth. J. Sci. Comput., 98(3):article number 66, 2024. BibTeX DOI
  9. Numerical Multiscale Methods for Waves in High-Contrast Media. B. Verfürth. Jahresber. Dtsch. Math.-Ver., 126(1):37–65, 2024. BibTeX DOI
  10. Uniform LL^\infty -bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation. C. Döding and P. Henning. IMA J. Numer. Anal., 44(5):2892–2935, 2023. BibTeX DOI arXiv
  11. Fully discrete heterogeneous multiscale method for parabolic problems with multiple spatial and temporal scales. D. Eckhardt and B. Verfürth. BIT, 63(2):Paper No. 35, 26, 2023. BibTeX DOI
  12. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces. P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl. Opt. Express, 30(25):45832–45847, dec 2022. BibTeX DOI
  13. Numerical upscaling for wave equations with time-dependent multiscale coefficients. B. Maier and B. Verfürth. Multiscale Model. Simul., 20(4):1169–1190, 2022. BibTeX DOI
  14. Multiscale scattering in nonlinear Kerr-type media. R. Maier and B. Verfürth. Math. Comp., 91(336):1655–1685, 2022. BibTeX DOI
  15. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. R. Mandel, Zo¨ıs Moitier, and B. Verfürth. C. R. Math. Acad. Sci. Paris, 360:513–538, 2022. BibTeX DOI
  16. An offline-online strategy for multiscale problems with random defects. A. Målqvist and B. Verfürth. ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022. BibTeX DOI
  17. Numerical homogenization for nonlinear strongly monotone problems. B. Verfürth. IMA J. Numer. Anal., 42(2):1313–1338, 2022. BibTeX DOI
  18. A multiscale method for heterogeneous bulk-surface coupling. R. Altmann and B. Verfürth. Multiscale Model. Simul., 19(1):374–400, 2021. BibTeX DOI
  19. A generalized finite element method for problems with sign-changing coefficients. T. Chaumont-Frelet and B. Verfürth. ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021. BibTeX DOI
  20. A diffuse modeling approach for embedded interfaces in linear elasticity. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. GAMM-Mitt., 43(1):e202000001, 16, 2020. BibTeX DOI
  21. Mathematical analysis of transmission properties of electromagnetic meta-materials. M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth. Netw. Heterog. Media, 15(1):29–56, 2020. BibTeX DOI
  22. Computational high frequency scattering from high-contrast heterogeneous media. D. Peterseim and B. Verfürth. Math. Comp., 89(326):2649–2674, 2020. BibTeX DOI
  23. Heterogeneous multiscale method for the Maxwell equations with high contrast. B. Verfürth. ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019. BibTeX DOI
  24. Numerical homogenization of H(curl){\bf {H}}(\rm curl)-problems. D. Gallistl, P. Henning, and B. Verfürth. SIAM J. Numer. Anal., 56(3):1570–1596, 2018. BibTeX DOI
  25. A new heterogeneous multiscale method for the Helmholtz equation with high contrast. M. Ohlberger and B. Verfürth. Multiscale Model. Simul., 16(1):385–411, 2018. BibTeX DOI
  26. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. M. Ohlberger and B. Verfürth. AIMS Math., 2(3):458–478, 2017. BibTeX DOI
  27. A new heterogeneous multiscale method for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. SIAM J. Numer. Anal., 54(6):3493–3522, 2016. BibTeX DOI