Skip to main content

Research Group of Prof. Dr. Barbara Verfürth

Publications of this group

2024

  1. Statistical variational data assimilation. A. Benaceur and B. Verfürth. Comput. Methods Appl. Mech. Engrg., 432:117402, 2024. online first. BibTeX DOI
  2. Algebraic rates of stability for front-type modulated waves in Ginzburg Landau equations. W.-J. Beyn and C. Döding. preprint, 2024. BibTeX arXiv
  3. Vortex-capturing multiscale spaces for the Ginzburg-Landau equation. M. Blum, C. Döding, and P. Henning. Multiscale Model. Simul., 2024+ (to appear). BibTeX arXiv
  4. Localized orthogonal decomposition methods vs. classical FEM for the Gross-Pitaevskii equation. C. Döding. In Numerical mathematics and advanced applications (ENUMATH 2023), Lect. Notes Comput. Sci. Eng. 2024+ (to appear). BibTeX arXiv
  5. A multiscale approach to the stationary Ginzburg-Landau equations of superconductivity. C. Döding, B. Dörich, and P. Henning. preprint, 2024. BibTeX arXiv
  6. A two level approach for simulating Bose-Einstein condensates by localized orthogonal decomposition. C. Döding, P. Henning, and J. Wärnegård. ESAIM Math. Model. Numer. Anal., 2024+ (to appear). BibTeX DOI arXiv
  7. Error analysis of an implicit-explicit time discretization scheme for semilinear wave equations with application to multiscale problems. D. Eckhardt, M. Hochbruck, and B. Verfürth. arXiv preprint 2406.19889, 2024. BibTeX arXiv
  8. Wave propagation in high-contrast media: periodic and beyond. É. Fressart and B. Verfürth. Comput. Methods Appl. Math., 24(2):337–354, 2024. BibTeX DOI
  9. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach. P. Garg, A. G. Lamprianidis, S. Rahman, N. Stefanou, E. Almpanis, N. Papanikolaou, B. Verfürth, and C. Rockstuhl. Opt. Mater. Express, 14(2):549–563, 2024. See supplement https://doi.org/10.6084/m9.figshare.24849822.v2. BibTeX DOI
  10. Metamaterial applications of TMATSOLVER, an easy-to-use software for simulating multiple wave scattering in two dimensions. S. C. Hawkins, L. G. Bennetts, M. A. Nethercote, M. A. Peter, D. Peterseim, H. J. Putley, and B. Verfürth. Proc. R. Soc. A, 2024. BibTeX DOI
  11. Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation. B. Verfürth. J. Sci. Comput., 98(3):article number 66, 2024. BibTeX DOI
  12. Numerical Multiscale Methods for Waves in High-Contrast Media. B. Verfürth. Jahresber. Dtsch. Math.-Ver., 126(1):37–65, 2024. BibTeX DOI

2023

  1. Uniform LL^\infty -bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation. C. Döding and P. Henning. IMA J. Numer. Anal., 44(5):2892–2935, 2023. BibTeX DOI arXiv
  2. Fully discrete heterogeneous multiscale method for parabolic problems with multiple spatial and temporal scales. D. Eckhardt and B. Verfürth. BIT, 63(2):Paper No. 35, 26, 2023. BibTeX DOI

2022

  1. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces. P. Garg, A. G. Lamprianidis, D. Beutel, T. Karamanos, B. Verfürth, and C. Rockstuhl. Opt. Express, 30(25):45832–45847, dec 2022. BibTeX DOI
  2. Numerical upscaling for wave equations with time-dependent multiscale coefficients. B. Maier and B. Verfürth. Multiscale Model. Simul., 20(4):1169–1190, 2022. BibTeX DOI
  3. Multiscale scattering in nonlinear Kerr-type media. R. Maier and B. Verfürth. Math. Comp., 91(336):1655–1685, 2022. BibTeX DOI
  4. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. R. Mandel, Zo¨ıs Moitier, and B. Verfürth. C. R. Math. Acad. Sci. Paris, 360:513–538, 2022. BibTeX DOI
  5. An offline-online strategy for multiscale problems with random defects. A. Målqvist and B. Verfürth. ESAIM Math. Model. Numer. Anal., 56(1):237–260, 2022. BibTeX DOI
  6. Numerical homogenization for nonlinear strongly monotone problems. B. Verfürth. IMA J. Numer. Anal., 42(2):1313–1338, 2022. BibTeX DOI

2021

  1. A multiscale method for heterogeneous bulk-surface coupling. R. Altmann and B. Verfürth. Multiscale Model. Simul., 19(1):374–400, 2021. BibTeX DOI
  2. A generalized finite element method for problems with sign-changing coefficients. T. Chaumont-Frelet and B. Verfürth. ESAIM Math. Model. Numer. Anal., 55(3):939–967, 2021. BibTeX DOI

2020

  1. A diffuse modeling approach for embedded interfaces in linear elasticity. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. GAMM-Mitt., 43(1):e202000001, 16, 2020. BibTeX DOI
  2. Mathematical analysis of transmission properties of electromagnetic meta-materials. M. Ohlberger, B. Schweizer, M. Urban, and B. Verfürth. Netw. Heterog. Media, 15(1):29–56, 2020. BibTeX DOI
  3. From domain decomposition to homogenization theory. D. Peterseim, D. Varga, and B. Verfürth. In Domain decomposition methods in science and engineering XXV, volume 138 of Lect. Notes Comput. Sci. Eng., pages 29–40. Springer, Cham, 2020. BibTeX DOI
  4. Computational high frequency scattering from high-contrast heterogeneous media. D. Peterseim and B. Verfürth. Math. Comp., 89(326):2649–2674, 2020. BibTeX DOI

2019

  1. Computational multiscale method for nonlinear monotone elliptic equations. B. Verfürth. In Oberwolfach Reports, number 35. 2019. BibTeX
  2. Heterogeneous multiscale method for the Maxwell equations with high contrast. B. Verfürth. ESAIM Math. Model. Numer. Anal., 53(1):35–61, 2019. BibTeX DOI

2018

  1. Numerical homogenization of H(curl){\bf {H}}(\rm curl)-problems. D. Gallistl, P. Henning, and B. Verfürth. SIAM J. Numer. Anal., 56(3):1570–1596, 2018. BibTeX DOI
  2. A new heterogeneous multiscale method for the Helmholtz equation with high contrast. M. Ohlberger and B. Verfürth. Multiscale Model. Simul., 16(1):385–411, 2018. BibTeX DOI
  3. Numerical multiscale methods for Maxwell's equations in heterogeneous media. B. Verfürth. PhD thesis, WWU Münster, 2018. BibTeX url

2017

  1. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. M. Ohlberger and B. Verfürth. AIMS Math., 2(3):458–478, 2017. BibTeX DOI
  2. Numerical homogenization for indefinite H(curl){\bf {H}}(\rm curl)-problems. B. Verfürth. In K. Mikula, D. Ševčovič, and J. Urban, editors, Proceedings of Equadiff 2017 conference, 137–146. 2017. BibTeX url

2016

  1. A new heterogeneous multiscale method for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. SIAM J. Numer. Anal., 54(6):3493–3522, 2016. BibTeX DOI
  2. Analysis of multiscale methods for time-harmonic Maxwell's equations. P. Henning, M. Ohlberger, and B. Verfürth. In PAMM, volume 16, 559–560. 2016. BibTeX DOI