Research Group of Prof. Dr. Ira Neitzel
Contact Information
Address:
Institut für Numerische Simulation
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Phone:
+49 228 73-69837
Office:
FHA7 3.034
E-Mail:
ed tod nnob-inu tod sni ta leztiena tod b@foo tod de
Teaching
Winter semester 2024/25
-
Wissenschaftliches Rechnen I Scientific Computing I
Winter semester 2023/24
See teaching activities of the whole group.
Research Projects
Current
Optimizing Fracture Propagation Using a Phase-Field Approach, Part II
Project SPP 1962 Phase 2, DFG priority program 1962, Phase II.
Sparse controls in optimization of quasilinear partial differential equations
Project C10, DFG SFB 1060.
Completed
Optimizing Fracture Propagation Using a Phase-Field Approach
Project SPP 1962, DFG priority program 1962.
See all projects of the group.
Publications
Submitted Articles
-
Global-in-time solutions for quasilinear parabolic pdes with mixed boundary conditions in the bessel dual scale.
F. Hoppe, H. Meinlschmidt, and I. Neitzel.
Technical Report, arXiv, 2023.
Submitted.
BibTeX
-
Journal Papers
-
-
-
-
-
-
-
-
First-order conditions for the optimal control of the obstacle problem with state constraints.
I. Neitzel and G. Wachsmuth.
PAFA, 2020.
also available as arXive Preprint arXiv:2012.15324.
BibTeX
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints.
K. Krumbiegel, I. Neitzel, and A. Rösch.
Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222–246, 2010.
BibTeX
-
-
-
-
On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints.
I. Neitzel and F. Tröltzsch.
Control Cybernet., 37(4):1013–1043, 2008.
BibTeX
Proceedings, Series- and Book Contributions
-
-
Optimizing fracture propagation using a phase-field approach.
A. Hehl, M. Mohammadi, I. Neitzel, and W. Wollner.
In to appear.
2020.
BibTeX
-
-
-
-
Optimal pde control using comsol multiphysics.
I. Neitzel, U. Prüfert, and T. Slawig.
Proceedings CD of the 2008 European COMSOL Conference, 2008.
BibTeX
-
Solving time-dependent optimal control problems in comsol multiphysics.
I. Neitzel, U. Prüfert, and T. Slawig.
Proceedings CD of the 2008 European COMSOL Conference, 2008.
BibTeX
-
Global-in-time solutions for quasilinear parabolic pdes with mixed boundary conditions in the bessel dual scale. F. Hoppe, H. Meinlschmidt, and I. Neitzel. Technical Report, arXiv, 2023. Submitted. BibTeX
-
First-order conditions for the optimal control of the obstacle problem with state constraints. I. Neitzel and G. Wachsmuth. PAFA, 2020. also available as arXive Preprint arXiv:2012.15324. BibTeX
-
Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. K. Krumbiegel, I. Neitzel, and A. Rösch. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222–246, 2010. BibTeX
-
On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. I. Neitzel and F. Tröltzsch. Control Cybernet., 37(4):1013–1043, 2008. BibTeX
-
Optimizing fracture propagation using a phase-field approach. A. Hehl, M. Mohammadi, I. Neitzel, and W. Wollner. In to appear. 2020. BibTeX
-
Optimal pde control using comsol multiphysics. I. Neitzel, U. Prüfert, and T. Slawig. Proceedings CD of the 2008 European COMSOL Conference, 2008. BibTeX
-
Solving time-dependent optimal control problems in comsol multiphysics. I. Neitzel, U. Prüfert, and T. Slawig. Proceedings CD of the 2008 European COMSOL Conference, 2008. BibTeX