Research Group of Prof. Dr. Ira Neitzel
Contact Information
Address:
Institut für Numerische Simulation
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Friedrich-Hirzebruch-Allee 7
53115 Bonn
Phone:
+49 228 73-69837
Office:
FHA7 3.034
E-Mail:
ed tod nnob-inu tod sni ta leztiena tod b@foo tod de
Teaching
Winter semester 2024/25
-
Wissenschaftliches Rechnen I Scientific Computing I
Winter semester 2023/24
See teaching activities of the whole group.
Research Projects
Current
Sparse controls in optimization of quasilinear partial differential equations
Project C10, DFG SFB 1060.
Completed
Optimizing Fracture Propagation Using a Phase-Field Approach
Project SPP 1962, DFG priority program 1962.
Optimizing Fracture Propagation Using a Phase-Field Approach, Part II
Project SPP 1962 Phase 2, DFG priority program 1962, Phase II.
See all projects of the group.
Publications
Submitted Articles
-
Journal Papers
-
-
-
-
-
-
-
-
-
-
First-order conditions for the optimal control of the obstacle problem with state constraints.
I. Neitzel and G. Wachsmuth.
PAFA, 2020.
also available as arXive Preprint arXiv:2012.15324.
BibTeX
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints.
K. Krumbiegel, I. Neitzel, and A. Rösch.
Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222–246, 2010.
BibTeX
-
-
-
-
On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints.
I. Neitzel and F. Tröltzsch.
Control Cybernet., 37(4):1013–1043, 2008.
BibTeX
Proceedings, Series- and Book Contributions, Technical Reporst
-
-
-
Optimizing fracture propagation using a phase-field approach.
A. Hehl, M. Mohammadi, I. Neitzel, and W. Wollner.
In to appear.
2020.
BibTeX
-
-
-
-
Optimal pde control using comsol multiphysics.
I. Neitzel, U. Prüfert, and T. Slawig.
Proceedings CD of the 2008 European COMSOL Conference, 2008.
BibTeX
-
Solving time-dependent optimal control problems in comsol multiphysics.
I. Neitzel, U. Prüfert, and T. Slawig.
Proceedings CD of the 2008 European COMSOL Conference, 2008.
BibTeX
-
First-order conditions for the optimal control of the obstacle problem with state constraints. I. Neitzel and G. Wachsmuth. PAFA, 2020. also available as arXive Preprint arXiv:2012.15324. BibTeX
-
Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. K. Krumbiegel, I. Neitzel, and A. Rösch. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222–246, 2010. BibTeX
-
On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. I. Neitzel and F. Tröltzsch. Control Cybernet., 37(4):1013–1043, 2008. BibTeX
-
Optimizing fracture propagation using a phase-field approach. A. Hehl, M. Mohammadi, I. Neitzel, and W. Wollner. In to appear. 2020. BibTeX
-
Optimal pde control using comsol multiphysics. I. Neitzel, U. Prüfert, and T. Slawig. Proceedings CD of the 2008 European COMSOL Conference, 2008. BibTeX
-
Solving time-dependent optimal control problems in comsol multiphysics. I. Neitzel, U. Prüfert, and T. Slawig. Proceedings CD of the 2008 European COMSOL Conference, 2008. BibTeX