A symmetric interior penalty method for an elliptic distributed optimal control problem with pointwise state constraints.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
Comput. Methods Appl. Math., 23(3):565–589, 2023.
BibTeXDOI
Adaptive virtual element methods with equilibrated fluxes.
F. Dassi, J. Gedicke, and L. Mascotto.
Applied Numerical Mathematics, 173:249–278, 2022.
BibTeXDOIarXiv
A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems.
J. Gedicke, S. Geevers, I. Perugia, and J. Schöberl.
SIAM J. Numer. Anal., 59(4):2237–2253, 2021.
BibTeXDOIarXiv
P1 finite element methods for an elliptic optimal control problem with pointwise state constraints.
S. C. Brenner, J. Gedicke, and L.-y. Sung.
IMA J. Numer. Anal., 40(1):1–28, 2020.
BibTeXDOI
An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems.
J. Gedicke, S. Geevers, and I. Perugia.
J. Sci. Comput., 83(3):Paper No. 58, 23 pp., 2020.
BibTeXDOIarXiv
Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems.
J. Gedicke and A. Khan.
Numer. Math., 144(3):585–614, 2020.
BibTeXDOIarXiv
Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM.
C. Carstensen, D. Gallistl, and J. Gedicke.
Numer. Math., 142(2):205–234, 2019.
BibTeXDOI
Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation.
S. Congreve, J. Gedicke, and I. Perugia.
SIAM J. Sci. Comput., 41(2):A1121–A1147, 2019.
BibTeXDOIarXiv
Benchmark computation of eigenvalues with large defect for non-self-adjoint elliptic differential operators.
R. Gasser, J. Gedicke, and S. Sauter.
SIAM J. Sci. Comput., 41(6):A3938–A3953, 2019.
BibTeXDOIarXiv
C0 interior penalty methods for an elliptic distributed optimal control problem on nonconvex polygonal domains with pointwise state constraints.
S. C. Brenner, J. Gedicke, and L.-y. Sung.
SIAM J. Numer. Anal., 56(3):1758–1785, 2018.
BibTeXPDFDOI
Numerical homogenization of heterogeneous fractional Laplacians.
D. L. Brown, J. Gedicke, and D. Peterseim.
Multiscale Model. Simul., 16(3):1305–1332, 2018.
BibTeXDOIarXiv
Arnold-Winther mixed finite elements for Stokes eigenvalue problems.
J. Gedicke and A. Khan.
SIAM J. Sci. Comput., 40(5):A3449–A3469, 2018.
BibTeXDOIarXiv
Hodge decomposition for two-dimensional time-harmonic Maxwell's equation: impedance boundary condition.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
Math. Methods Appl. Sci., 40(2):370–390, 2017.
BibTeXPDFDOI
An a posteriori analysis of C0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates.
S. C. Brenner, J. Gedicke, L.-Y. Sung, and Y. Zhang.
SIAM J. Numer. Anal., 55(1):87–108, 2017.
BibTeXPDFDOI
An adaptive P1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
J. Sci. Comput., 68(2):848–863, 2016.
BibTeXPDFDOI
Justification of the saturation assumption.
C. Carstensen, D. Gallistl, and J. Gedicke.
Numer. Math., 134(1):1–25, 2016.
BibTeXPDFDOI
Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity.
C. Carstensen and J. Gedicke.
Comput. Methods Appl. Mech. Engrg., 300:245–264, 2016.
BibTeXPDFDOI
An adaptive finite element method with asymptotic saturation for eigenvalue problems.
C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar.
Numer. Math., 128(4):615–634, 2014.
BibTeXPDFDOI
Guaranteed lower bounds for eigenvalues.
C. Carstensen and J. Gedicke.
Math. Comp., 83(290):2605–2629, 2014.
BibTeXPDFDOI
A posteriori error estimators for convection-diffusion eigenvalue problems.
J. Gedicke and C. Carstensen.
Comput. Methods Appl. Mech. Engrg., 268:160–177, 2014.
BibTeXPDFDOI
An adaptive P1 finite element method for two-dimensional Maxwell's equations.
S. C. Brenner, J. Gedicke, and L.-Y. Sung.
J. Sci. Comput., 55(3):738–754, 2013.
BibTeXPDFDOI
An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity.
C. Carstensen and J. Gedicke.
SIAM J. Numer. Anal., 50(3):1029–1057, 2012.
BibTeXPDFDOI
Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem.
C. Carstensen, J. Gedicke, and E.-J. Park.
SIAM J. Sci. Comput., 34(4):A2267–A2287, 2012.
BibTeXPDFDOI
Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods.
C. Carstensen, J. Gedicke, and D. Rim.
J. Comput. Math., 30(4):337–353, 2012.
BibTeXPDFDOI
Computational competition of symmetric mixed FEM in linear elasticity.
C. Carstensen, M. Eigel, and J. Gedicke.
Comput. Methods Appl. Mech. Engrg., 200(41-44):2903–2915, 2011.
BibTeXPDFDOI
An adaptive homotopy approach for non-selfadjoint eigenvalue problems.
C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar.
Numer. Math., 119(3):557–583, 2011.
BibTeXPDFDOI
An oscillation-free adaptive FEM for symmetric eigenvalue problems.
C. Carstensen and J. Gedicke.
Numer. Math., 118(3):401–427, 2011.
BibTeXPDFDOI