Skip to main content

Research Group of Prof. Dr. Gregor Gantner

Publications of this group

Software

  1. IGABEM2D. G. Gantner, D. Praetorius, and S. Schimanko. zenodo:6282997, 2022. BibTeX DOI
  2. Fast solutions (for the first-passage distribution of diffusion models with space-time-dependent drift functions). U. Boehm, S. Cox, G. Gantner, and R. Stevenson. osf.io/xv674/, 2021. BibTeX DOI
  3. Implementation of: Adaptive space-time BEM for the heat equation. G. Gantner and R. van Venetië. zenodo:5165042, 2021. BibTeX DOI

Preprints

  1. Space-time FEM-BEM couplings for parabolic transmission problems. T. Führer, G. Gantner, and M. Karkulik. 2024. BibTeX arXiv
  2. Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems. G. Gantner and M. Ruggeri. 2024. BibTeX arXiv

Articles

  1. Improved rates for a space-time FOSLS of parabolic PDEs. G. Gantner and R. Stevenson. Numer. Math., 156:133–157, 2024. BibTeX DOI arXiv
  2. Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis. G. Gantner and M. Vohralík. Math. Models Methods Appl. Sci., 34(3):477–522, 2024. BibTeX DOI arXiv
  3. Goal-oriented adaptive finite element methods with optimal computational complexity. R. Becker, G. Gantner, M. Innerberger, and D. Praetorius. Numer. Math., 153(1):111–140, 2023. BibTeX DOI arXiv
  4. Applications of a space-time FOSLS formulation for parabolic PDEs. G. Gantner and R. Stevenson. IMA J. Numer. Anal., 44(1):58–82, 2023. BibTeX DOI arXiv
  5. Efficient numerical approximation of a non-regular Fokker–Planck equation associated with first-passage time distributions. U. Boehm, S. Cox, G. Gantner, and R. Stevenson. BIT, 62:1355–1382, 2022. BibTeX DOI arXiv
  6. Mathematical foundations of adaptive isogeometric analysis. A. Buffa, G. Gantner, C. Giannelli, D. Praetorius, and R. Vázquez. Arch. Comput. Methods Eng., 29:4479–4555, 2022. BibTeX DOI arXiv
  7. Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations. G. Gantner and D. Praetorius. Appl. Anal., 101(6):2085–2118, 2022. BibTeX DOI arXiv
  8. Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations. G. Gantner and D. Praetorius. Comput. Math. Appl., 117:74–96, 2022. BibTeX DOI arXiv
  9. Plain convergence of adaptive algorithms without exploiting reliability and efficiency. G. Gantner and D. Praetorius. IMA J. Numer. Anal., 42(2):1434–1453, 2022. BibTeX DOI arXiv
  10. Stable implementation of adaptive IGABEM in 2D in MATLAB. G. Gantner, D. Praetorius, and S. Schimanko. Comput. Methods Appl. Math., 22(3):563–590, 2022. BibTeX DOI arXiv
  11. A well-posed first order system least squares formulation of the instationary Stokes equations. G. Gantner and R. Stevenson. SIAM J. Numer. Anal., 60(3):1607–1629, 2022. BibTeX DOI arXiv
  12. Adaptive space-time BEM for the heat equation. G. Gantner and R. van Venetië. Comput. Math. Appl., 107:117–131, 2022. BibTeX DOI arXiv
  13. Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries. U. Boehm, S. Cox, G. Gantner, and R. Stevenson. J. Math. Psych., 105:102613, 2021. BibTeX DOI preprint
  14. Rate optimality of adaptive finite element methods with respect to the overall computational costs. G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko. Math. Comp, 90:2011–2040, 2021. BibTeX DOI arXiv
  15. Further results on a space-time FOSLS formulation of parabolic PDEs. G. Gantner and R. Stevenson. ESAIM Math. Model. Numer. Anal., 55(1):283–299, 2021. BibTeX DOI arXiv
  16. Optimal convergence behavior of adaptive FEM driven by simple (hh/2)(h- h/ 2)-type error estimators. C. Erath, G. Gantner, and D. Praetorius. Comput. Math. Appl., 79(3):623–642, 2020. BibTeX DOI arXiv
  17. Adaptive IGAFEM with optimal convergence rates: T-splines. G. Gantner and D. Praetorius. Comput. Aided Geom. Design, 81:101906, 2020. BibTeX DOI arXiv
  18. Adaptive isogeometric boundary element methods with local smoothness control. G. Gantner, D. Praetorius, and S. Schimanko. Math. Models Methods Appl. Sci., 30:261–307, 2020. BibTeX DOI arXiv
  19. Adaptive Uzawa algorithm for the Stokes equation. G. Di Fratta, T. Führer, G. Gantner, and D. Praetorius. ESAIM Math. Model. Numer. Anal., 53(6):1841–1870, 2019. BibTeX DOI arXiv
  20. Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods. T. Führer, G. Gantner, D. Praetorius, and S. Schimanko. Comput. Methods Appl. Mech. Engrg., 351:571–598, 2019. BibTeX DOI arXiv
  21. Rate optimal adaptive FEM with inexact solver for nonlinear operators. G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. IMA J. Numer. Anal., 38(4):1797–1831, 2018. BibTeX DOI arXiv
  22. Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Numer. Math., 136(1):147–182, 2017. BibTeX DOI arXiv
  23. Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines. G. Gantner, D. Haberlik, and D. Praetorius. Math. Models Methods Appl. Sci., 27(14):2631–2674, 2017. BibTeX DOI arXiv
  24. Adaptive boundary element methods for optimal convergence of point errors. M. Feischl, T. Führer, G. Gantner, A. Haberl, and D. Praetorius. Numer. Math., 132(3):541–567, 2016. BibTeX DOI preprint
  25. Adaptive 2D IGA boundary element methods. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Eng. Anal. Bound. Elem., 62:141–153, 2016. BibTeX DOI arXiv
  26. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, and D. Praetorius. Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015. BibTeX DOI arXiv

Proceedings

  1. Rate optimal adaptive FEM with inexact solver for strongly monotone operators. G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. In Oberwolfach Workshop on Adaptive Algorithms, 2537–2540. 2016. BibTeX DOI
  2. A posteriori error estimation for adaptive IGA boundary element methods. M. Feischl, G. Gantner, and D. Praetorius. In 11th World Congress on Computational Mechanics (WCCM), 2421–2432. 2014. BibTeX PDF
  3. Method to assess the load shifting potential by using buildings as a thermal storage. F. Judex, M. Brychta, G. Gantner, and R. Braun. In 2nd Central European Symposium on Building Physics (CESBP), 565–570. 2013. BibTeX PDF

Theses

  1. Optimal adaptivity for splines in finite and boundary element methods. G. Gantner. PhD thesis, Institute for Analysis and Scientific Computing, TU Wien, 2017. BibTeX PDF
  2. Adaptive isogeometric BEM. G. Gantner. Master's thesis, Institute for Analysis and Scientific Computing, TU Wien, 2014. BibTeX PDF