IGABEM2D.
G. Gantner, D. Praetorius, and S. Schimanko.
zenodo:6282997, 2022.
BibTeXDOI
Fast solutions (for the first-passage distribution of diffusion models with space-time-dependent drift functions).
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
osf.io/xv674/, 2021.
BibTeXDOI
Implementation of: Adaptive space-time BEM for the heat equation.
G. Gantner and R. van Venetië.
zenodo:5165042, 2021.
BibTeXDOI
Preprints
Aubin–Nitsche-type estimates for space-time FOSLS for parabolic PDEs.
T. Führer and G. Gantner.
2024.
BibTeXarXiv
Space-time FEM-BEM couplings for parabolic transmission problems.
T. Führer, G. Gantner, and M. Karkulik.
2024.
BibTeXarXiv
Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems.
G. Gantner and M. Ruggeri.
2024.
BibTeXarXiv
Articles
Improved rates for a space-time FOSLS of parabolic PDEs.
G. Gantner and R. Stevenson.
Numer. Math., 156:133–157, 2024.
BibTeXDOIarXiv
Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis.
G. Gantner and M. Vohralík.
Math. Models Methods Appl. Sci., 34(3):477–522, 2024.
BibTeXDOIarXiv
Goal-oriented adaptive finite element methods with optimal computational complexity.
R. Becker, G. Gantner, M. Innerberger, and D. Praetorius.
Numer. Math., 153(1):111–140, 2023.
BibTeXDOIarXiv
Applications of a space-time FOSLS formulation for parabolic PDEs.
G. Gantner and R. Stevenson.
IMA J. Numer. Anal., 44(1):58–82, 2023.
BibTeXDOIarXiv
Efficient numerical approximation of a non-regular Fokker–Planck equation associated with first-passage time distributions.
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
BIT, 62:1355–1382, 2022.
BibTeXDOIarXiv
Mathematical foundations of adaptive isogeometric analysis.
A. Buffa, G. Gantner, C. Giannelli, D. Praetorius, and R. Vázquez.
Arch. Comput. Methods Eng., 29:4479–4555, 2022.
BibTeXDOIarXiv
Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations.
G. Gantner and D. Praetorius.
Appl. Anal., 101(6):2085–2118, 2022.
BibTeXDOIarXiv
Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations.
G. Gantner and D. Praetorius.
Comput. Math. Appl., 117:74–96, 2022.
BibTeXDOIarXiv
Plain convergence of adaptive algorithms without exploiting reliability and efficiency.
G. Gantner and D. Praetorius.
IMA J. Numer. Anal., 42(2):1434–1453, 2022.
BibTeXDOIarXiv
Stable implementation of adaptive IGABEM in 2D in MATLAB.
G. Gantner, D. Praetorius, and S. Schimanko.
Comput. Methods Appl. Math., 22(3):563–590, 2022.
BibTeXDOIarXiv
A well-posed first order system least squares formulation of the instationary Stokes equations.
G. Gantner and R. Stevenson.
SIAM J. Numer. Anal., 60(3):1607–1629, 2022.
BibTeXDOIarXiv
Adaptive space-time BEM for the heat equation.
G. Gantner and R. van Venetië.
Comput. Math. Appl., 107:117–131, 2022.
BibTeXDOIarXiv
Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries.
U. Boehm, S. Cox, G. Gantner, and R. Stevenson.
J. Math. Psych., 105:102613, 2021.
BibTeXDOIpreprint
Rate optimality of adaptive finite element methods with respect to the overall computational costs.
G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko.
Math. Comp, 90:2011–2040, 2021.
BibTeXDOIarXiv
Further results on a space-time FOSLS formulation of parabolic PDEs.
G. Gantner and R. Stevenson.
ESAIM Math. Model. Numer. Anal., 55(1):283–299, 2021.
BibTeXDOIarXiv
Optimal convergence behavior of adaptive FEM driven by simple (h−h/2)-type error estimators.
C. Erath, G. Gantner, and D. Praetorius.
Comput. Math. Appl., 79(3):623–642, 2020.
BibTeXDOIarXiv
Adaptive IGAFEM with optimal convergence rates: T-splines.
G. Gantner and D. Praetorius.
Comput. Aided Geom. Design, 81:101906, 2020.
BibTeXDOIarXiv
Adaptive isogeometric boundary element methods with local smoothness control.
G. Gantner, D. Praetorius, and S. Schimanko.
Math. Models Methods Appl. Sci., 30:261–307, 2020.
BibTeXDOIarXiv
Adaptive Uzawa algorithm for the Stokes equation.
G. Di Fratta, T. Führer, G. Gantner, and D. Praetorius.
ESAIM Math. Model. Numer. Anal., 53(6):1841–1870, 2019.
BibTeXDOIarXiv
Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods.
T. Führer, G. Gantner, D. Praetorius, and S. Schimanko.
Comput. Methods Appl. Mech. Engrg., 351:571–598, 2019.
BibTeXDOIarXiv
Rate optimal adaptive FEM with inexact solver for nonlinear operators.
G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner.
IMA J. Numer. Anal., 38(4):1797–1831, 2018.
BibTeXDOIarXiv
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 136(1):147–182, 2017.
BibTeXDOIarXiv
Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines.
G. Gantner, D. Haberlik, and D. Praetorius.
Math. Models Methods Appl. Sci., 27(14):2631–2674, 2017.
BibTeXDOIarXiv
Adaptive boundary element methods for optimal convergence of point errors.
M. Feischl, T. Führer, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 132(3):541–567, 2016.
BibTeXDOIpreprint
Adaptive 2D IGA boundary element methods.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Eng. Anal. Bound. Elem., 62:141–153, 2016.
BibTeXDOIarXiv
Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, and D. Praetorius.
Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015.
BibTeXDOIarXiv
Proceedings
Rate optimal adaptive FEM with inexact solver for strongly monotone operators.
G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner.
In Oberwolfach Workshop on Adaptive Algorithms, 2537–2540. 2016.
BibTeXDOI
A posteriori error estimation for adaptive IGA boundary element methods.
M. Feischl, G. Gantner, and D. Praetorius.
In 11th World Congress on Computational Mechanics (WCCM), 2421–2432. 2014.
BibTeXPDF
Method to assess the load shifting potential by using buildings as a thermal storage.
F. Judex, M. Brychta, G. Gantner, and R. Braun.
In 2nd Central European Symposium on Building Physics (CESBP), 565–570. 2013.
BibTeXPDF
Theses
Optimal adaptivity for splines in finite and boundary element methods.
G. Gantner.
PhD thesis, Institute for Analysis and Scientific Computing, TU Wien, 2017.
BibTeXPDF
Adaptive isogeometric BEM.
G. Gantner.
Master's thesis, Institute for Analysis and Scientific Computing, TU Wien, 2014.
BibTeXPDF