Skip to main content

Research Group of Prof. Dr. Sven Beuchler

Mr. Beuchler is now at University of Hannover. This page is no longer maintained.

Contact Information

E-Mail: ed tod nnob-inu tod sni ta relhcueba tod b@foo tod de


Summer semester 2017

Winter semester 2016/17

See teaching activities of the whole group.

Current Research Projects

See all projects of the group.


  1. Additive schwarz solvers for hphp-fem discretizations of pde-constrained optimzation problems. S. Beuchler and K. Hofer. Technical Report, INS, 2016. also avaiable as INS-Preprint 1625. BibTeX PDF
  2. Boundary concentrated finite elements for optimal control problems with distributed observation. S. Beuchler, K. Hofer, D. Wachsmuth, and J.-E. Wurst. Comput. Optim. Appl., 62(1):31–65, 2015. BibTeX DOI
  3. Inexact additive Schwarz solvers for hphp-FEM discretizations in three dimensions. S. Beuchler. In Advanced finite element methods and applications, volume 66 of Lect. Notes Appl. Comput. Mech., pages 91–108. Springer, Heidelberg, 2013. BibTeX PDF DOI
  4. Fast summation techniques for sparse shape functions in tetrahedral hphp-FEM. S. Beuchler, V. Pillwein, and S. Zaglmayr. In Domain decomposition methods in science and engineering XX, volume 91 of Lect. Notes Comput. Sci. Eng., pages 511–518. Springer, Heidelberg, 2013. BibTeX DOI
  5. Sparsity optimized high order finite element functions for H(curl)H(\textrm {curl}) on tetrahedra. S. Beuchler, V. Pillwein, and S. Zaglmayr. Adv. in Appl. Math., 50(5):749–769, 2013. BibTeX DOI
  6. Boundary concentrated finite elements for optimal boundary control problems of elliptic pdes. S. Beuchler, C. Pechstein, and D. Wachsmuth. Computational Optimization and Applications, 51(2):883–908, 2012. BibTeX Link
  7. Sparsity optimized high order finite element functions on simplices. S. Beuchler, V. Pillwein, J. Schöberl, and S. Zaglmayr. In Numerical and symbolic scientific computing, Texts Monogr. Symbol. Comput., pages 21–44. SpringerWienNewYork, Vienna, 2012. BibTeX DOI
  8. Sparsity optimized high order finite element functions for h(div)h(div) on simplices. S. Beuchler, V. Pillwein, and S. Zaglmayr. Numerische Mathematik, 122(2):197–225, 2012. avaiable online. BibTeX DOI
  9. Schwarz type solvers for hphp-FEM discretizations of mixed problems. S. Beuchler and M. Purrucker. Comput. Methods Appl. Math., 12(4):369–390, 2012. also avaiable as INS-Preprint 1108. BibTeX PDF DOI
  10. Wavelet solvers for hphp-FEM discretizations in 3D using hexahedral elements. S. Beuchler. Comput. Methods Appl. Mech. Engrg., 198(13-14):1138–1148, 2009. BibTeX DOI
  11. Primal and dual interface concentrated iterative substructuring methods. S. Beuchler, T. Eibner, and U. Langer. SIAM J. Numer. Anal., 46(6):2818–2842, 2008. BibTeX DOI
  12. Completions to sparse shape functions for triangular and tetrahedral p-fem. S. Beuchler and V. Pillwein. In U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, 435–442. Heidelberg, 2008. Springer. Proceedings of the 17th International Conference on Domain Decomposition Methods held at St. Wolfgang / Strobl, Austria, July 3–7, 2006. BibTeX
  13. Overlapping additiv Schwarz preconditioners for isotropic elliptic problems with degenerate coefficients. S. Beuchler and S. Nepomnyaschikh. J. Num. Math., 15(4):245–276, 2007. BibTeX
  14. Overlapping additive schwarz preconditioners for elliptic problems with degenerate locally anisotropic coefficients. S. Beuchler and S. Nepomnyaschikh. SIAM J. Num. Anal., 45(6):2321–2344, 2007. BibTeX
  15. Shape functions for tetrahedral pp-fem using integrated Jacobi polynomials. S. Beuchler and V. Pillwein. Computing, 80:345–375, 2007. BibTeX
  16. Improvements for some condition number estimates in p-fem. S. Beuchler and D. Braess. Num. Lin. Alg. Appl., 13(7):573–588, 2006. BibTeX
  17. New shape functions for triangular pp-FEM using integrated Jacobi polynomials. S. Beuchler and J. Schöberl. Numer. Math., 103(3):339–366, 2006. BibTeX DOI
  18. A domain decomposition preconditioner for pp-FEM discretizations of two-dimensional elliptic problems. S. Beuchler. Computing, 74(4):299–317, 2005. BibTeX
  19. Extension operators on tensor product structures in two and three dimensions. S. Beuchler. SIAM J. Sci. Comput., 26(5):1776–1795, 2005. BibTeX
  20. Optimal extensions on tensor-product meshes. S. Beuchler and J. Schöberl. Appl. Numer. Math., 54(3-4):391–405, 2005. BibTeX
  21. Multilevel solvers for a finite element discretization of a degenerate problem. S. Beuchler. SIAM J. Numer. Anal., 42(3):1342–1356, 2004. BibTeX
  22. Multiresolution weighted norm equivalences and applications. S. Beuchler, R. Schneider, and C. Schwab. Numer. Math., 98(1):67–97, 2004. BibTeX DOI
  23. AMLI preconditioner for the pp-version of the FEM. S. Beuchler. Num. Lin. Alg. Appl., 10(8):721–732, 2003. BibTeX
  24. Multigrid solver for the inner problem in domain decomposition methods for PP-FEM. S. Beuchler. SIAM J. Numer. Anal., 40(3):928–944 (electronic), 2002. BibTeX DOI