Skip to main content

Staff Dr. Stephan Knapek

Mr. Knapek is now at TWS Partners. This page is no longer maintained.

Contact Information

Current Research Projects



  1. Optimized general sparse grid approximation spaces for operator equations. M. Griebel and S. Knapek. Mathematics of Computations, 78(268):2223–2257, oct 2009. Also available as SFB611 preprint No 402. BibTeX PostScript PDF Link
  2. Integral operators on sparse grids. S. Knapek and F. Koster. SIAM J. Num. Anal., 39(5):1794–1809, 2002. BibTeX PostScript
  3. Optimized tensor-product approximation spaces. M. Griebel and S. Knapek. Constructive Approximation, 16(4):525–540, 2000. BibTeX PostScript
  4. Matrix-dependent multigrid homogenization for diffusion problems. S. Knapek. SIAM J. Sci. Comp., 20(2):515–533, 1999. BibTeX PostScript
  5. Upscaling techniques based on subspace correction and coarse-grid approximation. S. Knapek. InSitu, 22(1):35–58, 1998. Special issue on reservoir simulation. BibTeX PostScript

Unrefereed proceedings, technical reports

  1. Compression of anisotropic tensor–product discretizations. S. Knapek. INS Preprint 0200, Institut für Numerische Simulation, Universität Bonn, 2002. BibTeX PDF
  2. Optimized approximation spaces for operator equations. M. Griebel and S. Knapek. Technical Report 568, SFB 256, Univ. Bonn, 1999. BibTeX PDF
  3. Multilevel upscaling in heterogeneous porous media. J.D. Moulton, S. Knapek, and J.E. Dendy. Technical Report, CNLS Research highlight, Los Alamos Nat.~Lab., Jan. 1999. BibTeX PostScript
  4. A multigrid-homogenization method. M. Griebel and S. Knapek. In R. Helmig, W. Jäger, W. Kinzelbach, P. Knabner, and G. Wittum, editors, Modeling and Computation in Environmental Sciences, volume 59 of Notes on Numerical Fluid Mechanics, 187–202. Braunschweig, 1997. Vieweg-Verlag. BibTeX


  1. Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. S. Knapek. Dissertation, Universität Bonn, April 2000. BibTeX PostScript PDF
  2. Multiskalenverfahren bei der Modellierung, Diskretisierung und Lösung von Diffusionsproblemen. S. Knapek. Diplomarbeit, Instit.~für Informatik, TU München, 1995. BibTeX PostScript